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Stochastic Processes

Stochastic Processes
We have studied a probability system (S,Ω,P) and notion of
random variable X (w). Stochastic process can be defined as
X (t ,w) where:

FX(t)(x) = Prob[X (t) ≤ x ]

Example:
1 no. of job waiting in the queue as a function of time
2 stock market index

Markov process

P[X (tn+1) = xn+1 | X (tn) = xn,X (tn−1) = xn−1, · · · ,X (t1) = x1]

= P[X (tn+1) = xn+1 | X (tn) = xn]
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Stochastic Processes

Continue
Discrete-time Markov Chain

give example
P[Xn = j | Xn−1 = in−1,Xn−2 = in−2, . . . ,X1 = i1] = P[Xn = j |
Xn−1 = in−1] (transition probability)

Homogeneous Markov chain : if the transition probabilities are
independent of n (or time)
Irreducible Markov chain : if every state can be reached from
every other states
Periodic Markov chain : example : if I can reach state Ej in step γ,
2γ, 3γ, · · · where γ is > 1
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Stochastic Processes

Continue
For an irreducible and aperiodic Markov Chain,we have

πj = lim
n→∞

π
(n)
j

πj =
∑

i

πiPij and
∑

i

πi = 1

Example:

P =

 0 3
4

1
4

1
4 0 3

4
1
4

1
4

1
2


What’s the ~π = [π0, π1, π2] ?
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Stochastic Processes

What’s πj =
∑

i πiPij ? (Another way to look at it)

π0 = π0(0) + π1(
1
4

) + π2(
1
4

)

π1 = π0(
3
4

) + π1(0) + π2(
1
4

)

π2 = π0(
1
4

) + π1(
3
4

) + π2(
1
2

)

The above equations are linearly dependent!
1 = π0 + π1 + π2

Direct Solution:
π0 = 0.2, π1 = 0.28, π2 = 0.52⇒ ~π = [0.2,0.28,0.52]
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Stochastic Processes

Transient to limiting solution

Define π(n) = [π
(n)
0 , π

(n)
1 , · · ·π(n)

k ]

Given π(0), we can perform:

π(1) = π(0)P
π(2) = π(1)P = π(0)P2

... =
...

π(n) = π(0)Pn

... =
...

π = πP

look at page 33. The limiting solution (or steady state probability)
is INDEPENDENT of the initial vector.
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Stochastic Processes

For Discrete time Markov Chain
the number of time units that the system spends in the same state
is GEOMETRICALLY DISTRIBUTED

(1− Pii)Pm
ii where m is the no. of additional steps

Homogeneous continuous time Markov chain
πQ = 0,

∑
i πi = 1 and Q[i , j] is the rate matrix

qij = rate from state i to state j
qii = −

∑
j 6=i qij = rate of going out of state i

meaning of πQ = 0 ∑
j

πiqij = 0 ∀i
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Stochastic Processes

Poisson Process:

Pk (t) =
(λt)k

k !
e−λt for k = 0,1,2, . . .

G(Z ) =
∞∑

k=0

Pk (t)Z k =
∞∑

k=0

(λt)k

k !
e−λtZ k

= e−λt
∞∑

k=0

(λtZ )k

k !
= e−λteλtZ = eλt(Z−1)

E [K ] =
d

dZ
G(Z ) |Z=1= λteλt(Z−1) |Z=1= λt

σ2
k = K̄ 2 − (K̄ )2, since

d2

dZ
G(Z ) |Z=1= K̄ 2 − K̄

d2

dZ 2 G(Z ) = (λt)2eλt(Z−1) |Z=1= (λt)2

→ σ2
K = (λt)2 + λt − (λt)2 = λt
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Stochastic Processes

Given a Poisson, what is the distribution of it’s interarrival ?

FA(t) = Prob[X ≤ t ] = 1− P[X > t ] = 1− e−λt

fA(t) =
dFA(t)

dt
= λe−λt t ≥ 0 EXPONENTIAL!!

→ constant rate!!
Poisson arrival→ exponential interarrival time.
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Queueing Systems

Baby Queueing Theory: M/M/1
Poisson arrival (or the interarrival time is exponential) and service time
is exponentially distributed. Arrival is λe−λt and service is µe−µt .

0 1 2 3 ............

λ λ λ

µ µ µ
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Queueing Systems

Q =


−λ λ 0 · · ·
µ −(λ+ µ) λ · · ·
0 µ −(λ+ µ) · · ·
...

...
...

we can use πQ = 0 and
∑
πi = 1

For each state, flow in = flow out
Using this, we have:

−π0λ + µπ1 = 0
π0λ − π1(λ+ µ) + µπ2 = 0

πi−1λ − πi(λ+ µ) + µπi+1 = 0 i ≥ 1

Stability condition: λ
µ < 1
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Queueing Systems

Solution
Here, we can use flow-balance concept:

0 1 2 3 ............

λ λ λ

µ µ µ

π0λ = π1µ → π1 = π0(
λ

µ
)

π1λ = π2µ → π2 = π1(
λ

µ
) = π0(

λ

µ
)2

π2λ = π3µ → π3 = π2(
λ

µ
) = π0(

λ

µ
)3
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Queueing Systems

In general, πi = π0(λµ)i i ≥ 0, ∑
i

πi = 1

π0[1 + (
λ

µ
) + (

λ

µ
)2 + · · · ] = 1

π0[
∞∑

i=0

(
λ

µ
)i ] = 1

π0[
1

1− λ
µ

] = 1

π0 = 1− λ

µ

πi = (1− λ

µ
)(
λ

µ
)i i ≥ 0

(ρ = λ
µ = system utilization = Prob[system or server is busy])
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Queueing Systems

N̄ = E [number of customer in the system] =
∞∑

i=0

iπi

=
∞∑

i=0

i(1− ρ)ρi = (1− ρ)
∞∑

i=0

iρi

= (1− ρ)ρ
∞∑

i=0

iρi−1 = (1− ρ)ρ
∞∑

i=0

∂ρi

∂ρ

= (1− ρ)ρ
∂

∂ρ

∞∑
i=0

ρi

= (1− ρ)ρ
∂

∂ρ
[

1
1− ρ

] = (1− ρ)ρ[
1

(1− ρ)2 ]

=
ρ

1− ρ
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Queueing Systems

E[number of customer waiting in the queue] = ?

∞∑
k=1

(k − 1)Pk =
ρ

1− ρ
−
∞∑

k=1

Pk

=
ρ

1− ρ
− ρ

→ a special form, not only for M/M/1
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Queueing Systems

Little’s Result
Little’s Result : N̄ = λT̄
T̄ = N̄

λ =
1
µ

1−ρ → that is why λ = µ is unstable

1

N

1

T

1/µ
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Queueing Systems

Discourage Arrivals

λk =
α

k + 1
k = 0,1,2, · · · µk = µ

0 1 2 3 ............

α α/2 α/3

µ µ µ

k-1 k k+1

α/ α/

µ µ

............

k k+1

p0α = p1µ → p1 = p0
α

µ

p1
α

2
= p2µ → p2 = p1

α

µ

1
2

= p0(
α

µ
)2(

1
2

)

p2
α

3
= p3µ → p3 = p2

α

µ

1
3

= p0(
α

µ
)3(

1
3

)(
1
2

)

...

pi = p0(
α

µ
)i(

1
i!

) i ≥ 0
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Queueing Systems

∞∑
i=0

pi = 1

∞∑
i=0

p0(
α

µ
)i(

1
i!

) = 1

p0

∞∑
i=0

(αµ )i

i!
= 1

p0e
α
µ = 1

p0 = e−
α
µ

pi = e−( α
µ

)(
α

µ
)i(

1
i!

) i ≥ 0

N̄ = ?

T̄ = ?
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Queueing Systems

ρ = ?
λ

µ
= (1− e−

α
µ )

λ =
∞∑

k=0

α

(k + 1)
pk =

∞∑
k=0

α

k + 1
·

e−
α
µ (αµ )k

k !

= αe−
α
µ

∞∑
k=0

(αµ )k

(k + 1)!
= µe−

α
µ

∞∑
k=0

(αµ )k+1

(k + 1)!

= µe−
α
µ (e

α
µ − 1) = µ(1− e−

α
µ )
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Queueing Systems

Little’s Law
α(t) = The no. of customers arrived in (0, t)
δ(t) = The no. of customers departure in (0, t)
N(t) = α(t)− δ(t) = The no. of customers in the system at time t.
γ(t) =

∫ t
0 N(t)dt= Total time of all entered customers have spent in the

system.
λt = Average arrival rate (0, t) = α(t)

t

Tt = System time per customer during (0, t) = γ(t)
α(t)

N̄t = Average number of customer during (0, t) = γ(t)
t

N̄t = γ(t)
t = Ttα(t)

α(t)
λt

= λtTt

Taking limit at t →∞ , we have:

N̄ = λT̄

General for all algorithms e.g FIFO.....
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Queueing Systems

M/M/∞ system

0 1 2 3 i...... ......

λ λ λ λ λ λ

µ µ µ µ µ µ2 3 4 i (i+1)

Pk = P0

(
λ

µ

)k ( 1
k !

)
k = 0,1,2, · · ·

P0

[ ∞∑
i=0

(
λ

µ

)k ( 1
k !

)]
= 1 ⇒ P0 = e−λ/µ

Pk =
e−λ/µ

(
λ
µ

)k

k !
k = 0,1,2, · · ·
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Queueing Systems

Continue

N̄ =
∞∑

k=0

kPk =
∞∑

k=1

ke−λ/µ
(
λ
µ

)k

k !
= e−λ/µ

∞∑
k=1

(
λ
µ

)k

(k − 1)!

= e−λ/µ
(
λ

µ

) ∞∑
k=1

(
λ
µ

)k−1

(k − 1)!
=
λ

µ

T̄ = N̄/λ =
1
µ
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Queueing Systems

M/M/m system

0 1 2 3 ......

λ λ λ λ

µ µ µ µ2 3 4

m-1 m m+1 ......

λ λ λ

µm µm µm

λk = λ for k = 0,1, · · · .
µk = kµ for 0 ≤ k ≤ m and mµ for k ≥ m.

p0λ = p1µ ⇒ p1 = p0

(
λ

µ

)
p1λ = p22µ ⇒ p2 = p0

(
λ

µ

)2(1
2

)
...

pk = p0

(
λ

µ

)k ( 1
k !

)
k = 0,1, . . . ,m
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Queueing Systems

continue
for k ≥ m

pmλ = pm+1mµ ⇒ pm+1 = p0

(
λ

µ

)m+1( 1
m!

)(
1
m

)
pm+1λ = pm+2mµ ⇒ pm+2 = p0

(
λ

µ

)m+2( 1
m!

)(
1
m

)2

...

pk = p0

(
λ

µ

)k ( 1
m!

)(
1
m

)(k−m)

k ≥ m

Prob[queueing] =
∞∑

k=m

pk
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Queueing Systems

M/M/1/K finite storage system

0 1 2 3 ......

λ λ λ λ

µ µ µ µ

K-1 K

λ

µ

pk = p0

(
λ

µ

)k

k = 0,1, . . . ,K

p0 =

[
K∑

k=0

(
λ

µ

)k
]−1

=

[
1− ρK +1

1− ρ

]−1

=
1− ρ

1− ρK +1 where ρ = λ
µ

Prob[blocking] =?
Using the similar approach, we can find N̄ and T̄ .
Average arrival rate is λ(1− PK ).
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Queueing Systems

M/M/m/m (m−server loss system)

0 1 2 3 ......

λ λ λ λ

µ µ µ µ

m-1 m

λ

µ2 3 4 m

λk = λ for k < m and zero otherwise. µk = kµ for k = 1,2, . . . ,m.

pk = p0

(
λ

µ

)k 1
k !

k ≤ m

p0 =

[
m∑

k=0

(λ/µ)k

k !

]−1

Prob[all servers are busy] is equal to Pm.
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Queueing Systems

M/M/1//m (Finite customer population)

0 1 2 3 ......

λ λ λ

µ µ µ µ

m-1 m

λ

µ

(m-1) (m-2) (m-3)λm

pk = p0Πk−1
i=0

λ(M − i)
µ

0 ≤ k ≤ M

= p0

(
λ

µ

)k M!

(M − k)!
0 ≤ k ≤ M

p0 =

[
M∑

i=0

(
λ

µ

)k M!

(M − k)!

]−1
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Queueing Systems

pk to rk

k k

What is pk? It is limt→∞
sum of time slots with k customers

t

rk = Prob[arriving customer finds the system in state Ek ]
Is pk = rk?
Let us look at D/D/1, interarrival time is 4 secs, service time is 3
sec. Then p0 = 1/4 and r0 = 1.
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Queueing Systems

More
For Poisson arrival, Pk (t) = Rk (t) or pk = rk .

Rk (t) = lim
δt→0

P[N(t) = k |A(t + δt)] =
P[N(t) = k ,A(t + δt)]

P[A(t + δt)]

=
P[A(t + δt)|N(t) = k ]P[N(t) = k ]

P[A(t + δt)]

Due to memoryless property:

P[A(t + δt)|N(t) = k ] = P[A(t + δt)]

Due to independence,

Rk (t) = P[N(t) = k ] = pk (t)
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Queueing Systems

Method of stages: Erlangian distribution Er

Let service time density function

b(x) = µe−µx x ≥ 0

B∗(s) =
µ

s + µ
; E [x̃ ] =

1
µ

;σ2
b =

1
µ2

µ 2µ 2µ
1 2

h(y) = 2µe−2µy y ≥ 0

x = y + y

B∗(s) =

(
2µ

s + 2µ

)2
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Queueing Systems

continue
From (2.146)

X ∗(s) =

(
λ

s + λ

)k

⇒ fX (x) =
λ(λx)k−1

(k − 1)!
e−λx x ≥ 0; k ≥ 1

Therefore:
b(x) = 2µ(2µx)e−2µx x ≥ 0

E [x ] = E [y ] + E [y ] =
1

2µ
+

1
2µ

=
1
µ

; σ2
b = σ2

n + σ2
n =

2
(2µ)2 =

1
2µ2
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Queueing Systems

Er : r−stage Erlangian distribution

1 2
......... µ

r
rµr µr

h(y) = rµe−rµy y ≥ 0

E [y ] =
1
rµ

; σ2
h =

1
(rµ)2 ; E [x ] = r

1
rµ

=
1
µ

σ2
x = r

(
1
rµ

)2

=
1

rµ2

B∗(s) =

[
rµ

s + rµ

]r

⇒ b(x) =
rµ(rµx)r−1

(r − 1)!
e−rµx x ≥ 0
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Queueing Systems

M/Er/1 system

a(t) = λe−λt

b(t) =
rµ(rµx)r−1

(r − 1)!
e(rµx) x ≥ 0

State description: [k , sl ] transform to [s] where s is the total number of
stages yet to be completed by all customers.
If the system has k customers and when the i th stage of service
contains the customers.

j = number of stages left in the total system
= (k − 1)r + (r − i + 1) = rk − i + 1
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Queueing Systems

M/Er/1 system: continue
Let Pj be the probability of j stages of work in the system. Since
j = rk − i + 1, we have:

pk = Prob[k customers] =

j=rk∑
j=(k−1)r+1

Pj

j-r0 1 2 r r+1 j j+1

λ
λ

µr µr µr µr µr µr µr µr µr

λ
..................... ...............
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Queueing Systems

Let Pj = 0 for j < 0.

λP0 = rµP1

(λ+ rµ)Pj = λPj−r + rµPj+1

Define P(Z ) =
∑∞

j=0 PjZ j

∞∑
j=1

(λ+ rµ)PjZ j =
∞∑

j=1

λPj−r Z j +
∞∑

j=1

rµPj+1Z j

(λ+ rµ) [P(Z )− P0] = λZ r [P(Z )] +
rµ
Z

[P(Z )− P0 − P1Z ]

P(Z ) =
P0 [λ+ rµ− (rµ/Z )] + rµP1

λ+ rµ− λZ r − (rµ/Z )

=
P0rµ(1− 1/Z )

λ+ rµ− λZ r − (rµ/Z )
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Queueing Systems

Since P(1) = 1, therefore, using L’ Hospital rule, we have 1 = rµP0
rµ−λr ,

therefore, P0 = rµ−λr
rµ = 1− λ

µ .
Define ρ = λ

µ , we have

P(Z ) =
rµ(1− ρ)(1− Z )

rµ+ λZ r+1 − (λ+ rµ)Z

For general r , look at denominator, there are (r + 1) zeros. Unity is
one of them; we have (1− Z )[rµ− λ(Z + Z 2 + · · ·+ Z r )]. Therefore,
we have r zeros which are Z1,Z2, · · · ,Zr . We can arrange them to be
rµ(1− Z/Z1)(1− Z/Z2) · · · (1− Z/Zr ). We have:

P(Z ) = (1− ρ)
r∑

i=1

Ai

1− Z/Zi

Need to resolve this by partial fraction expansion.
For Er/M/1 system, derive it at home.
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Queueing Systems

Bulk Arrival System
Let gi be the probability that the bulk size is i , for i > 0.

k-2 k-1 k k+1 k+2

λg 2 λg 1

λg i

λg 1

λg 2

µµµµ

...
...

..

...
...

..

................

λP0 = µP1

(λ+ µ)Pk = µPk+1 +
k−1∑
i=0

λgk−iPi

(λ+ µ)
∞∑

k=1

PkZ k = µ

∞∑
k=1

Pk+1Z k + λ

∞∑
k=1

k−1∑
i=0

gk−iPiZ K

(λ+ µ) [P(Z )− P0] =
µ

Z
[P(Z )− P0 − P1Z ] + λP(Z )G(Z )
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Queueing Systems

Analysis: continue

P(Z ) =
µP0(1− Z )

µ(1− Z )− λZ [1−G(Z )]

Using P(1) = 1 and L’ Hospital rule

P(Z ) =
µ(1− ρ)(1− Z )

µ(1− Z )− λZ [1−G(Z )]

where ρ = λG
′
(1)
µ

For bulk service system, try it at home.
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Queueing Systems

Parallel System

µ
1

µ
2

α
1

α
2

b(x) = α1µ1e−µ1x + α2µ2e−µ2x x ≥ 0

B∗(s) = α1

(
µ1

s + µ1

)
+ α2

(
µ2

s + µ2

)
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Queueing Systems

Continue:
In general, if we have R parallel stages (hyper-exponential):

B∗(s) =
R∑

i=1

αi

(
µi

s + µi

)

b(x) =
R∑

i=1

αiµie−µi x x ≥ 0

x̄ =
R∑

i=1

αi

(
1
µi

)
x̄2 =

R∑
i=1

αi

(
2
µ2

i

)

C2
b =

σ2
b

(x̄)2 =
x̄2 − (x̄)2

(x̄)2 ⇒ C2
b ≥ 1
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Queueing Systems

Series and Parallel System

r
1 µ 1 r

1 µ 1 r
1 µ 1

r
i µ i r

i µ i r
i µ i

r
Rµ R r

Rµ R r
Rµ R

..............

........

..............

α 1

α i

α R

...
...

...
.

...
...

...
.

r
1

r
i

r
R

b(x) =
R∑

i=1

αi
riµi(riµix)ri−1

(ri − 1)!
e−riµi x x ≥ 0

B∗(s) =
R∑

i=1

αi

(
riµi

s + riµi

)ri
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