
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017 1287

Clustered Fault Tolerance TSV Planning
for 3-D Integrated Circuits

Qi Xu, Song Chen, Member, IEEE, Xiaodong Xu, and Bei Yu, Member, IEEE

Abstract—In 3-D integrated circuits (3-D ICs), through silicon
via (TSV) is a critical technique to provide vertical connections.
However, the yield and reliability challenge of TSV in indus-
try is one of key obstacles to adopt the 3-D ICs technology.
Various fault-tolerance structures by using additional spare
TSVs (s-TSVs) to repair faulty functional TSVs (f-TSVs) have
been proposed in literature for yield and reliability enhancement.
However, these structures are formed in standard cell placement
stage where all the f-TSVs are already placed. In reality, since
the s-TSVs can be only inserted into the whitespace, the qual-
ity of the generated repair solution is strongly dependent on
the whitespace distribution. In this paper, we propose an effi-
cient TSV planning and repair framework in floorplanning stage,
which takes nonuniform TSV distribution and clustered TSV
defect-distribution into account. The proposed framework mainly
consists of four stages: 1) a whitespace redistribution algorithm
that uses a probability-based strategy to make the whitespace dis-
tribution more reasonable for the f-TSV planning. Subsequently,
a convex-cost flow-based model for f-TSV allocation considering
the fault clustering; 2) a top-down globally partitioning combined
with a bottom-up locally merging to partition f-TSVs into groups
with minimum hardware cost; 3) the min-cost max-flow algo-
rithm for s-TSV allocation with minimum wirelength overhead;
and 4) an integer linear programming-based model to form a
fault-tolerance structure with minimum multiplexer delay over-
head. The experimental results demonstrate that the proposed
repair framework can improve the yield with minimum hardware
cost and multiplexer delay overhead.

Index Terms—3-D integrated circuit (3-D IC), fault-tolerance,
through silicon via (TSV) planning, TSV repair, yield
enhancement.

I. INTRODUCTION

AS DEVICE feature sizes continue to rapidly decrease,
the interconnect delay is becoming a bottleneck limiting

IC performance. 3-D integrated circuits (3-D ICs) technol-
ogy involves vertically stacking multiple dies connected by
through silicon vias (TSVs), providing a promising way to

Manuscript received July 22, 2016; revised October 15, 2016 and
December 29, 2016; accepted February 9, 2017. Date of publication
March 10, 2017; date of current version July 17, 2017. This work was sup-
ported in part by the National Natural Science Foundation of China under
Grant 61674133 and Grant 61404123, in part by the Anhui Provincial Natural
Science Foundation, China, under Grant 1508085MF134, and in part by the
Chinese University of Hong Kong Direct Grant for Research. This paper
was recommended by Associate Editor C. C.-N. Chu. (Corresponding author:
Song Chen.)

Q. Xu, S. Chen, and X. Xu are with the Department of Electronic
Science and Technology, University of Science and Technology of China,
Hefei 230027, China (e-mail: xuqi@mail.ustc.edu.cn; songch@ustc.edu.cn;
xxd0210@mail.ustc.edu.cn).

B. Yu is with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Hong Kong (e-mail:
byu@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2681080

alleviate the interconnect problem and achieve a significant
reduction in chip area, wire-length, and interconnect power [1].
Theory indicates that the average wire-length of a 3-D IC
varies according to the square root of the number of layers [2].
Moreover, 3-D ICs also offer the potential for heteroge-
neous integration, which is essential for more than Moore
technology [3].

However, yield of TSVs-based 3-D ICs is limited under cur-
rent manufacturing process. In general, there are two types of
yield losses in 3-D ICs due to defects in stacked dies or defects
occurred during the assembling process [4]. For the former
case, it is critical to conduct prebond testing to avoid the
stacking of defective dies [5]. A number of die/wafer match-
ing and interdie repair strategies have also been proposed to
increase the stack yield [6]–[8]. In the latter case, adding spare
TSVs (s-TSVs) to repair fault functional TSVs (f-TSVs) is an
effective method for enhancing yield.

Two different TSV placement styles, namely uniform TSV
placement and nonuniform TSV placement, are considered
in [9]. For the uniform TSV placement, f-TSVs are placed uni-
formly, and s-TSVs and multiplexers are inserted after f-TSV
planning but prior to the placement of logic cells and detailed
routing [10]. Therefore, it is not required to consider whites-
pace during s-TSV allocation. In contrast, for nonuniform TSV
placement, the f-TSVs and logic cells need to be placed simul-
taneously. In order to avoid significant distortion to the routing
of signal nets during inserting s-TSVs, the s-TSVs have to
be allocated after placement stage, and the whitespace con-
straint must be taken into account [11]. Although uniform TSV
placement offers advantages in heat dissipation and package
bonding, nonuniform TSV placement provides more design
flexibility, and lower latency [12]. In this paper, we consider
the nonuniform TSV placement style.

A. Previous Work

Several s-TSV allocation mechanisms have been proposed
to increase reliability. Nain et al. [13] attempted to improve
the yield by providing wireless redundant TSVs, and per-
formed Monte Carlo simulation under different TSV defect
rates to estimate the chip yield. However, huge extra costs
including transmitter and receiver circuits may be introduced
to ensure the functionality of the employed wireless redundant
TSVs. Zhao et al. [14] tried to determine the optimal group-
ing ratio, i.e., the number of f-TSVs to the number of s-TSVs,
in fault-tolerance structures to achieve high chip yield while
minimizing hardware costs. Hsieh and Hwang [15] presented
a repair mechanism, which partitions f-TSVs into TSV groups
and assigns each TSV group with one s-TSV for repairing the
faulty link in that TSV group. Jiang et al. [16] proposed a TSV
redundancy architecture using dedicated switches to handle
clustered TSV faults. The proposed technique enables faulty
TSVs to be repaired by s-TSVs that are distant rather than

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017

Fig. 1. Fault-tolerance structure with large delay overhead.

by the neighboring s-TSVs, thus being suitable for repairing
the clustered TSV faults. Lo et al. [17] proposed a ring-based
redundant TSV architecture, which places s-TSVs at the edges
of the f-TSV grid with multiple rings. Simulation results show
that the ring-based architecture can efficiently repair clustered
faulty TSVs with low area overhead. However, these methods
are only suitable for uniform TSV designs, where TSVs are
placed in a regular structure on the die.

Recently there are investigations on s-TSV allocation in
nonuniform TSV-based design. Ye and Chakrabarty [18]
proposed an integer linear programming (ILP)-based algorithm
to minimize the wirelength overhead due to signal rerouting
by optimally allocating s-TSVs to f-TSVs. Unfortunately, the
chip yield, which is a primary motivation for s-TSV alloca-
tion, was not explicitly considered. Chen et al. [11] studied
an optimal assignment of s-TSVs under yield and timing con-
straints to minimize the total area overhead, where at most one
s-TSV can be assigned into a TSV group. Wang et al. [12]
presented a fault-tolerance technique that can repair faulty
TSVs based on a realistic clustered defect model. It showed
that the hardware cost is proportional to the number of f-TSV
groups, so a greedy algorithm is first used to partition the
f-TSVs into several groups with minimizing the hardware
cost. Then an ILP-based algorithm is utilized to determine the
exact locations of the inserted s-TSVs to minimize the delay
overhead.

However, most existing nonuniform TSV allocation works
suffer from one or more of the following drawbacks.

1) Some only allow one s-TSV to be inserted in each TSV
group, thus the proposed fault-tolerance structure cannot
be repaired in case of more than one faulty f-TSV.

2) Usually a chain structure for a group with n s-TSVs
includes multiplexers with at most (n + 1) input ports,
which has the smallest delay overhead. Without the con-
sideration of fault-tolerance structure generation, some
previous works may suffer from unreasonable TSV
locations. For instance, as shown in Fig. 1, without
appropriate design, four f-TSVs are partitioned into a
group but they cannot transfer each other’s signals due
to high wirelength cost. Therefore, each f-TSV has to
directly connect to an s-TSV, introducing large (4-to-1)
multiplexers.

3) The delay overhead by multiplexers, which are used
for rerouting signals in the generated fault-tolerance

TABLE I
RELATION BETWEEN DELAY AND THE INPUT

PORT NUMBER OF MULTIPLEXER

structures, is not considered. Table I shows the rela-
tion between delay and the type of multiplexer, which is
estimated based on an industry 40-nm library. If fault-
tolerance structure is not well designed, the input port
number of a multiplexer could be the f-TSV number in
the group, which introduces large delay overhead.

From previous work, we notice that all fault-tolerance struc-
tures are formed in standard cell placement stage when all the
f-TSVs are already placed. In reality, since the s-TSVs can be
only inserted into the whitespace, the quality of the generated
repair solution is strongly dependent on the whitespace distri-
bution. It should be noted that although some previous f-TSV
planning methods (e.g., [19]–[22]) can be extended to allocate
f-TSVs, the extension may not be trivial and purely f-TSV
planning itself is hard to achieve reasonable fault tolerance.
That is, with an inappropriate whitespace and f-TSV distri-
bution, we might be fail to generate fault tolerance structure
thus the chip yield could be greatly impacted. To construct
an available TSV repairable structure, we should make the
whitespace distribution in the generated 3-D floorplan more
reasonable for the subsequent TSV insertion.

B. Our Contributions

Motivated by the above argument, in this paper we pro-
pose an effective TSV planning and repair framework, which
is flexible to repair clustered TSV faults with minimum hard-
ware cost and delay overhead. Our framework is aware of
the yield constraint under the defect clustering. Some key
technical contributions of this paper are listed as follows.

1) f-TSV Planning: f-TSVs are inserted layer by layer
through solving a set of convex-cost flow problems. The con-
vex function associated with the whitespace distribution makes
the allocation of the f-TSVs scattered to reduce the TSV fault
clustering effect and can potentially reserve some whitespace
for s-TSVs. Before f-TSVs are inserted, to make the whites-
pace distribution in the given floorplan more balanced for the
TSV planning, we iteratively insert whitespace blocks into
the region that contains the maximum probability number of
f-TSVs, estimated using a probabilistic analysis, until the max-
imum probability number is smaller than 1 all over the chip.
A partitioned sequence pair (P-SP) [23] is used to represent
multilayer 3-D floorplans. The relative positions of the blocks
will be kept unchanged and the fixed-outline constraint will
not be violated during the whitespace redistribution.

2) s-TSV Planning: First, to minimize the hardware costs,
we propose to use a top-down partitioning followed by a
bottom-up merging (clustering) to form f-TSV groups with
enough s-TSV candidates, considering the yield constraint
under the TSV defect clustering. The f-TSVs in the same
group will share same s-TSVs for the fault-tolerance struc-
ture. In the top-down stage, we are able to globally partition

XU et al.: CLUSTERED FAULT TOLERANCE TSV PLANNING FOR 3-D ICs 1289

the f-TSVs into groups by recursive min-cut bi-partitioning
algorithm until the chip yield is higher than the target yield.
In the bottom-up merging stage, we locally merge the avail-
able two f-TSV groups with the highest yield to reduce the
group number under the target yield constraints. After the
f-TSV grouping, f-TSVs are already partitioned into groups
and the f-TSVs in each group can have a reasonable number
of common s-TSV candidates for constructing fault-tolerance
structure under the target yield constraint. Then an efficient
min-cost max-flow (MCMF)-based method is used to assign
s-TSV candidates to f-TSV groups with minimization of the
wirelength costs.

3) Fault-Tolerance Structure Construction: To generate
n-fault tolerance structures that use n s-TSVs for a group of
f-TSVs, we need to find n independent shifting paths from
each f-TSV to n s-TSVs. Because the multiplexers are used
to reroute signals, the delay of a multiplexer is increased
along with the number of input ports. Therefore, minimizing
the delay overhead of multiplexers is equivalent to mini-
mizing the maximum input number of multiplexers. In this
paper, we present an ILP formulation to generate n-fault tol-
erance structures minimizing the maximum input number of
all multiplexers. To the best of our knowledge, this is the
first work for generating n-fault (n > 1) tolerance structures
that uses n s-TSVs for a group of f-TSVs, considering the
delay overhead of multiplexers. The experimental results show
that the proposed ILP formulation for generating n-fault toler-
ance structures can effectively minimize the maximum input
number of multiplexers.

The remainder of this paper is organized as follows.
Section II formulates the TSV yield problem and presents the
background and motivation of this paper. Section III describes
the overview of the proposed framework. The corresponding
proposed f-TSV and s-TSV planning algorithms are described
in detail in Sections IV and V. Section VI presents an ILP
formulation for generating the fault tolerance structures. The
experimental results are provided in Section VII, followed by
the conclusions in Section VIII.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Chip Yield and TSV Yield

According to the cumulative yield property, the yield of a
3-D chip Ychip can be formulated as follows [4]:

Ychip = Ystack ·
t−1∏

i=1

Ybonding(i) ·
t−1∏

i=1

YTSV(i) (1)

where t is the number of device layers in the 3-D chip, Ystack
is the stacking yield, Ybonding(i) is the yield of the ith bonding
step, and YTSV(i) denotes the TSV yield in the ith layer. In
this paper, we focus on the yield enhancement of 3-D chip
in terms of overall TSV yield YTSV(i) [12]. The TSV yield
YTSV(i) calculation is shown in Section V-A.

B. TSV Fault-Tolerance Structure

In this paper, we focus on an effective fault-tolerance TSV
planning, where a set of f-TSVs are partitioned into several
groups, and one or multiple s-TSV(s) are assigned to each
group to provide redundancy. By inserting the control circuit
(i.e., multiplexers) and carefully designing the reconfigurable
routing paths, the s-TSVs can be used to transfer signals in the
presence of faulty f-TSVs [24]. Fig. 2 shows one such struc-
ture with four f-TSVs and two s-TSVs, which is constructed

Fig. 2. Fault-tolerance structure and the signal routing when f-TSVs 1 and
2 fail.

by our algorithm, and in this structure we could repair the
group in case of at most two faulty f-TSVs through multi-
plexer rerouting. When all f-TSVs are fault-free, each signal
passes through their corresponding f-TSV. Once two f-TSVs
are faulty, the reconfigurable routing paths are shown in Fig. 2.

C. Problem Formulation

Based on the above definitions, the problem formulation of
clustered fault-tolerance TSV planning under yield constraints
is as follows.

Input: 1) A 3-D IC floorplan result where the relative posi-
tions of blocks have been determined; 2) target yield of the
chip; and 3) defect model parameters.

Constraints: 1) All blocks are packed into the specified
region (fixed outline); 2) two blocks within the same layer do
not overlap; 3) the generated s-TSV allocation solution should
satisfy the target yield; and 4) f-TSVs and s-TSVs should only
be inserted into the whitespace surrounding the placed blocks.

Output: A TSV fault-tolerance structure, including:
1) which f-TSVs are assigned to the same s-TSV(s); 2) the
exact positions of the allocated s-TSVs; and 3) the connection
relation of TSVs.

Objective: Minimize the hardware cost and delay overhead
induced by the fault-tolerance structure.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

Fig. 3 illustrates the overall flow of the proposed TSV
planning framework, which mainly consists of five stages:
1) whitespace redistribution; 2) f-TSV insertion; 3) f-TSV
grouping; 4) s-TSV allocation; and 5) fault-tolerance structure
construction.

First, given a 3-D floorplan, to make the whitespace dis-
tribution in the given floorplan more balanced for the TSV
planning, we iteratively insert whitespace blocks into the
region that contains the maximum probability number of
f-TSVs, estimated using a probabilistic analysis, until the max-
imum probability number is smaller than 1 all over the
chip, which potentially alleviates the dense distribution of the
f-TSVs in some local regions. In this stage, the P-SP [23]
is used to represent multilayer 3-D floorplans. The relative

1290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017

Fig. 3. Overall flow of the proposed framework.

positions of the blocks will be kept unchanged and the fixed-
outline constraint will not be violated during the whitespace
redistribution.

Second, the f-TSVs are inserted layer by layer through solv-
ing a set of convex-cost flow problems. The convex edge cost
function associated with the whitespace distribution makes the
allocation of the f-TSVs scattered to reduce the TSV fault
clustering effect and can potentially reserve some whitespaces
around f-TSVs for s-TSVs.

Third, to minimize the hardware costs, we use a top-down
partitioning followed by a bottom-up clustering to form f-TSV
groups with enough s-TSV candidates, considering the yield
constraint under the TSV defect clustering. Moreover, con-
sidering the delay overhead introduced by the multiplexers,
we also take into account the replaceable relations between
f-TSVs during the grouping for potentially reducing the max-
imum size of the multiplexers. The f-TSVs in the same group
will share same s-TSVs for the fault-tolerance structure. In the
top-down stage, we are able to globally partition the f-TSVs
into groups by recursive min-cut bi-partitioning algorithm until
the chip yield is higher than the target yield. In the bottom-
up merging stage, we locally merge the available two f-TSV
groups with the highest yield to reduce the group number
until the chip yield is decreased to the target yield. Compared
with previous grouping method in [12], which includes only
a bottom-up clustering stage, the proposed group method has
a more global view and potentially is able to generate f-TSV
groups with lower hardware costs.

Fourth, after the f-TSVs are grouped, an efficient MCMF-
based method is used to assign fixed number of s-TSVs to all
the f-TSV groups, simultaneously, with minimization of the
wirelength costs.

Finally, we propose an ILP-based method to generate n-fault
tolerance structures for each group by finding independent
signal shifting paths from each f-TSV to n s-TSVs and the
objective is to minimize the delay overhead introduced by the
multiplexers for rerouting signals, i.e., the maximum size of
the multiplexers.

IV. FUNCTIONAL TSV PLANNING

In this stage, a whitespace redistribution algorithm that uses
a probability-based strategy is first performed to make the
whitespace distribution more reasonable for the subsequent
f-TSV planning. Then, f-TSVs are assigned by solving a set
of convex-cost flow problems layer by layer. The convex edge
cost function associated with the whitespace distribution is

proposed to guide a scattered allocation of f-TSVs to reduce
the TSV fault clustering effect and reserve some whitespaces
around each f-TSV.

A. Whitespace Redistribution

We use P-SP extended from the well-studied 2-D floorplan
representation sequence pair [23] to represent 3-D floorplan.
During the chip-level floorplanning, we adopt an efficient
fixed-outline multilayer floorplanner called insertion-after-
remove multi-layer floorplanning (IAR-MLFP) [25], [26] to
determine block positions while minimizing the wirelength
and the number of f-TSVs. Then a whitespace redistribution
algorithm is performed based on P-SP representation, which
can make the whitespace distribution in the above generated
floorplan be aware of the following f-TSV planning and s-TSV
allocation. In our whitespace redistribution, we first compute
candidate positions of each f-TSV, and then iteratively insert
a whitespace block into a position which contains the maxi-
mum number of candidate f-TSVs. Therefore, the whitespace
redistribution method can avoid a dense TSV distribution in
some positions, and the TSV fault clustering effect would be
also reduced. The fixed-outline constraint will not be violated
during the whitespace insertion.

On all device layers, an even grid structure is used, whose
size P×Q is determined by a specified individual grid size.
Given a multilayer floorplan result, we compute the whitespace
distribution on each layer by calculating the amount of whites-
pace in each grid g, denoted as ws(g). Let Av be the area of a
TSV. The capacity cap(g) of a grid g, i.e., the number of TSVs
that can be located at g, is defined as �ws(g)/Av�. Therefore,
the whitespace distribution is related to the candidate positions
of each f-TSV. Here we use a probability-based heuristic for
computing candidate positions of each f-TSV [27].

First, given an f-TSV, we set all the grids with nonzero
capacity that are covered by the bounding box of the corre-
sponding net as the initial candidate positions of the f-TSV.
The bounding box of a net is a rectangular region encapsulat-
ing all the pins of the net and can be defined by the maximum
and minimum x−/y−coordinates of the net pins. If a net spans
multiple device layers, we project all the net pins onto one
device layer and calculate the bounding box.

Second, for an f-TSV v of a net nt, let CP(v) be the set
of all the grids with nonzero capacity that are covered by the
bounding box of nt. And for a grid with nonzero capacity,
CV(g) be the set of f-TSVs of the nets whose bounding box
cover g, that is, CV(g) = {v|CP(v) includes g}. We calculate
the expected position number of v denoted as epn(v), and the
expected via number in g denoted as evn(g), as follows:

epn(v) =
∑

g∈CP(v)

cap(g)

|CV(g)| , evn(g) =
∑

v∈CV(g)

1

|CP(v)| . (2)

If there is an f-TSV v with epn(v) < 1, the CP(v) will be
extended by iteratively extending the net bounding box one
unit in each direction until epn(v) ≥ 1. The evn(g) can be
assumed as the congestion coefficient for each grid g. And
CV(g) is also updated.

A whitespace is assumed as a virtual block with the same
size as a TSV during the insertion. After inserting the whites-
pace block into the floorplan, if the new chip area does not
violate the fixed outline constraint, this insertion point will be
assumed as a candidate position of whitespace block inser-
tion. According to P-SP, we calculate the position of inserted
whitespace block and find the corresponding grid g in grid

XU et al.: CLUSTERED FAULT TOLERANCE TSV PLANNING FOR 3-D ICs 1291

structure. The insertion point is evaluated by the congestion
coefficient evn(g) of the corresponding grid g which is cal-
culated by (2). Given a P-SP for t layers and ni (>0) blocks
on layer i, the number of insertion points for the whitespace
block equals to

∑t
i=1 n2

i [25]. After evaluating all insertion
points, the candidate positions are sorted and the one with the
highest congestion coefficient will be selected as the inser-
tion point. Then we insert the whitespace block into P-SP
and update P-SP to set new positions for all blocks. In our
experiments, the algorithm will be iterated until the highest
congestion coefficient is smaller than 1 or the iteration num-
ber is larger than 1200. Therefore, the whitespace distribution
is more reasonable for the following f-TSVs insertion and
s-TSVs allocation.

B. f-TSV Allocation

As shown in [19], the f-TSV allocation problem for 3-D IC
is NP-complete. Although there are many previous f-TSV
allocation studies, to consider the clustered TSV defect, a
modified f-TSV planning is necessary. According to (4), the
presence of a TSV fault increases the probability of more
defective TSVs in close vicinity. Hence, the scattered distribu-
tion of the TSVs will increase the probability to reduce TSV
fault clustering effect. In addition, an appropriate whitespace
distribution could make the TSV distribution more reason-
able and ensure that there are enough whitespaces around
f-TSVs for s-TSV planning. Inspired by Liu et al. [19] and
Chen et al. [28], in this paper, f-TSV positions are determined
by solving a convex-cost flow problem, in which the TSV
congestion is considered [29]. One-layer assignment algorithm
finds the optimal solution for two-layer chips. If there are more
than two device layers in a chip, we can assign f-TSVs layer
by layer by applying a set of one-layer assignments. One-layer
assignment algorithm is as follows.

To assign f-TSVs into grids, a directed graph Gf (Vf , Ef) is
constructed. Vertex set Vf contains four portions Vf = s∪Vf 1∪
Vf 2 ∪ t, where s is the start vertex, Vf 1 is the set of all f-TSVs,
Vf 2 is the set of grids with nonzero capacity, and t is the end
vertex. Besides, edge set Ef = {s → Vf 1} ∪ {vi → gj|vi ∈
Vf 1 ∧ gj ∈ Vf 2 is a candidate position of vi} ∪ {Vf 2 → t}. We
define all the edge capacities as follows: the capacity of one
edge from Vf 2 to node t is the capacity of the corresponding
grid cap(g); while the capacities of all other edges are set to 1.
We define all the edge costs as follows:

ecf (v, w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, ∀(v, w) ∈ {
s → Vf 1

}

wl
(
sntk0

) + wl
(
sntk1

)
, ∀(v, w) ∈ {

Vf 1 → Vf 2
}

if v is TSV of net ntk
fpl(xvw), ∀(v, w) ∈ {

Vf 2 → t
}

if xvw is flow on (v, w)

(3)

where wl(sntki) is the half-perimeter wirelength (HPWL) of net
sntki , the subnet of net ntk, on device layer i. In order to get
HPWL estimation, we adopt the method in [28] to decompose
the nets spanning multiple device layers into subnets, one on
each device layer, by introducing dummy pins corresponding
to TSVs.

fpl(x) is piecewise linear and convex. Let 0 = d0
vw <

d1
vw · · · < dj

vw = cap(g) denote the breakpoints of the function
and the cost varies linearly in the interval [di−1

vw , di
vw]. Let ci

vw
denote the linear cost coefficient in the interval [di−1

vw , di
vw]. In

our experiment, we set fpl(x) = 10 · ex/cap(g) and the interval
between adjacent breakpoints to 1. This fpl(x) function would

Fig. 4. Example of convex-cost flow network.

Fig. 5. Example of f-TSV allocation layout result.

allocate f-TSVs scattered to reduce the TSV fault clustering
effect and reserve some whitespaces around each f-TSV. In
the experiment, by using this fpl(x) function, the s-TSV allo-
cation success rate reaches 100%. Fig. 4 shows an example
of convex-cost flow model. Note that all of the edges in the
network have a capacity and a cost.

Such a convex-cost flow problem can be easily transformed
into a traditional min-cost flow problem by replacing an edge,
whose edge cost function is piecewise-linear and convex, by
a set of edges [30]. The layout example of f-TSV allocation
is shown in Fig. 5.

After determining f-TSVs position, we calculate current
whitespace distribution as all s-TSVs can only be placed into
the whitespace.

V. SPARE TSV PLANNING

In this section, we first introduce two TSV defect-
distribution models and present the calculation method of
defect probability of TSVs under the clustered defect-
distribution model. Then, a top-down and bottom-up partition-
ing strategy is proposed to cluster f-TSVs into several groups
under the target yield constraint. During f-TSV grouping, we
ensure each f-TSV group can be assigned with a reason-
able number of s-TSV candidates. Finally, the MCMF-based
method is used to assign s-TSV candidates to f-TSV groups
with minimal wirelength cost.

A. Fault-Map Generation

TSV defect-distribution models can be divided into two
types, namely uniform defect-distribution and clustered defect-
distribution. For the uniform defect-distribution model, each
TSV fails independently. This assumption is valid for certain
random defects such as void formation [31] and lamination
due to thermal induced stress [32]. However, many types of
TSV defects appear during the imperfect bonding process. The
bond surface roughness, the height variation of the TSVs, and

1292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017

cleanliness of dies also impact the bonding process [12], [16].
Therefore, it is likely that the presence of a TSV fault increases
the probability of more defective TSVs in close vicinity; that
is called clustered defect-distribution model [10], [14]. In this
paper, we take the clustered defect-distribution into account.

In the clustered defect-distribution model, the presence
of a TSV fault increases the probability of more defective
TSVs in close vicinity. Approximately, this defect probabil-
ity is inversely proportional to distance from existing defects
(regarded as cluster centers) [33]. If there are already Nc clus-
ter centers, the defect probability of TSVi, Pi, can be expressed
as [12]

Pi = p ·
⎛

⎝1 +
Nc∑

j=1

(
1

dij

)α
⎞

⎠ (4)

where p is the single TSV failure rate, and dij is the distance
between TSVi and the jth cluster center. α is the clustering
coefficient indicating clustering extent, i.e., a larger α implies
higher clustering.

In this paper, we take the clustered defect-distribution into
account. To find the defect-cluster centers, the compound
Poisson distribution is widely accepted [34], where cluster
center numbers follow Poisson distribution and the distribu-
tion of defect density is presented by a Gamma function. After
determining the cluster centers among f-TSVs and s-TSVs, the
defect probability is calculated by (4). If an s-TSV is identi-
fied as a cluster center, it will not be chosen to repair faulty
f-TSV due to the high defect probability.

B. f-TSV Grouping

In this stage, f-TSVs are divided into groups under the chip
yield constraint. The work in [12] pointed that the hardware
cost induced by a fault-tolerance solution is related to the
number of f-TSV groups. In this paper, we first use the recur-
sive min-cut bi-partitioning algorithm to globally partition the
f-TSVs into groups until the chip yield is higher than the tar-
get yield (partitioning step). In order to further minimize the
hardware cost, we then locally merge the two available f-TSV
groups with the highest yield together to reduce the group
numbers until the chip yield is reduced to target yield (merg-
ing step). During the partitioning and merging, we ensure
each f-TSV group can share a reasonable number of s-TSV
candidates (≥ Ngs).

YTSV under clustering defects is calculated by multiplying
all f-TSV groups yield Ygk, YTSV as follows:

YTSV =
N∏

k=1

Ygk (5)

where N is the number of f-TSV groups. The algorithm in [12]
is adopted to calculate group yield Ygk.

The partitioning is based on the complete graph of all the
f-TSVs, where any two different f-TSVs i, j form an edge eij.
The weight wij of edge eij is defined as

wij = ρ · Yieldij

MaxYield
+ β · #CandStsvij

#MaxCandStsv

+ (1 − ρ − β) · RRCostij
MaxRRCost

(6)

where the coefficients ρ, β are experience parameters. In the
experiment, ρ and β are set to 0.2 and 0.3, respectively. Yieldij
is the yield of group which only contains two f-TSVs i and j.

Since the s-TSVs for each group will be assigned in the next
s-TSV allocation stage, during the partitioning step, all the
candidate s-TSVs are assumed to have the maximum defect
probability among all the candidate s-TSVs except for those
cluster centers. #CandStsvij denotes the number of common
candidate s-TSVs between f-TSVs i and j. The term “candidate
s-TSVs” means that, for f-TSV i, if the s-TSV sk is covered
by the bounding box of the corresponding net, then sk is iden-
tified as the candidate s-TSV for f-TSV i, and the wirelength
overhead is zero when we replace i by s-TSV sk. In order to
ensure that there are enough candidate s-TSVs for each f-TSV
group, in the experiment, if the number of candidate s-TSVs
for an f-TSV is less than 2Ngs, we iteratively extend the net
bounding box one unit in each direction until the number is
more than 2Ngs. MaxYield and #MaxCandStsv, respectively,
denote the maximum yield and maximum common candidate
s-TSV numbers over all the edges.

RRCostij denotes the replaceable relation cost between the
f-TSVs. For f-TSVs i and j, if f-TSV i is covered by the
bounding box of the corresponding net of f-TSV j, that is, i
can transfer signal for j, we say that j can be replaced by i,
and i and j have a replaceable relation. In order to decrease
the delay overhead, we tend to place two f-TSVs that can
transfer each other’s signals into the same group and RRCostij
denotes the replaceable relation cost. In the f-TSV grouping
stage, those f-TSVs that have replaceable relations tend to
be assigned to the same group. Because, for a group with m
f-TSVs, the summation of the port number of all the multiplex-
ers in the Ngs-fault tolerance structure is at most m×(Ngs +1).
Considering the delay, in the worst-case scenario, the fault-
tolerance structure includes a full connection, constructed by
Ngs m-port multiplexers, between the set of f-TSVs and the
set of s-TSVs. Fig. 1 shows an example. By making use of
the replaceable relations between f-TSVs in a group, we can
build proper connections between f-TSVs to replace part of
the direct connections from the f-TSVs to the s-TSVs, for
reducing the input number of the individual multiplexers. In
the experiment, for f-TSVs i and j, if f-TSV i is covered by
the bounding box of the corresponding net of f-TSV j, mean-
while f-TSV j is also covered by the bounding box of the net
of f-TSV i, then RRCostij is set to 10; if f-TSV i is covered
by the bounding box of the corresponding net of f-TSV j but
f-TSV j is not covered by the bounding box of the net of f-TSV
i, then RRCostij is set to 5; otherwise the RRCostij is set to 0.
The values of RRCostij are chosen by the experimental results
in Section VII-A.

According to (6), those f-TSVs with higher yield, having
replaceable relations, and sharing more common candidate
s-TSVs tend to be assigned to the same group. The partitioning
step continues until the chip yield is higher than the target yield
and each partitioned f-TSV group have a reasonable number
of common candidate s-TSVs (≥ Ngs).

In the merging step, in order to minimize the hardware cost,
we merge the two available f-TSV groups with the highest
yield together in each step to reduce the group numbers by
1 until the chip yield is reduced to target yield. The term
“the two available groups” means that the number of common
candidate s-TSVs for the merged groups should at least equals
to Ngs. During the merging step, all the assigned candidate
s-TSVs for a group are assumed to have the maximum defect
probability among all s-TSV candidates for the group, which
have been determined in the partitioning step. In our merging
step, a greedy algorithm [12] is used to reduce f-TSV group
numbers.

XU et al.: CLUSTERED FAULT TOLERANCE TSV PLANNING FOR 3-D ICs 1293

C. s-TSV Allocation

With the f-TSV grouping stage, f-TSVs are already parti-
tioned into groups and the f-TSVs in each group can have
a reasonable number of common s-TSV candidates (≥ Ngs)
for constructing fault-tolerance structure under the target yield
constraint. The s-TSV allocation assigns Ngs s-TSVs for each
f-TSV group from the s-TSV candidates and the objective is
to minimize the wirelength induced by the possible connec-
tions between the f-TSVs and the s-TSVs. The s-TSVs cannot
be shared between f-TSV groups and are assigned, layer by
layer, as the same to the following one-layer algorithm. The
similar problem is formulated as time-consuming ILP prob-
lems in [12] and [18]. In this paper, we proposed an efficient
MCMF-based method for allocating s-TSVs.

In this paper, we formulate the s-TSV allocation into MCMF
problem. The objective of s-TSV allocation is to minimize the
total wirelength induced by the possible connections between
the f-TSVs and the s-TSVs. In [12], the s-TSV allocation is
formulated as an ILP problem. And the objective is to mini-
mize the maximum delay overhead incurred after TSV repair
by replacing f-TSVs by s-TSVs. In order to observe the effect
of s-TSV allocation, we compare chip yield, runtime, the total
incremental wirelength and maximum incremental wirelength
incurred by the fault-tolerance structure of the two methods.
Table VIII shows the experimental results. It can be noticed
that compared with ILP, the proposed MCMF can achieve
almost same chip yield and maximum incremental wirelength.
However, the total incremental wirelength and the runtime of
the MCMF are quite better than the ILP.

To represent all the possible assignments from s-TSVs to
groups, a directed graph Gs(Vs, Es) is constructed, which con-
tains four sets of vertices Vs = s ∪ Vs1 ∪ Vs2 ∪ t, where s is
the start vertex, Vs1 is the s-TSVs set, Vs2 is the group set,
and t is the end vertex. Besides, Edge set Es = {s → Vs1}
∪ {si → rj|rj ∈ Vs2 ∧ si ∈ Vs1 is an s-TSV candidate for rj}
∪{Vs2 → t}. We define all the edge capacities as follows: the
capacity of one edge from Vs2 to node t equals to Ngs; while
the capacities of all other edges are set to 1. We define all the
edge costs as follows:

ecs(v, w) =

⎧
⎪⎨

⎪⎩

0, ∀(v, w) ∈ {s → Vs1} ∪ {Vs2 → t}
∑Nf

i=1

[
wl

(
sntk0

) + wl
(
sntk1

)]
, ∀(v, w) ∈ {Vs1 → Vs2}

if the fTSV i of net ntk is replaced by sTSV v

(7)

where Nf is the number of f-TSV in group w, wl(sntkj) is the
HPWL of net when the f-TSV i on the net sntkj is replaced by
the s-TSV v. Since each TSV impact two subnets, when an
f-TSV is replaced by an s-TSV, we should consider the wire-
length overhead on two subnets. Therefore, we tend to choose
an s-TSV which resulting less wirelength overhead incurred
after replacing f-TSVs by the s-TSV.

VI. FAULT-TOLERANCE STRUCTURE CONSTRUCTION

After s-TSV planning, TSV groups are generated and each
group is associated with multiple f-TSVs and one or multiple
s-TSVs. This section further discusses in each group how
f-TSVs are connected to s-TSVs to generate a fault tolerance
structure. As shown in Table I, a multiplexer is used to reroute
signals, thus its delay is increased along with the number of

Fig. 6. (a) Layout example of four f-TSVs and two s-TSVs.
(b) Corresponding directed graph G. (c) Two-fault tolerance structure.

input ports. Therefore, in the fault tolerance structure construc-
tion, the objective is to minimize delay overhead occurred by
multiplexer.

In [11], a minimum spanning tree (MST)-based method is
developed to search for 1-fault tolerance structure. However,
in each group one and at most one s-TSV can be considered
thus the proposed method is hard to be extended to general
cases with multiple s-TSVs. In [12], a chain structure is devel-
oped to build up n-fault tolerance structure, where n is the
s-TSV number in the group. Since each multiplexer is bounded
with at most n + 1 input ports, the proposed chain structure
can achieve the smallest delay overhead. However, the chain
structures cannot always be found due to unreasonable TSV
locations. In this paper, to overcome all the above limitations,
we consider a general and practical fault tolerance structure
minimizing multiplexer delay overhead. To the best of our
knowledge, this is the first work generating n-fault (n > 1)
tolerance structures meanwhile considering multiplexer delay
overhead.

A. Graph Construction

Given a TSV group with m f-TSVs and n s-TSVs, we gen-
erate a directed graph G(V, E). The vertex set V = V1 ∪ V2,
where V1 = {fi|i = 1, . . . , m} is the f-TSVs set and V2 =
{si|i = 1, . . . , n} is the s-TSVs set. Besides, the edge set
E = {(u, v)|u ∈ V1 ∧ v ∈ V ∧ u can be replaced by v}. Here
we say f-TSV u can be replaced by TSV v if and only if v is
covered by the bounding box of the net that corresponds to u,
thus replacing u by v has no wirelength overhead. Note here
TSV v can be either f-TSV or s-TSV.

Fig. 6(a) gives a layout example of four f-TSVs and two
s-TSVs. There are four nets nt1, nt2, nt3, and nt4, and the
bounding boxes of different nets are shown in rectangles with
dashed lines. The corresponding directed graph G(V, E) is
shown in Fig. 6(b). From Fig. 6(a), we can see that f2 is cov-
ered by the bounding box of nt1, thus f1 can be replaced by
f2 without extra wirelength overhead. Therefore, there exists
a directed edge from f1 to f2. Similarly, the directed edges
from f2 to f3, f3 to f4, f4 to f2, and f4 to f3 are generated for

1294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017

Fig. 7. Corresponding splitting graph G′, where two edge-disjoint paths
begin with the split f-TSVs, f ′

1: { f ′
1 → s1 → s′1} and { f ′

1 → f2 → f ′
2 →

f3 → f ′
3 → s2 → s′2}, f ′

2: { f ′
2 → s1 → s′1} and { f ′

2 → f3 → f ′
3 → s2 → s′2},

f ′
3: {f ′

3 → f4 → f ′
4 → f2 → f ′

2 → s1 → s′1} and { f ′
3 → s2 → s′2}, and

f ′
4: { f ′

4 → f2 → f ′
2 → s1 → s′1} and { f ′

4 → f3 → f ′
3 → s2 → s′2}.

the same reason. Since s-TSVs s1 and s2 are located in the
overlap region of the bounding box of the four nets, thus all
four f-TSVs can be replaced by s-TSVs. Therefore, there is a
directed edge from each f-TSV node to each s-TSV node in
the graph.

In a TSV group with n s-TSVs, we build up n-fault toler-
ance structure, where each f-TSV has n paths connecting to
n s-TSVs. For each f-TSV, the paths are node-disjoint except
for the source node, so that each fault in f-TSV can only
affect one path. Fig. 6(c) illustrates the output of 2-fault toler-
ance structure, given the layout in Fig. 6(a). The node-disjoint
paths for each f-TSV are as follows, where the maximum
multiplexer input port number is 2:

f1: { f1 → s1}, { f1 → f2 → f3 → s2}
f2: { f2 → s1}, { f2 → f3 → s2}
f3: { f3 → f4 → f2 → s1}, { f3 → s2}
f4: { f4 → f2 → s1}, { f4 → f3 → s2}.

To reduce the problem to a standard edge flow form of the
network flow problem, we perform node splitting transforma-
tion on G(V, E). Each node u ∈ V is split into two nodes u and
u′, respectively, corresponding to the node’s input and output.
An extra edge (u, u′) with zero cost and infinite capacity is
also added. A new directed graph G′(V ′, E′) is constructed as
follows.

1) The vertex set V ′ = V ∪ V ′
1 ∪ V ′

2, where V ′
1 is the split

node set of V1 and V ′
2 is the split node set of V2.

2) The edge set E′ = E′
1 ∪ E′

2, where E′
1 = {(u, u′)|u ∈

V ∧ u′ is the corresponding split node of u} and E′
2 =

{(u′, v)|(u, v) ∈ E(G)∧u′ is the corresponding split node
of u}. If there is a directed edge from u to v in E(G),
a corresponding directed edge from u′ to v is added
in E′(G′).

Through the node splitting, the original node-disjoint path
problem in G(V, E) is transformed into an edge-disjoint path
problem in G′(V ′, E′). In other words, we need to find a
repairable structure including m × n paths, which begin with
each split f-TSV s in V ′

1 and end with each split s-TSV t in V ′
2.

In addition, all the paths sharing one same source node should
be edge-disjoint. For instance, the red lines in Fig. 7 present
edge-disjoint paths for each split f-TSV, and the corresponding
generated fault-tolerance structure is shown in Fig. 2.

B. ILP Formulation

In the following, we will discuss how the edge-disjoint path
search problem can be formulated as an integer programming.
To facilitate the discussions, some notations are first defined.
Given a unit flow (path) from source s ∈ V ′

1 to sink t ∈

V ′
2, a binary variable x(s,t)

uv is defined whether the path goes
through edge (u, v) ∈ E′. If the path goes through edge (u, v),
x(s,t)

uv = 1; otherwise x(s,t)
uv = 0.

Besides, to model the delay of each multiplexer, it is of
importance calculating indegree of each node u ∈ V , which
is not trivial. As shown in Fig. 7, the edge (f ′

2, f3) is on the
path from f ′

1 to s′
2, as well as the path from f ′

2 to s′
2. Although

the same edge is traversed by two paths, it only increases
the indegree of f3 by one. Meanwhile, there may be several
edges directed into same TSV node on the paths. For instance,
due to edges (f ′

4, f3) and (f ′
2, f3), the indegree of f3 should be

increased by two. Given a node u in the split directed graph
G′, its indegree is calculated by the following equation:

indegree(u) =
∑

v:(v,u)∈E′
min

⎛

⎝
∑

s∈V ′
1,t∈V ′

2

x(s,t)
vu , 1

⎞

⎠. (8)

Based on the above notations, the edge-disjoint path
search problem can be formulated as the following integer
programming:

min max
u∈V

⎧
⎨

⎩
∑

v:(v,u)∈E′
min

⎛

⎝
∑

s∈V ′
1,t∈V ′

2

x(s,t)
vu , 1

⎞

⎠

⎫
⎬

⎭ (9a)

s.t.
∑

v:(u,v)∈E′
x(s,t)

uv −
∑

v:(v,u)∈E′
x(s,t)

vu

=
{

1, if u = s
0, if u ∈ V ′ − {s, t},
−1, if u = t

∀s ∈ V ′
1, t ∈ V ′

2 (9b)

∑

t∈V ′
2

x(s,t)
uu′ ≤ 1, ∀s ∈ V ′

1,
(
u, u′) ∈ E′

1 (9c)

x(s,t)
uv ∈ {0, 1}, ∀(u, v) ∈ E′, s ∈ V ′

1, t ∈ V ′
2. (9d)

The objective function (9a) is to minimize the maximum
indegree of all the nodes. The number of binary variables x(s,t)

uv
is m × n × |E′|, where m is the number of f-TSVs, n is the
number of s-TSVs, while |E′| is the number of edges in split
directed graph G′. The constraint (9b) defines a unit flow from
s ∈ V ′

1 to t ∈ V ′
2, which corresponds a path from s, an f-TSV,

to t, an s-TSV. The number of this set of constraints is m ×
n × |V ′|. The constraint (9c) ensures that a set of V ′

2 paths,
which have the same source s ∈ V ′

1, are edge-disjoint. For
example, considering the f ′

1 in Fig. 7, we have to search for
two edge-disjoint paths, which end to s′

1 and s′
2, respectively.

Constraint (9c) implies an edge-disjoint constraint to all edge

(u, u′) ∈ E′
1 that x

(f ′
1,s

′
1)

uu′ + x
(f ′

1,s
′
2)

uu′ ≤ 1. The number of this set
of constraints is m × (m + n).

Formula (9) is nonlinear due to the min-max-min opera-
tion in the objective function (9a). Through linearizing the
objective function, (9) can be transformed into an ILP

min λ (10a)

s.t. dvu ≥ x(s,t)
vu , ∀s ∈ V ′

1, t ∈ V ′
2, (v, u) ∈ E′ (10b)

dvu ≤
∑

s∈V ′
1,t∈V ′

2

x(s,t)
vu , ∀(v, u) ∈ E′ (10c)

dvu ∈ {0, 1}, ∀(v, u) ∈ E′ (10d)∑

v:(v,u)∈E′
dvu ≤ λ, ∀u ∈ V (10e)

(9b)–(9d).

XU et al.: CLUSTERED FAULT TOLERANCE TSV PLANNING FOR 3-D ICs 1295

To implement a linear function with linear constraints, vari-
able λ is introduced to linearize the max operation. Meanwhile,
as shown in (10b)–(10d), for each edge (v, u) ∈ E′ a binary
variable dvu is to linearize the min operation. In other words,
dvu is to help calculate the indegree of node u as follows:

dvu = min

⎛

⎝
∑

s∈V ′
1,t∈V ′

2

x(s,t)
vu , 1

⎞

⎠. (11)

Combining (8) and (11), constraint (10e) ensures that the
indegrees of all TSVs will not be greater than λ.

Considering the edge (f ′
1, f2) in Fig. 7, we give a detailed

explanation how to calculate df ′
1f2 . First, per constraint (10b),

for each split f-TSV in V ′
1 and each split s-TSV in V ′

2, we
have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

df ′
1f2 ≥ x

(f ′
1,s

′
1)

f ′
1f2

; df ′
1f2 ≥ x

(f ′
1,s

′
2)

f ′
1f2

df ′
1f2 ≥ x

(f ′
2,s

′
1)

f ′
1f2

; df ′
1f2 ≥ x

(f ′
2,s

′
2)

f ′
1f2

df ′
1f2 ≥ x

(f ′
3,s

′
1)

f ′
1f2

; df ′
1f2 ≥ x

(f ′
3,s

′
2)

f ′
1f2

df ′
1f2 ≥ x

(f ′
4,s

′
1)

f ′
1f2

; df ′
1f2 ≥ x

(f ′
4,s

′
2)

f ′
1f2

.

Second, per constraint (10c), we have the following equa-
tion:

df ′
1f 2 ≤

(
x
(f ′

1,s
′
1)

f ′
1f2

+ x
(f ′

1,s
′
2)

f ′
1f2

+ x
(f ′

2,s
′
1)

f ′
1f2

+ x
(f ′

2,s
′
2)

f ′
1f2

+ x
(f ′

3,s
′
1)

f ′
1f2

+ x
(f ′

3,s
′
2)

f ′
1f2

+ x
(f ′

4,s
′
1)

f ′
1f2

+ x
(f ′

4,s
′
2)

f ′
1f2

)
.

As shown in Fig. 7, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x
(f ′

1,s
′
1)

f ′
1f2

= 0; x
(f ′

1,s
′
2)

f ′
1f2

= 1

x
(f ′

2,s
′
1)

f ′
1f2

= 0; x
(f ′

2,s
′
2)

f ′
1f2

= 0

x
(f ′

3,s
′
1)

f ′
1f2

= 0; x
(f ′

3,s
′
2)

f ′
1f2

= 0

x
(f ′

4,s
′
1)

f ′
1f2

= 0; x
(f ′

4,s
′
2)

f ′
1f2

= 0.

According to the constraints (10b)–(10c), df ′
1f2 = 1.

VII. EXPERIMENTAL RESULTS

The proposed framework has been implemented in C++
language on a Linux 64-bit workstation (Intel 2.0 GHz,
62 GB RAM). The experiments were tested on MCNC and
GSRC benchmarks, including two MCNC circuits (ami33
and ami49), and four GSRC circuits (n50, n100, n200, and
n300). The layer number is set to 3. The white space percent-
age and the aspect ratio are set to 20% and 1, respectively. The
TSV pitch is assumed to be 5 × 5 um [3]. The multilayer floor-
plans are generated by a fixed-outline multilayer floorplanner
IAR-MLFP [25], whose objective is a linear combination of
the wire, the f-TSV number and the area cost. During the top-
down partitioning step in the TSV grouping, hMetis [35] is
used to partition f-TSVs into groups. The algorithmic solution
software LEDA [36] is adopted to solve the MCMF problem.
GLPK [37] is used as the ILP solver.

TABLE II
IMPACT OF REPLACEABLE RELATION BETWEEN

F-TSVS ON DELAY OVERHEAD

A. Impact of Replaceable Relations Between f-TSVs on
Delay Overhead

As shown in Section VI, the fault-tolerance structure for
an f-TSV group is greatly affected by the replaceable rela-
tions between f-TSVs. In the f-TSV grouping stage, those
f-TSVs that have replaceable relations tend to be assigned to
the same group. By making use of the replaceable relations
between f-TSVs in a group, we can build proper connections
between f-TSVs to replace part of the direct connections from
the f-TSVs to the s-TSVs, for reducing the input number of
the multiplexers.

In the first experiment, we group the f-TSVs with and with-
out consideration of the replaceable relations between f-TSVs,
RRCost item in (6). The results are, respectively, shown in the
columns “w. RRCost” and “w/o. RRCost” in Table II. Here
the TSV defect probability p is set to 0.01 and Ngs is set to 3.
Column “#max_port” represents the maximum port number
of multiplexers among all groups. Column “#g_f-TSVs” gives
the corresponding f-TSVs number in the group. As shown
in Table II, with considering the RRCost item in the f-TSV
grouping stage, the maximum port number of multiplexers
among all groups is decreased, which demonstrates the effec-
tiveness of the grouping method for reducing the multiplexer
delay overhead.

The value of RRCostij in (6) is set through the experimen-
tal results. For f-TSVs i and j, if f-TSV i is covered by the
bounding box of the corresponding net of f-TSV j, mean-
while f-TSV j is also covered by the bounding box of the
net of f-TSV i, the RRCostij is labeled as RRCostij1; if f-TSV
i is covered by the bounding box of the corresponding net
of f-TSV j but f-TSV j is not covered by the bounding box
of the net of f-TSV i, then RRCostij is labeled as RRCostij2.
The experiment is performed on n100 benchmark. The TSV
defect probability p is set to 0.001 and Ngs is set to 3. In the
experiment, if we set RRCostij2 to a fixed value 5, the s-TSV
numbers and maximum input number of multiplexers varied
with RRCostij1, which is shown in Fig. 8(a). We noticed that
as the RRCostij1 increases, the s-TSV numbers are rapidly
increasing, resulting a higher hardware cost. In addition, with
the RRCostij1 increases, the maximum input number of mul-
tiplexers is stabilized at a value. And if we set RRCostij1 to a
fixed value 10, the s-TSV numbers and maximum input num-
ber of multiplexers varied with RRCostij2, which is shown in
Fig. 8(b). Therefore, according to Fig. 8, RRCostij1 = 10 and
RRCostij2 = 5 achieve relatively less s-TSV numbers and less
input port number of multiplexers.

B. Impact of Ngs on s-TSV Allocation

Ngs denotes the number of inserted s-TSV(s) in one TSV
group. In this paper, the same number of s-TSV(s), Ngs, is
assigned to each group. A group cannot be repaired if and
only if the number of faulty f-TSVs is more than the number
of nonfaulty s-TSVs. In order to ensure a successful repair
when there are multiple faulty f-TSVs in a same group, it is

1296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017

TABLE III
TSV YIELD AND HARDWARE COST UNDER DIFFERENT DEFECT PROBABILITY p AND Ngs

beneficial to increase Ngs, but it also leads to higher hardware
cost. Therefore, it is necessary to explore a tradeoff analysis
between TSV yield and hardware cost.

The experiments are performed on all test cases, which are
shown in Table III. Ngs is varied from 1 to 3 to achieve the
target yield. The yield results in experiment are accurate to
the fourth decimal place. Three options for the TSV defect
probability (p) are considered: 0.01, 0.001, and 0.0001 [12],
and the clustering coefficient α equals to 2. The wire is the
sum of HPWL of subnets obtained by decomposing nets span-
ning multiple device layers (Section IV-B). We execute the
proposed method 20 times independently for each cast, and list
the average statistic result. Columns “#f-TSVs,” “#s-TSVs,”

“Wire,” and “Yield” list the total f-TSVs number, total num-
ber of allocated s-TSVs, wirelength, and yield, separately.
Besides, “#max_port” represents the maximum port number
of multiplexers among all groups, and “#g_f-TSVs” gives the
corresponding f-TSVs number in the group. The term NF
represents that the chip yield cannot satisfy the target yield.

As shown in the tables, with the increasing f-TSV numbers,
the chip yield drops and more s-TSVs are needed to generate a
repair solution. For ami33, ami49, n50, and n100 bench-
marks, the chip yield can reach 100% under a lower defect
probability (p = 0.0001). According to [12], the hardware cost
is related to the f-TSV group numbers and the Ngs. Therefore,
due to lower hardware cost, Ngs = 1 is a more efficient solution

XU et al.: CLUSTERED FAULT TOLERANCE TSV PLANNING FOR 3-D ICs 1297

Fig. 8. Effect of (a) RRCostij1 and (b) RRCostij2 on s-TSV numbers and
maximum input number of multiplexers.

for ami33, ami49, n50, and n100 benchmark under low
defect probability scenarios. However, for n200 and n300
benchmarks, Ngs = 2 is a better option under a lower defect
probability due to its higher chip yield.

For a higher defect probability (p = 0.01 and 0.001), the
repair configuration with Ngs = 1 cannot achieve an optimal
yield solution, thus it is beneficial to allocate more s-TSVs for
each group in this situation. However, increasing Ngs does not
always result in higher hardware cost. For example, in case
n200 with p = 0.001, the repair configuration with Ngs = 2
can achieve higher yield with lower hardware cost. Because,
under Ngs = 1, in order to guarantee the chip yield, more
f-TSV groups are partitioned. Although only one s-TSV is
assigned for each group, the total s-TSV number will be more.
Therefore, it is necessary to choose an appropriate Ngs for
different benchmarks during s-TSV allocation.

C. Impact of Clustering

As discussed in Section II-B, in reality, faulty TSVs tend to
cluster together rather than being uniformly distributed. It is
necessary to compare the generated repair solution under the
two TSV defect-distribution model.

The experiment is performed on n100 benchmark. The
TSV defect probability p is set to 0.001 and Ngs is set to 1.
With different values of clustering coefficient α, the proposed
method is applied for different target yields. Table IV shows
the results. Compared with the realistic clustered TSV defect-
distribution, the repair solution generated by uniform TSV
defect-distribution model (α = 0) underestimates the allo-
cated s-TSV numbers. For example, to achieve the target yield
YTSV = 99.7%, 120 s-TSVs are allocated to generate a repair
solution under the uniform defect-distribution model, which is
less than the required number under the clustered TSV defect-
distribution model. Thus, the generated repair solution cannot
satisfy the yield constraint.

TABLE IV
DIFFERENCE OF ALLOCATED S-TSV NUMBERS FOR UNIFORM

AND CLUSTERED TSV DEFECT-DISTRIBUTION MODELS

Fig. 9. Relation between yield and the clustering coefficient α.

TABLE V
EFFECTIVENESS OF WHITESPACE REDISTRIBUTION

We also use Fig. 9 to show the relation between the yield
and the clustering coefficient α under the clustered TSV
defect-distribution model. The experiments are performed on
all test benchmarks. And the TSV defect probability p is set
to 0.01 and Ngs is set to 2. It can be observed from the figure
that, with the increasing clustering effect, the chip yield drop.
Because a larger α implies larger possibility to incur faulty
TSVs around the existing faulty TSVs. And the yield drop
becomes more visible on benchmarks with more f-TSVs.

D. Impact of Whitespace Redistribution on Yield and
Performance

As the s-TSVs can be only allocated into the whitespace, the
quality of the generated repair solution is strongly dependent
on the whitespace distribution. In this experiment, we com-
pare the framework with and without adopting the whitespace
redistribution strategy to study the impact of whitespace redis-
tribution on the chip yield and wirelength. The wire is the sum
of HPWL of subnets obtained by decomposing nets spanning
multiple device layers (Section IV-B). The experiment is per-
formed on all benchmarks. The TSV defect probability p is
set to 0.005 and Ngs is set to 2. And we execute the experi-
ment ten times independently for each benchmark, and list the
average statistic results. The results are, respectively, shown
in columns “w. WR” and “w/o. WR” of Table V. As shown

1298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017

TABLE VI
COMPARISON AMONG MCMF METHOD WITHOUT WHITESPACE REDISTRIBUTION (MCMF), SHORTEST-PATH-BASED HEURISTIC WITHOUT

WHITESPACE REDISTRIBUTION (PATH), AND THE PROPOSED CONVEX-COST FLOW WITH WHITESPACE REDISTRIBUTION (CCF_WR)

in table, the wirelength can be changed by (−1%, 1%) on
average, which means that the impact of whitespace redistri-
bution strategy on wirelength is insignificant. We also notice
that the whitespace redistribution can improve the yield of
fault-tolerance solution, which demonstrates that the proposed
strategy potentially avoids a dense TSV distribution in some
regions and reduces the effect of TSV fault clustering.

E. Impact of f-TSV Planning on Yield

In the contrast experiment, without considering the whites-
pace redistribution and convex-cost flow model in f-TSV
planning, we directly adopt the MCMF model in [19] and [28]
to allocate f-TSVs layer by layer. Besides, considering the
suboptimality of allocating the TSVs layer by layer, we also
implement a shortest path-based heuristic similar to that in [19]
for f-TSV allocation. The experiment is performed on all
benchmarks. Each case is executed 30 times independently,
and the average statistic results are listed. Here the TSV defect
probability p is set to 0.01 and Ngs is set to 2. We com-
pare the success rate in finding s-TSVs for generating the
fault tolerance structure of these methods, which are shown
in the column “#Succ” of Table VI. The experimental results
show that the convex-cost flow model, combined with whites-
pace redistribution, can achieve 100% success rate in finding
s-TSVs for f-TSV groups on penalty of 1.38% wirelength,
whereas a directly application of MCMF-based or shortest-
path-based heuristic (PATH) can only achieve 86% and 89%
success rate, respectively, and, hence, the chip yields are
greatly lowered.

F. Comparison With Previous Work

In the proposed f-TSV grouping method, we first use the
recursive min-cut bi-partitioning algorithm to globally parti-
tion the f-TSVs into several groups until the chip yield is
higher than the target yield, then locally merge the two avail-
able f-TSV groups with the highest yield together to reduce the
group numbers until the chip yield is reduced to target yield. In
the previous work [12], only a locally greedy method is used
to partition f-TSVs into groups. In order to observe the effect
of grouping, we compare the number of allocated s-TSVs and
chip yield of the two methods.

The experiment is performed on all benchmarks. The clus-
tering coefficient α equals to 2, the TSV defect probability p
is set to 0.01, and Ngs is set to 2. Based on the same f-TSV
planning result, we run the partitioning method in [12] and the
proposed grouping method, respectively. Table VII shows the
experimental results. It can be noticed that the proposed top-
down and bottom-up partitioning strategy can achieve lower
hardware cost with higher chip yield.

TABLE VII
COMPARISON BETWEEN THE LOCAL PARTITION METHOD [12]

AND THE PROPOSED F-TSV GROUPING METHOD

After the f-TSV grouping stage, f-TSVs are already parti-
tioned into groups and the f-TSVs in each group can have
a reasonable number of common s-TSV candidates (≥ Ngs)
for constructing fault-tolerance structure under the target yield
constraint. Then the s-TSV allocation assigns Ngs s-TSVs for
each f-TSV group from the s-TSV candidates. In this paper,
we formulate the s-TSV allocation as the MCMF problem.
The objective is to minimize the total wirelength induced by
the possible connections between the f-TSVs and the s-TSVs.
Meanwhile, in order to reduce the maximum wirelength over-
head among all f-TSVs, we changed the edge cost in (7) from
the linear superposition to the square superposition in this
experiment. In [12], it formulates the s-TSV allocation as an
ILP problem. And the objective is to minimize the maximum
delay overhead incurred after TSV repair by replacing f-TSVs
by s-TSVs. In order to observe the effect of s-TSV allocation,
we compare chip yield, runtime, the total incremental wire-
length and maximum incremental wirelength incurred by the
fault-tolerance structure of the two methods.

The experiment is performed on all benchmarks. The clus-
tering coefficient α equals to 2, the TSV defect probability p
is set to 0.01, and Ngs is set to 2. Based on the same f-TSV
grouping results, we run the ILP in [12] and the proposed
MCMF method, respectively. We execute the experiment ten
times independently for each benchmark, and list the aver-
age statistic results. Table VIII shows the experimental results.
Columns “RT,” “M_IWire,” and “T_IWire” represent the run-
time, maximum and total incremental wirelength incurred by
the fault-tolerance structure. It can be noticed that compared
with ILP, the proposed MCMF can achieve almost same chip
yield and maximum incremental wirelength. However, the total
incremental wirelength and the runtime of the MCMF is quite
better than the ILP.

In this paper, an ILP-based model is proposed to form a
fault-tolerance structure with minimization of the maximum
input number of multiplexers. To the best of our knowledge,
this is the first work for generating n-fault (n > 1) tolerance

XU et al.: CLUSTERED FAULT TOLERANCE TSV PLANNING FOR 3-D ICs 1299

TABLE VIII
COMPARISON BETWEEN THE ILP [12] AND THE MCMF IN S-TSV ALLOCATION

TABLE IX
COMPARISON BETWEEN MST METHOD [11] AND PROPOSED

ILP MODEL FOR GENERATING FAULT-TOLERANCE STRUCTURE

structures that uses n s-TSVs for a group of f-TSVs, con-
sidering the delay overhead of multiplexers. In [11], 1-fault
tolerance structures are generated using MST-based method.
However, it is difficult to apply the method to structures using
more than one s-TSVs. In addition, the delay overhead intro-
duced by the multiplexers, which are used for rerouting signals
in the generated fault-tolerance structures, is not considered.
In the worst-case the input port number of a multiplexer could
be the number of f-TSVs in the group if the tree is a star struc-
ture, which introduces large delay overhead. We compare the
proposed ILP-based model with MST method in [11] under
the 1-fault tolerance structure case.

The experiment is performed on all benchmarks. The clus-
tering coefficient α equals to 2, the TSV defect probability
p is set to 0.001, and Ngs is set to 1. Based on the same
s-TSV planning result, we run the MST method in [11]
and the proposed ILP model, respectively. We execute the
experiment ten times independently for each benchmark, and
list the average statistic results. Column “#max_port” repre-
sents the maximum port number of multiplexers among all
groups, while column “#g_f-TSVs” gives the corresponding
f-TSVs number in the group. As shown in Table IX, compared
with [11], the proposed ILP-based model can reduce the max-
imum port number of multiplexers among all groups, which
demonstrates the effectiveness of the proposed ILP model for
reducing the multiplexer delay overhead.

G. Runtime Analysis

In the proposed TSV repair framework, we mainly con-
sider the runtime for f-TSV grouping, s-TSV allocation, and
fault-tolerance structure construction stage. Table X shows
the average runtime on all test benchmarks by varying the
defect probability, target yield, clustering coefficient, and Ngs.
Columns “Tgroup,” “Tallo,” and “Tstruct” represent runtimes for
f-TSV grouping, s-TSV allocation, and structure construction,
respectively. For ami49 case with Ngs = 3, the runtime of the
structure construction stage is very long. One possible reason
is that when the directed graph for some groups have a large
amount of edges, solving the ILP model may be very runtime
consuming.

TABLE X
RUNTIME OF THE PROPOSED REPAIR FRAMEWORK

FOR ALL TEST BENCHMARKS

VIII. CONCLUSION

In this paper, we have proposed an efficient TSV plan-
ning and repair framework during floorplanning stage. A set
of novel algorithms, e.g., f-TSV grouping, s-TSV alloca-
tion, and fault-tolerance structure construction, are developed
to provide yield awareness in TSV planning. Experimental
results demonstrate the proposed strategy can effectively repair
nonuniformly placed f-TSVs under clustered TSV defect dis-
tribution. This paper is the first work for generating double or
even multiple fault tolerance structures. As continuing growth
of technology node, 3-D IC turns out to be a promising solu-
tion to further scaling, we believe this paper will stimulate
more research on yield aware 3-D IC design.

ACKNOWLEDGMENT

The authors would like to thank the Information Science
Laboratory Center of USTC for hardware and software ser-
vices. They would also like to thank Dr. S. Wang from the
Karlsruhe Institute of Technology and Prof. L. Jiang from
Shanghai Jiaotong University for their help on the yield
modeling.

REFERENCES

[1] S. J. Souri, K. Banerjee, A. Mehrotra, and K. C. Saraswat, “Multiple Si
layer ICs: Motivation, performance analysis, and design implications,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), Los Angeles, CA, USA,
2000, pp. 213–220.

[2] J. W. Joyner, P. Zarkesh-Ha, and J. D. Meindl, “A global intercon-
nect design window for a three-dimensional system-on-a-chip,” in Proc.
IEEE Int. Interconnect Technol. Conf. (IITC), Burlingame, CA, USA,
Jun. 2001, pp. 154–156.

[3] (2008). International Technology Roadmap for Semiconductors.
[Online]. Available: http://www.itrs2.net

[4] Q. Xu, L. Jiang, H. Li, and B. Eklow, “Yield enhancement for
3D-stacked ICs: Recent advances and challenges,” in Proc. IEEE/ACM
Asia South Pac. Design Autom. Conf. (ASPDAC), Sydney, NSW,
Australia, Feb. 2012, pp. 731–737.

[5] H.-H. S. Lee and K. Chakrabarty, “Test challenges for 3D integrated
circuits,” IEEE Des. Test. Comput., vol. 26, no. 5, pp. 26–35,
Sep./Oct. 2009.

[6] C. Ferri, S. Reda, and R. I. Bahar, “Strategies for improving the para-
metric yield and profits of 3D ICs,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Jose, CA, USA, Nov. 2007,
pp. 220–226.

1300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 2017

[7] C.-W. Chou, Y.-J. Huang, and J.-F. Li, “Yield-enhancement techniques
for 3D random access memories,” in Proc. Int. Symp. VLSI Design
Autom. Test (VLSI DAT), Hsinchu, Taiwan, Apr. 2010, pp. 104–107.

[8] L. Jiang, R. Ye, and Q. Xu, “Yield enhancement for 3D-stacked memory
by redundancy sharing across dies,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Jose, CA, USA, Nov. 2010,
pp. 230–234.

[9] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-
silicon-via impact on the 3D stacked IC layout,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, Nov. 2009,
pp. 674–680.

[10] L. Jiang, Q. Xu, and B. Eklow, “On effective TSV repair for 3D-stacked
ICs,” in Proc. IEEE/ACM Design Autom. Test Eurpoe (DATE), Dresden,
Germany, Mar. 2012, pp. 793–798.

[11] Y.-G. Chen, W.-Y. Wen, Y. Shi, W.-K. Hon, and S.-C. Chang, “Novel
spare TSV deployment for 3-D ICs considering yield and timing con-
straints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 4, pp. 577–588, Apr. 2015.

[12] S. Wang, M. B. Tahoori, and K. Chakrabarty, “Defect clustering-
aware spare-TSV allocation for 3D ICs,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Austin, TX, USA, Nov. 2015,
pp. 307–314.

[13] R. K. Nain, S. Pinge, and M. Chrzanowska-Jeske, “Yield improvement
of 3D ICs in the presence of defects in through signal vias,” in Proc.
IEEE Int. Symp. Qual. Electron. Design (ISQED), San Jose, CA, USA,
Mar. 2010, pp. 598–605.

[14] Y. Zhao, S. Khursheed, and B. M. Al-Hashimi, “Cost-effective TSV
grouping for yield improvement of 3D-ICs,” in Proc. IEEE Asian Test
Symp. (ATS), New Delhi, India, Nov. 2011, pp. 201–206.

[15] A.-C. Hsieh and T. Hwang, “TSV redundancy: Architecture and design
issues in 3-D IC,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 20, no. 4, pp. 711–722, Apr. 2012.

[16] L. Jiang, Q. Xu, and B. Eklow, “On effective through-silicon via
repair for 3-D-stacked ICs,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 4, pp. 559–571, Apr. 2013.

[17] W.-H. Lo, K. Chi, and T. Hwang, “Architecture of ring-based redun-
dant TSV for clustered faults,” in Proc. IEEE/ACM Design Autom. Test
Europe (DATE), Grenoble, France, Mar. 2015, pp. 848–853.

[18] F. Ye and K. Chakrabarty, “TSV open defects in 3D integrated circuits:
Characterization, test, and optimal spare allocation,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, Jun. 2012,
pp. 1024–1030.

[19] X. Liu, Y. Zhang, G. Yeap, and X. Zeng, “An integrated algorithm
for 3D-IC TSV assignment,” in Proc. ACM/IEEE Design Autom.
Conf. (DAC), San Diego, CA, USA, 2011, pp. 652–657.

[20] M.-C. Tsai, T.-C. Wang, and T. Hwang, “Through-silicon via planning
in 3-D floorplanning,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 19, no. 8, pp. 1448–1457, Aug. 2011.

[21] C.-R. Li, W.-K. Mak, and T.-C. Wang, “Fast fixed-outline 3-D IC
floorplanning with TSV co-placement,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 3, pp. 523–532, Mar. 2013.

[22] X. Liu, G. Yeap, J. Tao, and X. Zeng, “Integrated algorithm for 3-D
IC through-silicon via assignment,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 3, pp. 655–666, Mar. 2014.

[23] P. H. Shiu, R. Ravichandran, S. Easwar, and S. K. Lim, “Multi-layer
floorplanning for reliable system-on-package,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), vol. 5. Vancouver, BC, Canada, May 2004,
pp. V-69–V-72.

[24] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead
fault tolerance scheme for TSV-based 3D network on chip links,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose,
CA, USA, Nov. 2008, pp. 598–602.

[25] S. Chen and T. Yoshimura, “Multi-layer floorplanning for stacked ICs:
Configuration number and fixed-outline constraints,” Integr. VLSI J.,
vol. 43, no. 4, pp. 378–388, 2010.

[26] S. Chen and T. Yoshimura, “Fixed-outline floorplanning: Block-position
enumeration and a new method for calculating area costs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 5, pp. 858–871,
May 2008.

[27] W. Zhong, S. Chen, and T. Yoshimura, “Whitespace insertion for
through-silicon via planning on 3-D SoCs,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Paris, France, May/Jun. 2010, pp. 913–916.

[28] S. Chen, L. Ge, M.-F. Chiang, and T. Yoshimura, “Lagrangian relax-
ation based inter-layer signal via assignment for 3-D ICs,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. E92-A, no. 4,
pp. 1080–1087, Apr. 2009.

[29] S. Chen, J. Shen, W. Guo, M.-F. Chiang, and T. Yoshimura, “Redundant
via insertion: Removing design rule conflicts and balancing via density,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E93-A,
no. 12, pp. 2372–2379, Dec. 2010.

[30] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1993.

[31] B. Kim, C. Sharbono, T. Ritzdorf, and D. Schmauch, “Factors affecting
copper filling process within high aspect ratio deep vias for 3D chip
stacking,” in Proc. IEEE Electron. Compon. Technol. Conf., San Diego,
CA, USA, May 2006, pp. 838–843.

[32] A. P. Karmarkar, X. Xu, and V. Moroz, “Performanace and relia-
bility analysis of 3D-integration structures employing through silicon
via (TSV),” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Montreal, QC,
Canada, Apr. 2009, pp. 682–687.

[33] M. B. Tahoori, “Defects, yield, and design in sublithographic nano-
electronics,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Syst. (DFT), Monterey, CA, USA, Oct. 2005, pp. 3–11.

[34] I. Koren and Z. Koren, “Defect tolerance in VLSI circuits: Techniques
and yield analysis,” Proc. IEEE, vol. 86, no. 9, pp. 1819–1838,
Sep. 1998.

[35] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in VLSI domain,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69–79, Mar. 1999.

[36] K. Mehlhorn and S. Naher, LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge, U.K.: Cambridge Univ. Press, 1999.

[37] A. Makhorin. (2008). GLPK (GNU Linear Programming Kit). [Online].
Available: https://www.gnu.org/software/glpk/

Qi Xu received the B.E. degree in microelectronics
from Anhui University, Hefei, China, in 2012. He is
currently pursuing the Ph.D. degree in electronic sci-
ence and technology with the University of Science
and Technology of China, Hefei.

His current research interests include physical
design automation and design for reliability for 3-D
integrated circuits.

Song Chen (M’09) received the B.S. degree from
Xi’an Jiaotong University, Xi’an, China, in 2000,
and the Ph.D. degree from Tsinghua University,
Beijing, China, in 2005, both in computer science.

He is currently an Associate Professor with the
Department of Electronic Science and Technology,
University of Science and Technology of China.
His current research interests include several aspects
of very large-scale integration design automation,
on-chip communication system, and computer-aided
design for emerging technologies.
Dr. Chen is a member of IEICE.

Xiaodong Xu received the B.E. degree from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2014. He is currently
pursuing the M.S. degree with the Department of
Electronic Science and Technology, University of
Science and Technology of China, Hefei, China.

His current research interests include computer-
aided design for very large-scale integration, high-
level synthesis for field-programmable gate array,
and optimization algorithms.

Bei Yu (S’11–M’14) received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of the four Best Paper
Awards at International Symposium on Physical
Design 2017, the SPIE Advanced Lithography
Conference 2016, the International Conference on
Computer Aided Design 2013, and the Asia and

South Pacific Design Automation Conference 2012. He has served in the edi-
torial boards of Integration, VLSI Journal, and IET Cyber-Physical Systems:
Theory & Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

