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Abstract—In this work, we revisit the prior mask guidance pro-
posed in “Prior Guided Feature Enrichment Network for Few-Shot
Segmentation”. The prior mask serves as an indicator that high-
lights the region of interests of unseen categories, and it is effective
in achieving better performance on different frameworks of recent
studies. However, the current method directly takes the maximum
element-to-element correspondence between the query and support
features to indicate the probability of belonging to the target class,
thus the broader contextual information is seldom exploited during
the prior mask generation. To address this issue, first, we propose
the Context-aware Prior Mask (CAPM) that leverages additional
nearby semantic cues for better locating the objects in query im-
ages. Second, since the maximum correlation value is vulnerable
to noisy features, we take one step further by incorporating a
lightweight Noise Suppression Module (NSM) to screen out the
unnecessary responses, yielding high-quality masks for providing
the prior knowledge. Both two contributions are experimentally
shown to have substantial practical merit, and the new model
named PFENet++ significantly outperforms the baseline PFENet
as well as all other competitors on three challenging benchmarks
PASCAL-5i, COCO-20i and FSS-1000. The new state-of-the-art
performance is achieved without compromising the efficiency, man-
ifesting the potential for being a new strong baseline in few-shot
semantic segmentation.

Index Terms—Few-shot learning, few-shot segmentation, scene
understanding, semantic segmentation.

I. INTRODUCTION

D EEP learning has significantly boosted the performance
of semantic segmentation. However, strong semantic seg-

mentation models [5], [80] heavily rely on the training with

Manuscript received 8 October 2021; revised 22 October 2023; accepted
30 October 2023. Date of publication 2 November 2023; date of current
version 8 January 2024. This work was supported in part by the National
Natural Science Foundation of China under Grant 62076043, and in part by the
Chongqing University of Technology Research Startup Funding Project under
Grant 2023ZDZ032. Recommended for acceptance by D. Crandall. (Xiaoliu
Luo and Zhuotao Tian are co-first authors.) (Corresponding author: Taiping
Zhang.)

Xiaoliu Luo is with the Chongqing University of Technology, Chongqing
400054, China, and also with Chongqing University, Chongqing 400044, China
(e-mail: 20160602026t@cqu.edu.cn).

Zhuotao Tian, Bei Yu, and Jiaya Jia are with the Chinese University of Hong
Kong, Hong Kong, and also with SmartMore, Hong Kong (e-mail: tianzhuotao@
gmail.com; byu@cse.cuhk.edu.hk; leojia@cse.cuhk.edu.hk).

Taiping Zhang is with Chongqing University, Chongqing 400044, China
(e-mail: tpzhang@cqu.edu.cn).

Yuan Yan Tang is with the University of Macau, Macau 999078, China (e-mail:
yytang@um.edu.mo).

Our code will be available at Github.
Digital Object Identifier 10.1109/TPAMI.2023.3329725

Fig. 1. Abstract of recent FSS frameworks. Is and Iq are the input support
and query images, and Ms is the support mask. Xs and Xq denote the feature
maps extracted by the encoder from the support and query images respectively.
Then, the features are sent to the decoder, along withMs, to yield the prediction
Oq on the query image Iq , based on the categorical information provided by
Ms. The evaluation is conducted on the set of categories that are not witnessed
during the training phase.

sufficient fully-labeled data, and they are hard to deal with new
applications where novel classes are not witnessed during the
training phase.

Few-shot segmentation (FSS) [46] aims at quickly adapting
models to segment previously unseen categories on the query
set with only a few annotations available in the support set.
Models are episodically trained on base classes with sufficient
annotations and then tested on novel classes. During testing,
the novel categorical information is provided by the support set
where only a few annotated samples are available, and models
are required to locate the target objects in the query set based on
the information given by the support set.

Current FSS methods [33], [46], [60], [67], [75] can be ab-
stracted by a generic encoder-decoder structure as demonstrated
in Fig. 1. The encoder is usually a deep convolutional network
(i.e., VGG [50] and ResNet [16]) that processes the query and
support images respectively to yield deep features. Then, the
query and support features are sent to the decoder together with
the support masks, and the decoder parses the input features and
then outputs the predictions locating the target regions on the
query samples.

The recently proposed PFENet [56] achieves promising per-
formance on popular FSS benchmarks and it has served as
strong baselines for the latest work [2], [25], [72]. As observed
in [56], [75], directly feeding the high-level features (e.g., layer
4 of ResNet) extracted from a fixed encoder to the trainable
decoder results in performance deduction since the decoder will
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overly rely on the high-level features to make predictions during
training, causing severe over-fitting to base classes. Therefore,
PFENet instead transforms the high-level semantic cues into the
class-agnostic prior mask by calculating the maximum one-to-
one correlation responses between the query and support high-
level features. Then, the prior mask is passed to the decoder along
with the query and support middle-level features (e.g., layers 2-3
of ResNet), providing additional cues for better identifying the
targets. The prior mask generation method is simple yet effective
for achieving better results in FSS, while we find that two major
bottleneck limits the performance.

Underused High-Level Contextual Cues: Powerful scene
parsing models achieve breakthrough improvements by ade-
quately exploiting the semantic context from the high-level
features (e.g., PPM [80] and ASPP [5]). However, the cur-
rent mask generation method of PFENet merely calculates the
element-to-element correlations without considering the essen-
tial surrounding contextual information that is conducive to
dense visual perception. Therefore, we alternatively use the
Context-aware Prior Mask (CAPM) that is obtained by modeling
the regional correlations. Unlike the element-wise correlations,
feature patches encode more regional spatial information that
could be used as additional hints for facilitating the dense
labeling tasks.

Noisy and Unnecessary Responses: The high-level prior guid-
ance on the query sample is obtained by taking the maximum
responses among all support features in [56], while it is observed
that the maximum value is easily affected by noisy features
that share local similarities (i.e., color and texture) but are with
distinct semantic labels. Importantly, when more contextual
cues are involved, the current parameter-free mask generation
paradigm yields abundant unnecessary responses, making the
generated masks unable to clearly indicate the region of interest.
To alleviate this issue, we incorporate an effective yet efficient
module named Noise Suppression Module (NSM) to screen
out useless activations according to the correlation distribution
between the query and support features, further improving the
quality of the prior mask.

To this end, we combine PFENet with the proposed Context-
aware Prior Mask (CAPM) and Noise Suppression Module
(NSM), and the enhanced model named PFENet++ significantly
outperforms PFENet as well as all other competitors in both
1- and 5-shot settings. Though only a few additional learnable
parameters are introduced, the proposed CAPM and NSM still
well generalize to the new categories that even do not exist in the
ImageNet [44] used for pre-training the feature extractor. Our
contributions in this paper are summarized as follows.
� To our best knowledge, the proposed Context-aware Prior

Mask (CAPM) is the first design that exploits the regional
contextual correlation between the query and support fea-
tures to address the few-shot segmentation problem.

� By mitigating redundant irrelevant correlation responses,
the Noise Suppression Module (NSM) further boosts the
improvement brought by CAPM.

� PFENet++ reaches a new state-of-the-art performance on
popular benchmarks without deprecating the model ef-
ficiency, and the new designs also bring considerable
improvements to other latest methods.

II. RELATED WORK

Semantic Segmentation: Semantic segmentation is a funda-
mental yet challenging task that requires accurate dense labeling.
Recent architectures [1], [38], [43], [52], [59] are originated
from FCN [47] that is the first framework designed for semantic
segmentation. Contextual information helps identify individual
elements based on the surrounding hints, thus the receptive field
is essential for semantic segmentation. To this end, the dilated
convolution [4], [5], [68], [70], global pooling [31] and pyramid
pooling [18], [79], [80] are adopted to help enlarge the receptive
field and they have achieved considerable improvement. Mean-
while, to effectively leverage long-distance semantic relations,
attention-based models [11], [19], [71], [76], [81] have thrived,
reaching a new state-of-the-art performance. However, powerful
segmentation models cannot well address the previously unseen
categories without updating the model parameters.

Few-Shot Learning: Few-shot learning methods perform clas-
sification on the novel categories while only a small amount
of labeled data is provided. Recent solutions are mainly based
on meta-learning [3], [10], [45] that aims to get a model that
can quickly generalize to new downstream applications within a
few adaption steps, and metric-learning [12], [40], [51], [53],
[57], [73] that learns to yield discriminative representations
for novel categories. Moreover, considering the data-driven
literature of deep learning, data augmentation techniques help
models achieve better performance by synthesizing new samples
or features based on the few labeled data [15], [61], [77].
Though few-shot learning has made tremendous progress on
image recognition, without considering the contextual issues,
directly applying the representative few-shot learning methods
(i.e., Prototypical Network [51] and Relation Network [53]) to
address few-shot segmentation achieve less satisfying results as
verified by the baselines of PL [7] and CANet [75].

Few-Shot Segmentation: Few-Shot Segmentation (FSS) re-
quires model to quickly segment the target region with only a
few annotations [26], [42], [54], [82]. OSLSM [46] formally
introduces this setting in segmentation and provides a solution
by imprinting the classifier’s weights for each task. The idea of
Prototypical Network [51] is used in PL [7] whose predictions
are made based on the cosine similarity between the query
pixels and support prototypes. Additionally, prototype align-
ment regularization is introduced in PANet [60] to help rectify
the prediction. The prototype mixture models (PMMs) [67]
correlate diverse image regions with multiple prototypes to
enforce the prototype-based semantic representation with the
Expectation-Maximization (EM) algorithm. Predictions can be
also generated by convolutions, analogous to the relation module
proposed in [27]. CANet [75] concatenates the support and query
features and adopts the Iterative Optimization Module (IOM)
to accomplish the prediction refinement. PPNet [33] constructs
partial support prototypes based on super-pixels. PFENet [56]
exploits the prior mask guidance obtained from the pre-trained
backbone to help locate the target region, and a Feature En-
richment Module (FEM) to tackle the spatial inconsistency
between the query and support samples, respectively. RePRI [2]
proposes a transductive inference strategy that better leverages
the support-set supervision than other existing methods.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 02,2024 at 04:23:52 UTC from IEEE Xplore.  Restrictions apply. 



LUO et al.: PFENET++: BOOSTING FEW-SHOT SEMANTIC SEGMENTATION WITH THE NOISE-FILTERED CONTEXT-AWARE PRIOR MASK 1275

More recently, [9], [13], [17], [20], [21], [22], [24], [29], [30],
[32], [34], [35], [36], [39], [48], [55], [62], [63], [64], [65], [66],
[69] further boost the performance. Specifically, HSNet [35]
employs multi-level feature correlation and efficient 4D con-
volutions to extract a range of features from different levels of
intermediate convolutional layers, resulting in the generation of
a collection of 4D correlation tensors. BAM [24] introduces an
additional branch (base learner) alongside the conventional FSS
model (meta learner) with the explicit purpose of identifying
the targets of base classes. The final segmentation prediction is
obtained by adaptively integrating the coarse results produced by
these two learners, allowing for a more accurate segmentation.
GFS-Seg [55] analyzes the generalization ability of segmenta-
tion models to simultaneously recognize novel categories with
very few examples as well as base categories with sufficient
examples. VAT [17] proposes a 4D Convolutional Swin Trans-
former to address the problem arose from tokenization of a
correlation map from transformer processing. Our contributions
in this paper mainly follow the principles of the prior mask
guidance proposed in PFENet [56].

III. PRELIMINARIES

Before formally introducing our method, we start with
the task definition of Few-shot Segmentation (FSS) in
Section III-A, followed by the introduction of the prior mask
guidance proposed in PFENet [56] in Section III-B.

A. Task Description

The few-shot semantic segmentation task is associated with
two sets, i.e., the query setQ and support setS . GivenK samples
from support setS , the goal is to segment the area of unseen class
Ctest from each query image Iq in the query set.

Models are trained on base classes Ctrain and tested on previ-
ously unseen (novel) classes Ctest in episodes (Ctrain ∩ Ctest =
∅). The episode paradigm for FSS is proposed in [46] for
training and evaluation. Each episode is formed by a support
set and a query set of class Ci. The support set S has K samples
S = {S1,S2, . . .,SK}, named ‘K-shot scenario’. Each support
sample Si is a pair of {Is,Ms} where Is and Ms are the
support image and pixel-wise annotation of Ci respectively. For
the query set, Q = {Iq,Mq} where Iq is the query image and
Mq is the ground truth indicating the target belonging to class
Ci. The query-support pair {Iq,S} = {Iq, Is,Ms} forms the
input batch.

B. Revisit the Prior Mask Guidance

In CANet [75], Zhang et al. empirically observe that, within
the encoder-decoder structure, directly sending the middle-level
features extracted from a fixed encoder (e.g., ResNet [16] and
VGG [50]) to the decoder performs much better than the high-
level counterparts on few-shot segmentation, since the middle-
level ones constitute object parts shared by unseen classes.

Tian et al. [56] give an alternative explanation that the se-
mantic information contained in high-level features is more

class-specific than the middle-level features, and therefore
the decoder parameters are prone to overly rely on high-level
features of the base classes to optimize the training objectives
better, causing inferior generalization ability on unseen classes.
However, contradicting these findings in FSS, advanced generic
semantic segmentation frameworks [6], [71], [80] are instead
designed for better exploiting the high-level semantic cues to
have superior performance. Therefore, for the purpose of ade-
quately making use of the high-level hints that could cause severe
over-fitting issues, PFENet [56] transforms the ImageNet [44]
pre-trained high-level features into a class-agnostic prior mask
that merely indicates the probability of pixels belonging to the
target category.

Concretely, let F denote the feature extractor, and Iq and Is
are query and support images respectively. We can obtain the
d-dimensional high-level features as:

Xq = F(Iq), Xs = F(Is)�Ms, (1)

where � is the Hadamard product. Let h and w represent the
height and width of the feature map. The irrelevant area on the
reshaped support high-level featureXs ∈ Rhw×d is set to zero by
the reshaped binary support mask Ms ∈ Rhw×1, to make sure
that the prior mask of Iq only correlates with the target region of
Is. The element-to-element correlation matrix R ∈ Rhw×hw is
subsequently formed by calculating the cosine-similarity values
between all query and support high-level features:

R = φ(Xq)φ(Xs)T , (2)

where φ represents the L2 normalization. Then, the prior mask
Yq ∈ Rhw×1 of the query image can be yielded by taking the
maximum correlation values among all support features in (3),
followed by the min-max normalization as (4) with ε = 1e− 7.

Yq = max
j

R(i, j), i, j ∈ {1, 2, . . ., hw}, (3)

Yq = Yq −min(Yq)
max(Yq)−min(Yq) + ε

. (4)

IV. METHOD

In this following, the motivations and details of our proposed
Context-aware Prior Mask (CAPM) and Noise Suppression
Module (NSM) are shown in Section IV-A and IV-B respectively.
The overall pipeline is illustrated in Fig. 2 where regional
matching and noise suppression are performed to yield more
informative prior masks.

A. Context-Aware Prior Mask

The prior mask Yq obtained by (3) and (4) implies the
similarities between the query features and their most relevant
support features, thus the higher the values onYq , the more likely
the corresponding regions belong to the target. However, these
correlation values on Yq are obtained by one-to-one matching
without considering broader contextual information. Locations
belonging to the background of the query image might also have
strong responses on Yq as long as they are locally similar to only
one foreground element of the support sample, making the prior
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Fig. 2. Illustration of the new prior generation pipeline that is composed of two steps: 1) regional matching and 2) filtering & scoring. (a) and (b) demonstrate
the input query and support images and their features respectively. (c) is the correlation matrix, and (d) shows prior masks generated by different patch sizes. As
introduced in Section IV-A, the first step, regional matching, aims at yielding the context-aware prior masks (CAPM) that incorporate broader information for
better locating the objects belonging to unseen categories. The second step filtering & scoring is accomplished by the proposed Noise Suppression Module (NSM)
that rectifies the activation values of support samples so as to provide high-quality prior guidance, as described in Section IV-B.

Fig. 3. Illustration of the 3× 3 and 5× 5 region matching. Three types of
pixels exist: background, edge-background and foreground pixels, denoted as
yellow, purple and red circles respectively.

Fig. 4. The pipeline of Noise Suppression Module (NSM).

mask less effective in indicating the region of interest. As shown
by examples in Fig. 9(a), the ones yielded by the one-to-one
matching scheme cannot well handle these cases because the
surrounding non-target regions on the query sample might also
have high correlation values with the locally identical support
features, making the normalization process less discriminative in
highlighting the region of interest on the prior mask. Therefore,
the underutilized contextual information might be an inherent

Fig. 5. Statistical comparison regarding the distributions of the inputs (A) and
outputs (B) of the rectification moduleΘ. Note that the responses are normalized
for highlighting the relative changes.

Fig. 6. Qualitative visualizations of (a) Rψ , (b) Rψ,θ , (c) the vanilla prior
mask of PFENet and (d) the context-aware prior mask Yq,nf .

bottleneck limiting further improvements that could be brought
by high-level features.

To make the best of the nearby hints, one might directly
apply context enrichment modules like PPM [80] and ASPP [5]
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Fig. 7. Difference between PFENet [56] and PFENet++ lies in their prior generation methods depicted in dashed boxes (a) and (b) respectively. The original prior
generation method (a) only takes the maximum values from the one-to-one correspondence, while our new pipeline (b) yields preferable prior masks by decently
incorporating additional contextual information with the proposed two sub-modules, i.e., CAPM and NSM. Besides, (a) only leverages the high-level features to
yield prior masks, while (b) makes use of both high- and middle-level features. Adding middle-level features to (a) does not boost its performance.

Fig. 8. Qualitative results of the proposed PFENet++ and the original PFENet. The right samples are from COCO and the left ones are from PASCAL-5i. From
top to bottom: (a) support images; (b) query images; (c) ground truth of query images; (d) predictions of PFENet; (e) the vanilla prior mask of PFENet; (f) the
predictions of PFENet++; (g)(h)(i) are the proposed context-aware prior masks yielded by 1× 1, 3× 3, 5× 5 patches, respectively.
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Fig. 9. Visual comparison between prior masks generated by different sources and patch sizes: (a) original high-level features; (b) high-level features after
projection; (c) high-level features after projection and NSM; (d) middle-level features after projection and NSM. Figures of (a) with patch 1 are the prior masks
adopted by the original PFENet. Specifically, the prior masks of (a) maintain the basic generalization ability and can partially identify the unseen objects on the
query images, while the linear channel compression deprecates the ones from (a) to (b) and images of (b) tend to erroneously highlight the background regions
objects belonging to base classes used for training. Rectification is achieved by the proposed Noise Suppression Module (NSM) as demonstrated by figures of
(c) that are generally more visually attractive than the two aforementioned sources. Also, introducing broader contextual information further enhances the prior
masks, as manifested by the comparison between patch sizes 1, 3 and 5. Finally, the comparison between (c) and (d) shows that the prior masks yielded by
middle-level features can supplement more local structural details but they are not as semantically precise as that of (c), hence PFENet++ incorporates both (c) and
(d).

to the high-level query and support features respectively to
help each element be more aware of the surroundings before
being used for the prior mask generation. Despite the fact that
these modules are widely found to be conducive to normal
semantic segmentation frameworks, they introduce considerable
trainable parameters that might cause over-fitting issues, which
has been verified by experimental results in Table IV. For this
reason, instead of the commonly used contextual enhancement
modules that cause performance deduction, we adopt a regional
matching strategy to generate the Context-aware Prior Mask
(CAPM).

Regional Matching: The idea of CAPM is straightforward:
it calculates the regional correlations rather than the original
element-to-element ones. For generality, we assume that the
query and support features might have different spatial sizes,
denoted as hq × wq and hs × ws.

Formally, Xq ∈ Rhq×wq×d and Xs ∈ Rhs×ws×d denote the
d-dimensional query and support features obtained via (1), and
we assume that they have been already L2-normalized by φ.
Then, regional matching can be accomplished by measuring the
patch-wise similarities between Xs and Xq, formulated as:

Rc(i, j) =
∑

o∈[−m,m]×[−m,m]

〈Xq(i+ o), Xs(j + o)〉. (5)

In (5), m is the patch size and o ∈ [−m,m]× [−m,m]
represents the set of feasible offset tuples within the
m×m patch window. The patch center positions for
Xq and Xs are denoted by i ∈ [0, hq]× [0, wq] and j ∈
[0, hs]× [0, ws] respectively. Xq(i+ o) and Xs(j + o) are
d-dimensional vectors, thus Rc(i, j) ∈ [−1, 1] is scalar value
representing the patch-wise similarity. If i+ o /∈ [0, hq]×
[0, wq] or j + o /∈ [0, hs]× [0, ws], zeros are padded. The su-
perscript c inRc denotes that the contextual information is better
exploited by the proposed regional matching process.

In consequence, with (5), we can obtain the regional similar-
ity matrix Rc ∈ Rhq×wq×hs×ws that can be reshaped to Rc ∈
Rhqwq×hsws and then processed by (3) and (4) sequentially to
produce the new context-aware prior mask Ycq ∈ Rhqwq×1 that
exploits more contextual cues to help identify the target objects.

Does a Single Large Patch Take All? It is obvious that the
larger the patch size is, the more contextual information could
be exploited to yield the context-aware prior mask. Intuitively,
1× 1 and 3× 3 patches can be covered by a 5× 5 patch, thus
a natural option is to apply the regional matching with a single
large patch size m that can reach an optimal trade-off between
the performance and efficiency.

Nevertheless, the greaterm not only brings additional compu-
tation overhead, it might also introduce redundant information
that is detrimental for revealing the local details throughout the
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TABLE I
CLASS MIOU AND FB-IOU RESULTS ON FOUR FOLDS OF PASCAL-5i

TABLE II
CLASS MIOU AND FB-IOU RESULTS ON FOUR FOLDS OF COCO-20i

regional matching process, leading to sub-optimal performance.
As verified by our experimental results in Table V, the regional
matching withm=3 outperformsm=1 thanks to the contextual
awareness, while results of m = 5 do not further advance the
ones yielded by m = 1 and m = 3. To this end, in order to

utilize the context-aware prior mask without deprecating the
local discrimination ability, we propose an alternative way that
accomplishes the regional matching with multiple patch sizes so
as to large patch captures nearby context and small patch mines
finer details.
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TABLE III
FOREGROUND IOU RESULTS ON FSS-1000 [26]

TABLE IV
COMPARISON BETWEEN DIFFERENT CONTEXT ENRICHMENT MODULES

TABLE V
ABLATION STUDY ON THE EFFECTIVENESS OF NSM AND CAPM

Let M = {m1,m2, . . .,m|M |} be the set of patch sizes
adopted for regional matching, and we can accordingly ob-
tain |M | prior masks {Rc

1,Rc
2, . . .,Rc

|M |} via (5). Then,
the multi-patch method produces the context-aware prior
mask Ycq ∈ Rhqwq×|M | with all matrices contained in the set
{Rc

1,Rc
2, . . .,Rc

|M |}. This process can be formulated as:

Rc = Rc
1 ⊕ . . .⊕Rc

m ⊕ . . .⊕Rc
|M |

Ycq,m = max
j

Rc(i, j,m)

i, j ∈ {1, 2, . . ., hw}, m ∈ {1, . . ., |M |}, (6)

where ⊕ denotes the concatenation operation between |M |
matrices Rc

m ∈ Rhqwq×hsws to form Rc ∈ Rhqwq×hsws×|M |,
and the prior mask Ycq ∈ Rhqwq×|M | is yielded by taking the
maximum values among the second dimension of Rc.

B. Noise Suppression Module

Motivation: In [56], taking the maximum response is found
to be conducive to revealing most of the potential target on a

query image, because the maximum value indicates that the
support image contains at least one pixel or region that has
close semantic relation to the query pixel. However, these
extreme values are vulnerable to the noisy support features that
are locally identical to the query features but are actually from
distinct classes. Moreover, in complex scenes, the noisy support
features might cause abundant false alarms on the prior mask,
making it fails to highlight the potential region on the query
image.

To alleviate the above issues, we need a module that helps
screen out unnecessary responses. Fundamentally, the module
design should be content-aware such that it can dynamically
mitigate the responses of irrelevant regions, and on the other
hand, it should also be class-agnostic, in an attempt to avoid
over-fitting to the base classes during training. With these two
essential design principles, the proposed Noise Suppression
Module (NSM) brings considerable performance gain to the
baseline models.

With the aim of being context-aware and class-agnostic,
the proposed Noise Suppression Module (NSM) is applied
to the query-support similarity matrices R ∈ Rhqwq×hsws and
Rc ∈ Rhqwq×hsws×|M |, since there exists no class-sensitive cues
contained in the similarity matrices but only the correlation
information of the support sample that has been outlined by its
ground-truth mask in the second dimension with a size of hsws.
Moreover, the correlation information is exactly the context
provider that tells NSM which part of the support sample is
mostly relevant to the majority features of the query sample
from a holistic perspective, and thus NSM can simply suppress
the rest suspected to cause noisy responses on the prior mask.

Overview: The Noise Suppression Module (NSM) has three
steps: 1) local information compression, 2) holistic rectifica-
tion and 3) noise-filtered prior mask generation. As illustrated
in Fig. 4, the former two steps, from local and global views
respectively, yield a rectifier Rψ,θ that adaptively adjusts the
contributions of support features on the correlation matrices in
the last step. To this end, the adverse effects brought by the noisy
activations are mitigated. Details are as follows.

Step 1. Local information compression: In provision for
estimating the importance of each support feature, an informa-
tion concentrator Ψ is used as a means to show how much the
individual support feature is correlated to the query features.
Specifically, we have

Rψ = Ψ(R), (7)

where the first dimension of R ∈ Rhqwq×hsws has been com-
pressed to 1 inRψ ∈ R1×hsws . The concentratorΨ can be either
a parameterized module or an operation that takes the average
values. Besides, if the regional matching with |M | patch sizes
is adopted, (7) can be also applied to Rc ∈ Rhqwq×hsws×|M |

by processing |M | matrices separately to yield the compressed
output Rc

ψ ∈ R1×hsws×|M |.
The concentrator Ψ merely probes the correlations between

all query features and individual support features, accordingly,
it only examines the global context of the query features to
foreground the essential individual support features. As the
categorical information is provided by the support sample, the
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spatial information (i.e., correlation distribution) of the support
sample should also be considered to facilitate sweeping away
those “bad” ones that might cause undesired high responses on
the prior mask.

Step 2. Holistic rectification: To leverage the contextual cues
of support features in a class-agnostic way, we look into the
importance of each support feature from a holistic perspective.
Specifically, a rectification module Θ is proposed to adjust
the importance of support features, and this process can be
written as

Rψ,θ = Θ(Rψ), (8)

where the module Θ in Eq.(8) is composed of a few learnable
light-weight fully-connected layers. Θ yields a rectifier Rψ,θ ∈
R1×hsws that adjusts the contributions of each support feature
on the similarity matrix R ∈ Rhqwq×hsws in the next step.

Step 3. Noise-filtered prior mask generation: The rectifier
Rψ,θ ∈ R1×hsws can be deemed as a set of values weighing
the support elements, thus the noise-filtered prior mask Yq,nf is
obtained as

Yq,nf = RRT
ψ,θ, (9)

by which the interfering responses on the original correlation
matrix R caused by irrelevant support elements are suppressed
by the rectifierRψ,θ. The visual comparison is shown in Fig. 9(b)
and (c).

Similarly, Ycq,nf ∈ Rhqwq×|M | can be obtained by applying

(8) and (9) to Rc ∈ Rhqwq×hsws×|M | by independently process-
ing |M |matrices, if the multi-patch regional matching is adopted
as introduced in Section IV-A.

C. Interpretations Regarding CAPM and NSM.

Noisy responses caused by CAPM: As shown in Fig. 3,
there are three sets of pixels in the support and query images:
background, edge-background and foreground pixels, and they
are denoted by yellow, purple, and red circles respectively.
During the prior generation, all background pixels in the support
image are simply ignored by the support mask, while the regional
matching with 3× 3 and 5× 5 patches will bring noises to the
edge-background pixels by involving partial foreground pixels
as shown in the orange regions in Fig. 3.

Specifically, for the query image, we take the patch of the
edge-background pixel in the query image to match with all
pixels in the support image where the background pixels have
been masked to zero, while the edge-background pixel in the
query image will have some responses on the prior mask due to
the patch that includes partial foreground pixels. However, these
responses are confusing because the query edge-background
pixels belong to the background, making the prior mask difficult
to highlight the foreground target by blurring the boundary
regions. As a result, without NSM, the blurred region expands
as the patch size increases as demonstrated in Fig. 5.

Understanding the Intermediate Results of NSM: The pipeline
in Fig. 4 shows that, in Step 1 (Local information compression),
the first dimension of the correlation matrix R ∈ Rhqwq×hsws

(only a single patch is considered for simplicity) is compressed

to 1 in Rψ ∈ R1×hsws by a concentrator Ψ that takes the
average values as Rψ = Ψ(R). Rψ stores the statistics that
tell how much each part of the support sample is related to the
elements of the query sample. Then, Step 2 rectifies the regional
responses on the support sample by holistically analyze the
distributions in RΨ, such that informative regions of the support
sample are assigned with greater importance byRψ,θ = Θ(Rψ)
(Rψ,θ ∈ R1×hsws ). Finally, the activations are weighted by
Rψ,θ to obtain the noise-filtered prior mask Yq,nf = RRT

ψ,θ

(Yq,nf ∈ Rhqwq,1).
To investigate the effect of the proposed NSM, statistical

examples are presented in Fig. 5 where we use line charts to
visualize the results Rψ ∈ R1×hsws of the concentrator Ψ, and
the red, blue and green colors denote 1× 1, 3× 3 and 5× 5
patches, respectively. The row represents the patch indexes in the
support feature map with the size of hs × ws, and the column
represents the averaged similarity values between each patch
in the support feature map and all patches in the query feature
maps.

Concretely, for the patch size 1× 1, the averaged similar-
ity between each background pixel in the support image and
all pixels in the query image should be close to 0 since the
background pixels in the support image has been filtered out
by the support mask. However, when performing the 3× 3 and
5× 5 region matching, some averaged similarity values between
the patches of the support edge-background patches and query
patches are not 0 because the patches of edge-background pixels
may include partial foreground pixels. As shown in the black
dashed boxes of the top three examples in Fig. 5(A), it can
be observed that even when the red line (Patch-1) is close to
0, higher responses are observed on the blue (Patch-3) green
(Patch-5) lines, indicating the fact that unnecessary responses
are introduced by the regional matching with larger patch sizes.
On the other hand, the bottom three examples of Fig. 5(B)
demonstrates the output Rψ,θ of the rectification module Θ, and
the noisy responses caused by irrelevant surrounding regions
are suppressed by Rψ,θ. Put differently, the input of Θ reflects
how much each element of the support sample correlates with
the ones in query sample, so it can be deemed as a kind of
class-agnostic spatial distribution regarding the query-support
activation.

More Visual Illustrations: The corresponding qualitative
illustrations are presented in Fig. 6 where (a), (b), (c) and (d)
are the visualizations of Rψ , Rψ,θ, the original prior mask of
PFENet [56] and the context-aware prior mask Yq,nf adopted
by PFENet++, respectively. It can be observed in (b) that the im-
portance of each support feature is highlighted by the rectifying
factor Rψ,θ, so that the context-aware prior masks shown in (d)
carry more informative cues than that in (c).

V. BOOSTING FSS WITH THE NOISE-FILTERED

CONTEXT-AWARE PRIOR MASK

Despite the fact that PFENet has shown its superiority by
significantly outperforming its concurrent methods, as discussed
in Section IV-A, the original prior mask generation method
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in PFENet suffers from being context-imperceptive and noise-
sensitive as it only considers the one-to-one relations without
properly eliminating the adverse effects caused by the noisy
support features. Therefore, in this section, we first briefly revisit
PFENet and then propose PFENet++ by taking the essences of
CAPM and NSM.

A. Revisit PFENet

To achieve promising few-shot segmentation performance
without sinking into the over-fitting issues, CANet [75] only con-
catenates the middle-level query and support features for yield-
ing final predictions since they constitute object parts shared
by unseen classes. Different from CANet, Prior Guided Feature
Enrichment Network (PFENet) [56] leverages the middle- and
high-level features separately to offer distinct types of guidance
that are complementary to each other.

The abstract structure of PFENet is shown in Fig. 7(a) where
two modules are adopted, i.e., the Prior Generation Module
(PGM) and Feature Enrichment Module (FEM). Specifically,
PGM takes the high-level query and support features and it
yields a single prior mask to indicate the region of interest on the
query sample as introduced in Section III-B. Then the prior mask
is processed together with the middle-level query and support
features by FEM where three steps, i.e., inter-source enrich-
ment, inter-scale interaction and information concentration, are
performed to yield robust predictions for the query images. More
details about PFENet can be found in [56].

B. PFENet++

As shown in Fig. 7(b), PFENet++ generally follows the design
principles of PFENet, while the main upgrade lies in the prior
generation process. PFENet++ operates with the proposed novel
designs, i.e., Context-aware Prior Mask (CAPM) and Noise
Suppression Module (NSM), to make the prior mask become
more informative (i.e., context-aware) and resilient to noises.
Similar to PFENet, prior masks generated by CAPM and NSM
are then concatenated with the middle-level query and support
features and processed by FEM to get the final prediction.

Not Only High-Level Features can Offer Prior Guidance: It
is worth noting that, in Fig. 7(b), the middle-level features in
PFENet++ are made better use for offering extra prior guidance.
As verified in the empirical study of [56], the original prior
mask generation method of PFENet yields inferior performance
with the middle-level features, thus PFENet only exploits the
correlation between the high-level features to yield the prior
mask. However, we find that applying CAPM and NSM on
the middle-level features on PFENet++ can bring additional
performance gain to the model that has been incorporated with
the prior masks obtained from the high-level features. We believe
that it can be attributed to the noise filtering mechanism of NSM
because the middle-level features are less semantic-sensitive and
so are the correlations. If there is no selection performed on the
middle-level support features, simply taking the maximum cor-
respondence values among the correlation matrix might cause
misleading responses on the prior masks.

Regional Matching in CAPM: We empirically find that the set
of patch sizesM = {1, 3, 5} for regional matching yields decent
performance by providing essential contextual information in
CAPM, while the larger patch sizes, e.g., 7, cannot bring further
improvement because the patch size 5 might have provided suffi-
cient contextual aid. Since performing dense regional matching
with three patch sizes leads to extra computation overhead com-
pared to the original schemeM = {1}, the support feature map is
thus down-sampled twice (e.g.,hq × wq = 60× 60,hs × ws =
30× 30) for accomplishing regional matching in (5). However,
we observe that the down-sampled support feature map does not
lead to performance deduction but retains satisfying efficiency.

Implementation of NSM: NSM involves two modules Ψ
and Θ for accomplishing local information compression and
holistic rectification respectively. Ψ is simply implemented by
the averaging operation whose results are empirically found to
be on par with that of the parameterized module. On the other
hand, Θ is composed of two fully-connected (FC) layers with an
intermediate ReLU activation layer, and the weights of two FC
layers are denoted as [hsws × d] and [d× hsws].Θfirst encodes
the spatial information (i.e., correlation distribution) from hsws
to d, followed by a decoding process from d to hwws to produce
Rψ,θ ∈ R1×hsws that grasps the global context and then scores
support features as in (9).

K-Shot Implementation: In the K-shot scenario, instead of
forwarding the entire model for K times, we obtain K prior
masks from K support samples and then we take the average
of them as the final prior mask. Suppose if three scales are
adopted by default, so we can get three averaged prior masks
in total. Finally, same as PFENet, we concatenate these prior
masks with the averaged middle-level features and pass them
to FEM for yielding the final prediction. Thus only the feature
extractor is additionally forwarded for K times, not the entire
model.

VI. EXPERIMENTS

A. Implementation Details

Datasets: The recent literature [33], [56], [67], [75] adopts
three benchmarks PASCAL-5i [46], COCO-20i [37], [60] and
FSS-1000 [26] for model evaluation in FSS.

PASCAL-5i is constructed by combining PASCAL VOC
2012 [8] and extended annotations of SDS [14]. The cross-
validation is performed by evenly dividing 20 classes into 4 folds
i ∈ {0, 1, 2, 3} and 5 classes in each fold. When evaluating one
fold, the classes contained in the rest three folds are used as
base classes for training. Following [46], [56], [60], [75], 1,000
query-support pairs are randomly sampled for the evaluation on
each fold. For stability, we report the results averaged over 5
runs (i.e., 5,000 pairs).

COCO-20i is more much challenging than PASCAL-5i since
the former contains 80 categories in total. Following [2], [33],
[56], COCO-20i separates 80 classes from COCO [28] in 4 folds
and each fold contains 20 classes. It is observed in [56] that
evaluating COCO-20i with 1,000 episodes is far from enough
since the validation set is much larger than that of PASCAL-
5i. The insufficient evaluation steps cause great performance
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variance as shown in [56], thus our models are instead evaluated
with 20,000 episodes on COCO-20i for a fair comparison.

FSS-1000 contains 1,000 classes among which 486 classes
are not included in any existing benchmarks and each class
has 10 images with pixel-wise annotations. Following [26], the
training, validation and test sets have 520, 240, and 240 classes
respectively. We report the results obtained on the test set.

Evaluation Metrics: Following [56], [75], the class mean
intersection over union (mIoU) is used as the main metric for
comparison since the class mIoU is more informative than the
foreground-background IoU (FB-IoU) [75]. The calculation of
class mIoU is: mIoU = 1

C

∑C
i=1 IoUi, where C is the number

of categories contained in each fold (e.g., 5 for PASCAL-5i and
20 for COCO) and IoUi is the IoU result of class i. The results
of FB-IoU are also included for a comprehensive comparison
where only the foreground and background are considered as
two categories (C = 2). Differently, FSS-1000 only measures
the foreground IoU. We take average results of all folds as the
final class mIoU/FB-IoU results on PASCAL-5i and COCO-20i,
while the results of FSS-1000 are directly obtained from its test
set.

Experimental Configurations: All experiments are conducted
on PyTorch framework. VGG-16 [50], ResNet-50 [16] and
ResNet-101 [16] are used as the backbones, and the configura-
tions are the same as that of PFENet [56]. SGD is adopted as our
optimizer. The momemtum and weight decay are set to 0.9 and
0.0001 respectively. The ‘poly’ policy [4] decays the learning

rate by multiplying
(
1− currentiter

maxiter

)power
wherepower equals

to 0.9 according to the training progress.
Same as [56], [75], all our models are trained on PASCAL-5i

for 200 epochs with the initial learning rate 0.0025 and batch
size 4. On COCO, models are trained for 60 epochs with learning
rate 0.006 and batch size 16. FSS-1000 is trained for 100 epochs
with initial learning rate 0.01 and batch size 16. The ImageNet
pre-trained backbone is kept unchanged during training. Data
augmentation is important for combating over-fitting problems.
Training samples are first randomly scaled from 0.9 to 1.1 and
then randomly rotated from -10 to 10 degrees followed by the
random mirroring operation with probability 0.5. After that,
image patches are randomly cropped (473× 473 for PASCAL-
5i and COCO-20i, and 225× 225 for FSS-1000) as the final
training samples.

Since different datasets have various input image sizes, the
hidden dimension number d of Θ is set to 256 for PASCAL-5i

and COCO-20i, and 64 for FSS-1000. Similarly, the output di-
mension varies in different backbone networks, while we simply
project all of them to 256, including the high-level features for
yielding the prior masks for speeding up the prior generation
process.

Additional post-processing strategies (e.g., multi-scale testing
and DenseCRF [23]) are not implemented. Our experiments are
performed on a single NVIDIA RTX 2080Ti GPU and Intel
Xeon Silver 4216 CPU @ 2.10 GHz. The implementation of
PFENet++ follows the official repository1 of PFENet [56].

1https://github.com/dvlab-research/PFENet

B. Results

The quantitative results of three backbone networks are shown
in Tables I, II and III where PFENet++ significantly outperforms
all its competitors on both PASCAL-5i, COCO-20i and FSS-
1000, manifesting the superiority of the proposed CAPM and
NSM. By adequately exploiting the context information during
the prior mask generation process, PFENet++ even advances
PFENet by 8-10 mIoU on 5-shot evaluations in terms of both
class mean IoU and FB-IoU.

Besides, it is noteworthy that PFENet++ achieves much better
performance without remarkably sacrificing its efficiency since
it can process 12.7 frames of size 473× 473 per second with
ResNet-50 backbone, while the original PFENet processes 14.8
frames per second on the same NVIDIA RTX 2080Ti GPU. As
for the learnable parameters, the original PFENet has 10.8 M
while the proposed designs only bring 1.4 M increase thus
PFENet++ has 12.2 M learnable parameters in total. The quali-
tative results are shown in Fig. 8 where the results of PFENet++
are much better than that of the original PFENet.

As for the impressive improvement from 1- to 5-shot settings,
compared to PFENet, we conjecture that it can be attributed
to the better use of high-level features, since more high-level
contextual hints are leveraged by the proposed CAPM and NSM
keeps the essence in a class-agnostic way for combating the over-
fitting issues. Similar improvement can be observed in recent
work RePRI where the high-level features are directly optimized
by specific objectives designed for few-shot segmentation task.
Thus we believe further exploiting the potentials of high-level
features without impairing the generalization ability can be a
promising future directions.

C. Ablation Study

In this section, extensive experiments are presented to inspect
the effectiveness of our two major contributions: Context-Aware
Prior Mask (CAPM) and Noise Suppression Module (NSM).
Experiments are conducted on PASCAL-5i with ResNet-50
backbone without specification. The different visual effects
brought by the proposed CAPM and NSM are presented in
Fig. 9. All compared models in this section are re-trained for
fair comparisons.

Noisy Support Features are the Evils: NSM aims at alleviating
the adverse effects brought by noisy support features during the
prior mask generation process. Even the regional matching is
not adopted in PFENet, the noisy support features still cause
undesired high correlation responses with the query features
on the prior mask. By applying NSM, it brings considerable
improvement to the vanilla PFENet in Table IV.

Context is Essential but Could Also Become Evil: The original
PFENet only leverages the element-to-element correspondence
for yielding the prior mask while it overlooks the contextual
information that could help better identify the region of interest.
Therefore, as shown by Exp. III & VI in Table V, the result
obtained from the patch-wise correlations (CAPM = {1, 3}) is
better than the original 1 to 1 correlation (CAPM= {1}) adopted
in PFENet because the former is more aware of the hints hiding
in the surroundings.
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Additionally, since the large patch captures nearby context
and the small patch mines finer details, the combination of them
might be even better. The results of Exp. VI-VIII show that
by mining extra cues from the nearby regions with different
distances, the proposed multi-patch regional matching scheme
of CAPM introduces further advancements to the models incor-
porated with single level matching schemes such as Exp. III-V,
but enlarging the patch size to 7 does not harvest additional
improvement as shown in Exp. IX.

However, every rose has its thorn so does the contextual
information since it might introduce unfiltered information that
gives a rise to trivial responses on the prior masks. As demon-
strated by the Exp. II, if the NSM is not equipped for screening
those noises induced by the additional contextual information,
the performance is notably impaired, compared to Exp. I and
Exp. VIII. With this finding, we can conclude that both CAPM
and NSM are mutual-complementary and indispensable so as to
achieve a promising performance.

Comparison With Other Context Enrichment Modules: The
purpose of CAPM is to leverage more contextual information
during the prior generation process, thus CAPM performs re-
gional matching with different patch sizes in (6) to form corre-
lation matrices that will be then processed by NSM for yielding
the final prior mask.

Alternatively, directly applying context enrichment modules
like Pyramid Pooling Module (PPM) [80], Atrous Spatial Pyra-
mid Pooling (ASPP) module [5] and Graph Attention Unit
(GAU) [74] to the extracted high-level feature map seems to be
another attainable way that provides a wider scope for individual
elements in the one-to-one correlation calculation process as (2).

Experiments in Table IV show that, compared to the results of
NSM+CAPM, both PPM and ASPP fall short of the generaliza-
tion ability to unseen categories, because CAPM as well as the
origin prior mask transform the high-level semantic information
into the class-insensitive formats, i.e., prior masks whose values
range from 0 to 1, to avoid the over-fitting issue. However, PPM
and ASPP directly apply parameterized modules that are prone
to overly rely on the high-level features to yield high-quality
prior masks on base classes during training, leading to a rather
inferior performance on novel classes.

Different from ASPP and PPM, the key component of
PGNet [74], i.e., GAU, aims at establishing regional correla-
tions between query-support features specifically, so it applies
several average pooling to the features followed by indepen-
dent Graph Attention Units (GAU) to between the query and
support individual elements at different levels. Though GAU
is found beneficial in enhancing the middle-level features, two
issues may inhibit the application to enhance the prior mask
obtained from the high-level features: 1) Average pooling loses
essential local information contained in the query features;
2) GAU directly projects the query and support features, thus
it leads to over-fitting issues as ASPP and PPM.

Concretely, inherently different from the multi-scale schemes
achieved by different average pooling sizes in GAU, the pro-
posed CAPM models query-support correlations more metic-
ulously by measuring the inter-patch similarities, keeping the
local hints intact within the patches. Compared to the average

Fig. 10. Qualitative comparisons of (a) the original PFENet’s prior masks,
(b) prior masks yielded with GAU, (c) the proposed context-aware prior mask.

pooling operations used by GAU for establishing the compressed
regional correlations, patch-wise correlation adopted by CAPM
retains local details better and thus it is more effective in re-
vealing extra useful cues in different regions. On the other hand,
dense attention modules are directly applied to query and support
features in GAU, so it is more likely to overfit the witnessed
base classes. While, the proposed CAPM is with no learnable
parameters and NSM only takes the class-agnostic statistics
regarding the spatial responses as the input so as to ameliorate
the over-fitting issue.

As the results shown in Table IV where we incorporate GAU to
enhance the query features before yielding the prior mask, GAU
is not helpful in enhancing the prior mask. Also, in Fig. 10, the
visualizations yielded by (b) are more prone to high-light the
objects belonging to the base classes in the background.

Middle-Level Features can be Also Leveraged for Prior Gen-
eration: The high-level features have more semantic cues while
the middle-level ones encode more spatial details, thus the
latter could be further leveraged to supplement the prior masks
yielded by the high-level features. Due to the lack of an effective
noise suppression mechanism, as shown in Exp. I and Exp. II
in Table VI, directly applying the prior masks yielded by the
middle-level features is not beneficial but might potentially de-
grade the performance. Contrarily, by the virtue of the proposed
NSM, the prior masks yielded by the middle-level features are
also able to indicate the region of interest from a more local
perspective, and the comparison between Exp. III and Exp. IV
in Table VI manifests the improvement to the final performance.
The visual comparison between the prior masks yielded by high-
and middle-level features are shown in Fig. 9(c)-(d). Exp. V
proves the necessity of the high-level features by comparing
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TABLE VI
RESULTS OF APPLYING CAPM ON THE MIDDLE- AND HIGH-LEVEL FEATURES

WITH AND WITHOUT THE PROPOSED NSM

TABLE VII
THE RESULTS OF DIFFERENT METHODS TO OBTAIN Rψ

TABLE VIII
ABLATION STUDY ON THE PROPOSED NOISE SUPPRESSION MODULE (NSM)

TABLE IX
FOREGROUND IOU RESULTS ON TOTALLY UNSEEN CLASSES OF FSS-1000 [26]

it with Exp. III and Exp. IV. Also, the results can tell that
the considerable improvement of PFENet++ from 1 to 5-shot
mainly comes from the better use of the high-level features by
comparing Exps. III-V.

Design Options for Higher Efficiency: The multi-patch
regional matching involves extra computation, causing lower
efficiency. Table VIII shows the effects of different structural op-
tions for achieving an efficient design, in terms of performance,
speed and the number of learnable parameters.

With an eye towards a faster implementation, first, we prefer
a slim channel number because high-dimensional features slow
the correlation calculation. As shown in Exp. I-II, by applying

TABLE X
RESULTS OF APPLYING CAPM AND NSM TO ASGNET [25] AND SCL [72] ON

PASCAL-5i

a simple 1×1 convolution to reduce both the query and support
high-level feature maps’ dimensions from 2048 to 256 before
performing the regional matching in (5), the inference becomes
considerably faster (from 3.8 to 9.1 FPS). Additionally, the com-
pressed features retain essential information without deprecating
the performance.

Also, we find that applying a 2×2 average pooling on the
support feature maps further accelerates the regional matching
process in (5) without sacrificing the performance as verified by
Exp. II-III in Table VIII. We note that the decrease in Params is
caused by the parameterized moduleΘ in NSM whose input and
output dimensions are determined by the spatial size of support
feature map. However, compared to Exp. III, Exp. IV indicates
that spatially compressing the query feature maps yields inferior
results because it leads to direct information loss on the target
query feature maps.

The Benefits of Down-Sampling: Down-sampling has two
benefits. First, it is used to reduce the computational cost intro-
duced by the multi-scale patch matching, and the effects have
been shown in Table VII of the paper. On the other hand, it
can introduce broader contextual information for enhancing the
prior mask. To verify this claim, we conduct another experiment
without down-sampling but with enlarged patch sizes {1, 5, 9}
in Table VIII. It can be observed that, compared to the original
scheme adopted in the paper with patches {1, 3, 5}, the model
implemented with {1, 5, 9} has considerably lower inference
speed (12.7 v.s. 7.9). However, similar to PFENet++ with down-
sampling, the model incorporating larger patch sizes {1, 5, 9}
still outperforms the PFENet++ without down-sampling the sup-
port features, i.e., PFENet++(Full), because additional contex-
tual information can be introduced by either down-sampling or
larger patch sizes, yielding better performance. As for the reason
why {1, 5, 9} is inferior to the PFENet++ with down-sampling
and {1, 3, 5}, we think explicit larger patch matching may bring
extra noises, causing additional difficulties for NSM.

The Effects of the Rectification Module Θ: DeepEMD [73]
adopts dot-product between each support feature and all query
features in order to high-light the importance of the individual
support element, which is analogous to the operation in the first
step of NSM. The difference is that DeepEMD directly takes the
average of the responses with a normalization operation as the
weights for different support elements, while PFENet++ adopts
a learnable module Θ for dynamic rectification based on the
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global responses. Though it is found rather effective in few-shot
classification, without the rectification module, merely adopting
the operation of DeepEMD in dense semantic segmentation is
sensitive and vulnerable to noisy samples, as demonstrated in
Fig. 5. Also, we have also tried by replacing the NSM with
the operation of DeepEMD, and the model obtains 58.6 and
61.4 mIoU in 1- and 5-shot settings respectively.

The Necessity of the Position-Sensitive Operations in Θ:
We consider a key aspect that the spatial information still
exists in Rψ ∈ R1×hsws , since the compression performed by
the concentrator Ψ does not result in the loss of spatial in-
formation within Rψ as it is obtained by flattening hs × ws
to 1× hsws. This preservation of positional and spatial in-
formation can be likened to the transformation performed by
the vision transformer, where each image is converted into
16× 16 d-dimensional tokens, specifically, flattened into the
vector whose shape is d× 196. In contrast to the vision trans-
former’s utilization of position embeddings for conveying posi-
tional information, NSM employs the position-sensitive linear
layers as the rectification module Θ to analyze the obtained
correlation Rψ ∈ R1×hsws from the concentrator Ψ. Therefore,
it is crucial to note that without the position-sensitive Θ, the
effective filtering out of potential noises present in Rψ would
not be achievable.

To illustrate this, consider a scenario where a specific loca-
tion in Rψ exhibits high activation, while its surrounding area
displays low activation. In such a case, this location is likely to
be a noisy element that NSM aims to suppress in the support
sample. However, without the adoption of the position-sensitive
module Θ, we lack the means to analyze each location with the
context of its surroundings or broader area, thereby impeding
our ability to determine whether it constitutes noise or not.

To support our claim, we have conducted several experiments,
and the results are shown in Table VII. Specifically, the position-
agnostic operations of self-attention (‘Self-Attn’) and pooling
(‘Pooling’) demonstrate clear lower performance compared to
the proposed NSM. This discrepancy can be attributed to their
limited capability in effectively utilizing spatial information
to identify potential noisy samples within Rψ , as discussed
earlier. When incorporating the positional embedding to the self-
attention module, as shown by the results of ‘Self-Attn + Pos’, it
shows better results than the aforementioned position-agnostic
counterparts, but it is still inferior to that of NSM. Furthermore,
as in ‘Self-Attn + NSM’, we investigate the effects of adding
self-attention to enhance the interaction between different ele-
ments inR prior to passing it to NSM. However, it does not yield
improved performance. Thse findings emphasize the crucial role
played by the position-sensitive linear layers employed in NSM.

More About the Prior Mask: The prior mask is used as an
input of FEM to provide prior knowledge of the existence of the
target class, so the quality is essential for the final performance.
If we directly use the ground-truth mask to replace the estimated
prior mask, the 1- and 5-shot results are directly boosted to 98.0
and 99.0 mIoU respectively, manifesting the importance of the
prior mask. Besides, we have also examined another model that
directly outputs the prior masks as the final prediction, and we
surprisingly find that the prior mask alone can even achieve 59.3

and 62.4 mIoU in 1 and 5-shot settings without the help of the
decoder with FEM.

D. Extensions

Generalization on Totally Unseen Categories: The majority
of unseen categories for the evaluations on PASCAL-5i and
COCO-20i has been included in the class set of ImageNet [44],
therefore the ImageNet pre-trained backbones have already wit-
nessed these novel classes, even if their corresponding samples
and pixel-wise annotations are not available during the model
training. To further demonstrate the effectiveness of the pro-
posed CAPM and NSM, the comparison of the classes that are
NOT contained in the ImageNet is more convincing.

In PASCAL-5i, the category ‘person’ is not included in Ima-
geNet. Thus the original prior mask adopted in PFENet might fail
to locate the region belonging to ‘person’ since the context is not
well exploited. By incorporating the proposed CAPM and NSM,
Ours (48.56) significantly outperforms the prior mask used in
the original PFENet (15.81) in terms of mIoU on ‘person’.

However, a single class is insufficient to show the gener-
alization ability. FSS-1000 [26] is a benchmark that sets up
1,000 classes for few-shot segmentation among which we select
420 classes 2 from FSS-1000 as the novel class set for testing
since they are not in the class set of ImageNet and the rest
classes are used as training class set. As shown in Table IX, the
proposed CAPM and NSM still demonstrate their efficacy by
well generalizing to the 420 unseen categories that are even not
included in the large scale dataset for pre-training the backbone.

Applications on Other Frameworks: The enhanced prior
mask, as a model-agnostic pixel-wise indicator that has no
special structural constraints, should be able to bring decent per-
formance gain to different frameworks, not only to PFENet. To
investigate the generalization ability of the proposed CAPM and
NSM, we additionally apply them on two recent state-of-the-art
methods SCL [72] and ASGNet [25].

Specifically, SCL proposes a self-guided learning approach
that creates main and auxiliary support vectors to facilitate
extracting the discriminative information. Differently, ASGNet,
by applying superpixel-guided clustering (SGC) and guided
prototype allocation (GPA), alleviates the ambiguities caused by
using one prototype to represent all the information. In ASGNet,
more than one representative prototypes are aggregated and then
selected as the final support vectors for feature matching.

Both two methods do not well exploit the prior knowledge
hidden in high-level features, thus the proposed techniques
significantly boost their performance as shown in Table X. The
implementation is similar to that of PFENet++, we simply attach
a prior generation branch with the proposed CAPM and NSM,
and then concatenate the new prior masks to the features before
making the final predictions. Our implementations of ASGNet

2The paper of FSS-1000 wrote that there are 486 classes not belonging to
any existing datasets. The author of FSS-1000 has clarified in an email that they
“have made incremental changes to the dataset to improve class balance and label
quality so the number may have changed. Please do experiments according to
the current version.”
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and SCL will be also made publicly available along with that of
PFENet++.

VII. CONCLUSION

In this paper, we present a novel framework, named
PFENet++, to tackle the few-shot semantic segmentation prob-
lem. Different from PFENet that only considers the maximum
correspondence values between individual query and support
features, PFENet++ incorporates broader contextual informa-
tion to yield the Context-aware Prior Mask (CAPM) and adopts
a lightweight Noise Suppression Module (NSM) that further
improves the generalization ability on unseen classes by effec-
tively selecting representative support features to alleviate the
adverse effects brought by noisy responses. Not only surpassing
the original PFENet without compromising much efficiency,
but PFENet++ also significantly outperforms previous few-
shot segmentation methods and achieves new state-of-the-art
performance on both PASCAL-5i, COCO-20i and FSS-1000
benchmarks. Finally, extensive experiments are conducted to
investigate the contributions of individual components of the
proposed frameworks, and they are also conducive to different
frameworks. We hope that PFENet++ can be a strong baseline
approach to few-shot segmentation, and inspires future work
such that the full potential of prior mask guidance can be further
exploited.
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