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Abstract—The design complexity is increasing as the tech-
nology node keeps scaling down. As a result, the electronic
design automation (EDA) tools also become more and more
complex. There are lots of parameters involved in EDA tools,
which results in a huge design space. What’s worse, the runtime
cost of the EDA flow also goes up as the complexity increases,
thus exhaustive exploration is prohibitive for modern designs.
Therefore, an efficient design space exploration methodology
is of great importance in advanced designs. In this paper we
target at an automatic flow for reducing manual tuning efforts
to achieve high quality circuits synthesis outcomes. It is based
on Bayesian optimization which is a promising technique for
optimizing black-box functions that are expensive to evaluate.
Gaussian process regression is leveraged as the surrogate model
in Bayesian optimization framework. In this work, we use 64-bit
prefix adder design as a case study. We demonstrate that the
Bayesian optimization is efficient and effective for performing
design space exploration on EDA tool parameters, which has
great potential for accelerating the design flow in advanced
technology nodes.

I. INTRODUCTION

Electronic design automation (EDA) tools play a vital role
in pushing forward the VLSI industry. Nowadays, the design
complexity keeps increasing as the technology node scales
down. As a result, EDA tools correspondingly become more
and more complex since more sophisticated algorithms and
optimizations are incorporated to ensure timing closure, reli-
ability and manufacturability. Essentially, the increasing com-
plexity corresponds to the expanding amount of parameters
involved in EDA tools, which implies a huge design space and
requires rich expertise from the designers to achieve desired
quality. Due to the underlying complicated optimization pro-
cess, it is commonly seen that a subtle change of constraints
would lead to large variations in final design performances,
which makes designers could not rely on the intuition to
explore the design space. What’s worse, the runtime cost of
synthesis flow also goes up as the complexity increases, and
the exhaustive exploration is prohibitive for modern designs.
Therefore, an efficient design space exploration methodology
is of great importance in advanced designs.

Take the synthesis and physical design flow as an example.
Given a specific design and a set of CAD tool scripts,
parameterized by a vector representation «, the synthesis flow
is performed and the core metrics, including area, power, and
delay, can be obtained. The aim is to find the most suitable
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parameters in CAD tool scripts that result in the best circuit
performance after synthesis. Intuitively, it can be formulated
as an optimization problem. However, the synthesis process
is too sophisticated to be analytically modeled. Also, the
solution space is too large. Therefore, designers can neither
derive a closed-form solution, nor exhaustively search the
solution space. Instead, the optimization should be conducted
in an exploration manner in the design space.

Data-driven approaches like machine learning and deep
learning have been heavily applied in EDA field, including
testability analysis, physical design, mask optimization and
so on [1]-[3]. Besides these typical stages in design flow,
there is a rich literature investigating how to perform design
space exploration effectively and efficiently with learning-
based methods. Linear regression and artificial neural network
are adopted for multiprocessor systems-on-chip design [4].
Random forest is applied in high level synthesis (HLS) [5],
[6]. Roy et al. propose to explore power efficient adders
by leveraging support vector machine (SVM) to predict the
power-performance-area (PPA) values [7]. Beyond that, a
more efficient design space exploration flow for high per-
formance adders is introduced in [8], which is based on an
active learning flow with Gaussian process regression as the
surrogate model.

Bayesian optimization is a promising technique for opti-
mizing black-box functions that are expensive to evaluate,
which promises significant automation such that both design
quality and human productivity can be greatly improved. It
has been applied in designing various sorts of circuits. A
DNN accelerator is designed using Bayesian optimization for
design parameters search [9]. Recently, Bayesian optimization
has been heavily applied in analog circuits design as well
[10]-[12], in which several approaches are introduced to
improve the efficiency. Specifically, Lyu et al. propose to
compose a multi-objective acquisition function to enhance the
efficiency of the sampling step [10]. In [11], neural networks
are leveraged to generate the feature representation explicitly,
which reduce the prediction time complexity from O(n?) of
traditional kernel function-based computation to O(1).

In this paper we target at an automatic flow for reduc-
ing manual tuning efforts to achieve high quality circuits
synthesis outcomes. We use 64-bit adder design as a case
study. Fig. 1 demonstrates two significantly different views of
the same implementation of a regular 64-bit Sklansky adder,
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Fig. 1 (a) An example of architectural solution; (b) Corresponding physical

solution.

in which Fig. 1(a) is the prefix structure in the front-end,
and Fig. 1(b) is the result after this design goes through
the back-end design process. Given a prefix architectural
design, how to obtain efficiently a result of high quality
after back-end design is a critical problem. There exist two
main challenges. On one hand, it is observed that the final
performance after logical synthesis and physical synthesis
could vary significantly under subtle change of sensitive
constraints. On the other hand, the design space is huge
and it grows exponentially as more constraints are taken into
consideration, which makes an efficient flow in high demand.
To tackle these issues, we develop a Bayesian optimization-
based approach for efficient exploration in the huge design
space. Gaussian process regression (GPR) is leveraged as
the surrogate model in our Bayesian optimization framework,
which captures the correlation among the training samples.
Based on the surrogate model, different acquisition functions
are investigated to guide the exploration process to find the
superior points. Various regular adder structures including
legacy regular structures, synthesized structures and structures
from commercial IP library are used for experimental evalu-
ation. We demonstrate the Bayesian optimization is efficient
and effective for performing design space exploration on CAD
tool parameters, which has great potential for accelerating the
design flow in advanced technology nodes.

The rest of this paper is organized as follows. Preliminary
knowledge on Bayesian optimization and tool settings are in-
troduced in Section II. Section III depicts the proposed design
flow using Bayesian optimization. Experimental evaluations
are presented in Section IV, and Section V concludes the

paper.
II. PRELIMINARIES

A. Bayesian Optimization

Essentially, Bayesian optimization is a statistical framework
to optimize an arbitrary objective function. It is able to
take advantage of the full information gained from past
experiments to make the search much more efficient than
human tuning. The core components of Bayesian optimization
consist of a probabilistic surrogate model which is cheap
to evaluate and provides our beliefs about the black-box
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function f(-), and an acquisition function which is designed
to select the most informative one to query the label, such
that the optimizer can be attained with a minimal number
of expensive evaluations on the objective functions. After
observing the output f(x) of each new set of parameters x
in each iteration, the surrogate model is updated such that it
can better model the posterior distribution over the space of
the objective function.

B. Gaussian Process Regression

The surrogate model plays a vital role in the Bayesian
optimization framework. Gaussian Process (GP) model is
typically adopted in building the surrogate models thanks to
its capability to capture the uncertainty of the prediction. A
Gaussian process is specified by its mean function and co-
variance function. Conventionally, the training process selects
the parameters in the presence of training data such that the
marginal likelihood is maximized. Then the Gaussian Process
model can be obtained and the regression can be proceeded
with supervised input [13]. A GP learner provides a Gaussian
distribution N of the values predicted for any test input x by
computing

m(x) = k(z,X) " (k(X,X) 4+ ¢21)71Y,

o*(x) = k(z, x) — k(z,X) " (k(X,X) + o71) ' k(z, X)(,l)
where X is the training set, Y is the supervised information
of trained set X. In the case of CAD tool design space
exploration, a prediction of a design objective consists of
a mean and a variance from Gaussian Process regression.
The mean value m(x) represents the predicted value and the
variance o(x) represents the uncertainty of the prediction.
To make sure the model is close to the actual situation,
additive noise ¢ is introduced on the black-box function
value z. It is assumed that the noise is Gaussian distributed:
e ~ N(0,02). The noisy observed value is: y = 2 + €. k
is covariance function characterizes the correlations between
different samples in the process.

C. Tool Settings

The parameters in design space is depicted in TABLE I,
including both the logical synthesis (LS) and the physical
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Fig. 2 Diagram of the proposed workflow.



TABLE I Design Parameters in CAD Tools

Parameter ‘ Min. ‘ Max. ‘ Type ‘ Stage
max_delay 0.1 0.5 float LS
clock_period 1.0 2.0 float LS
pin_load 0.002 | 0.006 float LS
output_delay 0.1 0.5 float LS
core_utilization 0.5 1.0 float PD
core_aspect_ratio 1 3 integer PD

design (PD) stages. The data types are not fixed and can be
either floating value or integer value, depending on the specific
parameters. These parameters essentially set constraints on the
area, power and timing during the synthesis process, thus have
great impacts on the ultimate performances.

D. Problem Definition

The design space exploration for CAD tools can be treated
as an optimization problem. The objective is to minimizing
the performance-power-area (PPA) values of a design, subject
to that a set design constraints is satisfied. The variables of the
problem are also constrained by a bounded set which indicates
reasonable ranges of the tool parameters.

ITI. METHODOLOGY AND DESIGN FLOW WITH
BAYESIAN OPTIMIZATION

A. Design Flow

Fig. 2 depicts the proposed iterative optimization flow. Each
pass consists of a 3—step process and finally produces one
sample point. In each iteration, it begins with solving the
acquisition function, which returns a set of parameters. Since
acquisition function is to guide the choice of the next most
potential candidate sample, the choice of it depends on the
specific case. A commonly used acquisition function is upper
confidence bound (UCB) [14], which is defined as

UCB(xz) = m(x) + ko(x), )

where m(x) and o (x) are the predictive value and uncertainty
of GP defined as Equation (1), respectively. « is a parameter
that balances the exploitation and exploration. UCB can be
considered as the weighted sum of the predictive value and
uncertainty. When the weight « is small, UCB tends to help
select sample with low expected value. While with a large &,
this acquisition function is more likely to select samples with
large uncertainty.

In the case of CAD tool design space exploration, the final
objective functions are to be minimized, which is in conflict
with UCB. Instead, lower confidence bound (LCB) function
is leveraged as the acquisition function, which is defined as
follows:

LCB(z) = m(x) — ko (x). 3)

Besides LCB, several other acquisition functions are also
commonly used. Probability of improvement (POI) evaluates
the objective function f and finds the sample which is the

most likely to attain improvements upon the best observed
value f*:

POI(xz) = P(f(x) < f* —()
— @(W). (4)

Here ® is the normal cumulative distribution function (CDF).
¢ is a small trade-off parameter. Searching with POI ignores
the margin of improvement and only selects those samples
with higher probability of improving even if the improvement
is smaller, which is prone to stucking at local optima.

An alternative acquisition function is expected improve-
ment (EI). EI incorporates the margin of improvement by
maximizing the expectation of the improvement. The im-
provement compared to the best observed sample can be
written as:

I(z) = max(0, f* — f(z) — (). (5)

Assuming the value of objective function f(x) is normally
distributed, y ~ N(m(zx),c%(x)), EI could be written as
below:

+o@e 2 E=5),

Here ¢ is the standard normal probability distribution function
(PDF). ( is the parameter set to trade off between exploration
and exploitation.

After obtaining a set of parameters, the second step is
to conduct the synthesis flow to obtain the corresponding
performance of the target design under selected parameters.
The synthesis flow involves logic synthesis and physical
design, which makes this step the most time-consuming
among all three steps. Typically, EDA tools are launched
using Tcl scripts. Therefore, the selected parameters need to
be translated into a representation so that the EDA tools can
interpret. To do so, a Tcl script generator is built to provide
such scripts based on the parameters.

The last step in each iteration is to update GP regression
model using the evaluation result, i.e., area, power and delay
values, which is GP model training. Assuming n targeted
values y are already evaluated from the training set X. The
joint distribution of the y € R™ and the test sample value z
can be written below:

[ZZI] ~N (07 [k(X]é(}:’);)U%I l}z((if:g]) . (7)

The mean function m(z) and covariance function o%() in
Equation (1) can be derived from the above equation.

We optimize the GP regression model by maximizing the
marginal likelihood p(y|X, p). Here p represents the vector
of all parameters contained in the model. This marginal
likelihood is the marginalization over the black-box function
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values z. From Bayesian theory, this can be represented
below:

plylX, ) = / pylz, X, wp(z/X, w)dz. ®)

In GP regression model, the likelihood term p(y|z, X, pt) and
prior p(z|X, p) are all Gaussian. Finally we could derive the
log marginal likelihood:

1 ~ 1
logp(y|X, p) = — QyT(k + o)y — S loglk + o7l

— glog 2m.

The parameters in the model are updated after the log marginal
likelihood are maximized in every iteration. Then the model
can be leveraged by acquisition function to explore new point
in the design space.

B. Multi-objective Optimization with Bayesian Optimization

The paradigm of conventional Bayesian optimization is
natural for optimizing a single objective since the acquisition
function is assumed to evaluate a single value. Regarding the
design space exploration in circuits design, the most conven-
tional objective is a vector of performance metrics, i.e., PPA.
There exists strong trade-offs among these metrics in practice.
Therefore, dedicated strategies are required to adopt Bayesian
optimization to handle this problem. A straightforward way
is to optimize a single metric value in the performance metric
vector at a time in one Bayesian optimization procedure
and select several better designs on each metric only. Then
the whole Bayesian optimization procedure is repeated for
multiple times, and each procedure finds superior designs
on different metrics. The Pareto optimal ones in the PPA
objective space can be picked manually by merging these
selected designs.

Alternatively, scalarization can be performed to transform
the three dimension vector of this three-dimensional space
(delay vs. power vs. area) into a joint output as the regression
target rather than using any single output [8], [15], which is
formulated as

PPA = oy - Area + as - Power + Delay. (10)
Scalarization of the three metrics provides a weighted and lin-
ear relation among them. Intuitively, by changing the weight
values, the Gaussian regression model will try to maximize
the prediction accuracy on the most weighted direction. On
the contrary, other metric directions will be predicted with
less accuracy hence introducing relaxations to some extent.
Therefore, we can actually explore a much larger space if
we sweep the weight values over a wide range from O to
large positive values [7]. The regression model will be guided
to explore different best solutions which are Pareto-optimal.
Once it is obtained, the designers can just select the most
suitable designs according to specific constraints.
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Fig. 3 Results with different acquisition functions.

IV. EXPERIMENTAL RESULTS

We perform comprehensive experiments to validate the pro-
posed Bayesian optimization approach for automatic design
space exploration in back-end design flow. The experiments
are conducted on a 2.2GHz Linux machine with 32GB
memory. We use Design Compiler [16] (version F-2014.09-
SP5) for logical synthesis, and IC Compiler [17] (version N-
2017.09) for the placement and routing. “tt1p05v125c”
corner and Non Linear Delay Model (NLDM) in 32nm
SAED cell-library for LVT class [18] (available by University
Program) is used for technology mapping. The core part in
Bayesian optimization engine is implemented with Python.
Within the engine, Tcl scripts are generated automatically
based on the explored parameters, which are used to launch
the back-end design tools. We use various adder designs,
including regular structures like Sklansky adder and Kogge-
Stone adder, synthesized adder structure obtained from [8], as
well as the designs from commercial DesignWare IP libraries

A. Results Comparison with Industrial Settings

A set of complete scripts for adder synthesis is obtained
from industry, which can provide us a reasonable good
performance as baseline. We develop a Bayesian optimiza-
tion engine using the proposed strategy, with synthesis tools
integrated in the flow. It starts with a random initialization,
and the maximum iteration number is set to be 30. Firstly, we
target at a single objective such as area or energy or delay.
The results are presented in TABLE II. It can be seen that the
Bayesian optimization can surpass the baseline performance
within the limited budget.

Then we investigate the impacts of different acquisition
functions. The results are demonstrated in Fig. 3. It can
be observed that all acquisition functions can improve the
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TABLE II Performance comparison between BO and baseline settings on single objective

Adder structure Area (um?) Energy (fJ/op) Delay (ps)
Baseline BO Baseline BO Baseline BO
DesignWare 2531 1873 8160 6220 346 328
Sklansky 1792 1772 6100 5020 356 350
Kogge-Stone 2563 2323 8780 6630 347 338
Synthesized 1753 1740 5900 5000 353 345
Average 2160.1 1927.4 7235.0 5717.5 350.9 340.7
Ratio 1.0 0.89 1.0 0.79 1.0 0.97

TABLE III Performance comparison between BO and baseline settings on multiple objectives

Adder structure Baseline BO
Area (um?)  Energy (fJ/op) Delay (ps) | Area (um?) Energy (fJ/op) Delay (ps)
DesignWare 2531 8160 346 2473 8170 345
Sklansky 1792 6100 356 1791 5920 350
Kogge-Stone 2563 8780 347 2531 7980 340
Synthesized 1753 5900 353 1754 5940 350
Average 2160.1 7235.0 350.9 21379 7002.5 346.4
Ratio 1.0 1.0 1.0 0.989 0.967 0.987
performance compared to baseline settings, among which POI 1,860 | ‘ o 1§O i
can lead to better performance in general.

Next we perform Bayesian optimization for multi-objective °§ 1,840 \_N\/\\//‘ GA |
optimization. Since the acquisition function is defined over 3 1,820 | |
single value, we need to scalarize the output vector. In s N
this experiment, the multiple objectives are merged into a < 1,800 1 :
single value by taking the weighted sum. The results are 1,780 | \/\/\
demonstrated in TABLE III, from which we can observe that \ \ \
the Bayesian optimization can achieve comparable or better 0 10 20 30
results. Iteration
B. Results Comparison with Meta-heuristic Search T @ ‘

Generally, the CAD tool design space exploration problem 420 - - gi |
can be treated as a black-box function optimization. For black- 0

. L & 400 - 5
box function optimization, there are a few well-known and g
commonly leveraged evolutionary algorithms, e.g., genetic % 380 /\/\ |
algorithm or simulated annealing. Thus, it is necessary to A }
conduct comparison between the Bayesian optimization and 360 | W \/\/\ﬁ
the genetic algorithm. We plot the convergence curves for | | |
0 10 20 30

both Bayesian optimization and genetic algorithm on the
same criterion during the optimization process, as shown
in Fig. 4. It can be seen that the Bayesian optimization
can reach lower values for both criteria. Besides, the search
trajectory of the genetic algorithm is not as stable as that of
Bayesian optimization. Therefore, the Bayesian optimization
shows significant superiority to the genetic algorithm.

C. Discussion

There are a few tips being observed during the experimental
process, which have different effects on the final performance.
Regarding the multi-objective optimization, we need to merge
multiple objectives into a single scalar value. It should be

Iteration
(b)

Fig. 4 Evolving curve of the adder performance.

noted that the values we obtained are not in the same scale,
depending on the unit defined for each criterion. In order to
avoid one objective value is dominated by another, scaling
is considered necessary for those “small” values to ensure
that all the values contribute closely to the weighed objective.
During the experiments it is found that scaling up smaller
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Fig. 5 The performance comparison of various designs with different scaling methods. (a) DesignWare; (b) Kogge-Stone;

(c) Sklansky; (d) Synthesized.

values and scaling down large values may lead to different
results. Fig. 5 shows the performance achieved using different
scaling strategies. From the convergence points, most of the
time scaling down larger values can achieve better results.

V. CONCLUSION

Bayesian optimization is a machine learning approach
which can be applied for better design. In this practice, we
adapt Bayesian optimization for multi-objective optimization
to simultaneously minimize the PPA values of a design. In
our experiments, BO substantially outperforms typical evolu-
tionary algorithms. According to our study and experimental
practice, there are still plenty of room for improvement. First,
the design spaces on the front-end and back-end are separated,
which may still lead to local optimal points. A natural way
for improvement is to extend the design space to a unified
exploration framework. The second thing is that we deal with
multi-objective by simply using scalarization, which requires
tuning efforts and tricks. A more elegant way to handle this
would be of great help.
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