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» Classified clips have different sizes.

» To a classifier, we have to balance the positive and negative samples. » We need resize them to same size for second stage refinement.

» As a regression task on location, we need to select reasonable clips as

= ¥
N g = proposals. yk—z—ﬂ N
- | | » We also need to consider efficiency and quality of features. ROI Output Feature y%‘ R
Pre-OPC Layout Post-OPC Mask Hotspot on Wafer o7 * \ 7 X 7 Pooling
. . Pooled Feature 4 \ —
Clip Pruning / ! S
» RET: OPC. SRAF. MPL Selected Feature i // . ?
» What you see # what you get oW desi der 10 e
_ o _ orse on designs under 10nm or = s B
» Diffraction information loss : ~ Interscction over Union (lol) Input Feanure ——
beyond ARy d
Previous Solutions C/’Pgroundtruth A C/’Pgenerated /

[oU =

C/ipgroundtruth U C/ipgenerated

%Hotwot » Clip generation: generate group of clips with different aspect ratios and
:>< Conventional >|:> scales in dense.

Hotspot Detect . . :

otspot Detector % - » Number of clips: w * h x clips per location

O Unclassified ©Classified as non-hotspot ~ © Classified as hotspot

Clips Hotspot : : e : :
» Clip Pruning before Classification and Regression.
» loU > 0.7, reserved as positive sample;
» A binary classification problem. » loU with any ground truth highest score should be reserved as positive
» Scan over whole region. sample;
» Single stage detector. » loU < 0.3, reserved as negative sample;

» Rest of clips do no contribution to the network training.

» Scanning is time consuming and single stage is not robust to false alarm.

hotspot non-maximum suppression

» (a) 1st hotspot classification in clip proposal network;

1: sorted ws < sorted clip set: . e
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. refinement stage to reduce false alarm.
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11: end for » We got a rough prediction after clip proposal network regression and
» Learning what and where is hotspot at same time. 1 end for classification.
> Multi-task on Classification and Regression. 13: return sorted ws: » Refinement stage is applied to further decrease the false alarm and

Improve accuracy.

» Comparison with conventional non-maximum suppression
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Classification and Regression Loss

» L2 regularization penalizes peaky weight vectors and prefers diffuse » (a) average accuracy and (b) average false alarm.

weight vectors, which has appealing property of encouraging the network

Visualized Result
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» Based on extracted features, Clip Proposal Network is designed to locate

_ » Smooth L1 loss for robust regression, which makes gradient smooth
and classify hotspots.

when offset is small:

» Classification and regression branches share features.
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Flgu re 1: Visualization of different hotspot detection results.
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