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Abstract—In spite of maturity to the modern electronic design automation

(EDA) tools, optimized designs at architectural stage may become sub-
optimal after going through physical design flow. Adder design has been

such a long studied fundamental problem in VLSI industry yet designers

cannot achieve optimal solutions by running EDA tools on the set of
available prefix adder architectures. In this paper, we enhance a state-

of-the-art prefix adder synthesis algorithm to obtain a much wider solution

space in architectural domain. On top of that, a machine learning based

design space exploration methodology is applied to predict the Pareto
frontier of the adders in physical domain, which is infeasible by exhaustively

running EDA tools for innumerable architectural solutions. Experimental

results demonstrate that our framework can achieve near-optimal delay
vs. power/area Pareto frontier over a wide design space, bridging the gap

between architectural and physical designs.

I. INTRODUCTION

In the last decade, the industrial EDA tools have advanced towards

optimality, especially at the individual stages of VLSI design cycle.

Nevertheless, with growing design complexity and aggressive tech-

nology scaling, physical design issues have become more and more

complex. As a result, the constraints and the objectives of higher layers,

such as the system or logic level, are very difficult to map into those of

lower layers, such as physical design, and vice-versa, thereby creating

a gap between the optimality at the logic stage and the physical design

stage. This necessitates the innovation of data-driven methodologies,

such as machine learning [1]–[5], to bridge this gap.

Adder design is one of the fundamental problems in digital semi-

conductor industry, and its main bottleneck (in terms of both delay

and area) is the carry-propagation unit. This unit can be realized

by hundreds of thousands of parallel prefix structures, but hard to

evaluate the final metrics without running through physical design tools.

Historically, regular adders [6]–[9] have been proposed for achieving

the corner points in terms of various metrics in architectural stage.

The main motivation for structural regularity was the ease of manual

layout, but EDA tools now taking care of all physical design aspects, the

regularity is no longer essential. Moreover, the extreme corners do not

map well to the physical design metrics after synthesis, placement and

routing. To address this gap between prefix adder synthesis and actual

physical design of the adders, custom adders are typically designed by

tuning parameters, such as gate-sizing, buffering etc., targeting at the

optimization of power/performance metrics for a specific technology

library [10], [11]. However, this custom approach (i) needs significant

engineering effort, (ii) is not flexible to Engineering Change Order

(ECO), and (iii) does not guarantee the optimality.

The algorithmic synthesis approach resolves the first two issues of the

custom approach, by adding more flexibility to the late ECO changes

and reducing the engineering effort. Based on the number of solutions,

the existing adder synthesis algorithms can be broadly classified into

two categories. The first and the most common approach is to generate a

single prefix network for a set of structural constraints, such as the logic

level, fan-out etc. Several algorithms have been proposed to minimize

the size of the prefix graph (s) under given bit-width (n) and logic-

level (L) constraints [12]–[15]. Closed form theoretical bounds for size-

optimality are provided by [16] for L ≥ 2log2n−2. [17] has given more

general bound for prefix graph size, but when L is reduced to log2n,

a pre-requisite for high-performance adders, there is no closed form

bound for s. [18] presents a polynomial-time algorithm for generating

prefix graph structures by restricting both logic-level and fan-out. The

limitations in these approaches are two-fold, (i) this restricted set of

structures is not capable of exploring the large solution space, and

(ii) since it is very hard to analytically model the physical design

complexities, such as wire-length and congestion issues, the physical

design metrics, such as the area, power, delay etc., may not be mapped

well to the prefix structure metrics, such as the size, max-fan-out (mfo)

etc. This motivates the second category of algorithms where thousands

of prefix adder solutions can be generated and explored for synthesis

and physical design in the commercial EDA tools.

One such approach is [19] which presents an exhaustive bottom-

up enumeration technique with several pruning strategies to generate

innumerable prefix structure solutions. However, it has two issues, (i)

this approach cannot provide solutions in several cases for restricted

fan-out, which can control the congestion and load-distribution during

physical design [18]. As a result, it may still miss the good solution

space to a large extent, and (ii) it is computationally very intensive to

run all solutions through synthesis, placement and routing.

In this paper, we enhance the algorithm in [19] to generate adders

under any arbitrary mfo constraint, which enables a wider adder

solution space in logical form. To tackle the high computational effort

during the physical design flow, we propose to use machine learning to

predict the power, area and delay of adders in physical solution space.

Features being used include prefix structure attributes and the EDA

tool settings. We employ a quasi-random sampling approach to select

representative prefix adders out of the hundreds of thousands of prefix

structures. Furthermore, we develop a Pareto frontier driven machine

learning methodology to achieve rich adder solutions with trade-offs

among power, area, and delay. To the best of our knowledge, this is the

first attempt to bridge architectural synthesis with physical design in

the field of EDA using machine learning. Our main contributions are

summarized as follows:

• We develop the first comprehensive framework for optimal adder

search by machine learning methodology bridging the prefix

architecture synthesis to the final physical design.

• An enhancement to a state-of-the-art prefix adder algorithm [19]

is proposed to optimize the prefix graph size for restricted fan-out

and explore a wider solution space.

• We develop machine learning models for prefix adders, guided by

quasi-random data sampling with features considering architectural978-1-5090-6023-8/17/$31.00 c©2017 IEEE
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Fig. 1: 6 bit prefix adder network.

attributes and EDA tool settings.

• A design space exploration method is proposed to generate the

Pareto frontier for delay vs. power/area over a wide design space.

The rest of the paper is organized as follows. Section II presents

the background of prefix adder synthesis followed by our prefix graph

generation algorithm. Machine learning driven design space exploration

for high-performance adders is described in Section III. Section IV

presents the experimental results followed by conclusion in Section V.

II. PREFIX ADDER SYNTHESIS

In this section, we first provide the background of the prefix adder

synthesis problem. Then we present a brief discussion on the algorithm

presented in [19], which we enhance to our Prefix Graph Generation

(PGG) algorithm to synthesize the prefix adder network.

A. Preliminaries

An n bit adder accepts two n bit addends A = an−1..a1a0 and B =
bn−1..b1b0 as input, and computes the output sum S = sn−1..s1s0
and carry out Cout = cn−1, where si = ai ⊕ bi ⊕ ci−1 and ci =
aibi + aici−1 + bici−1. The simplest realization for the adder network

is the ripple-carry-adder, but with logic level n− 1, which is too slow.

For faster implementation, carry-lookahead principle is used to compute

the carry bits. Mathematically, this can be represented with bitwise

(group) generate function g (G) and propagate function p (P ) by the

Weinberger’s recurrence equations as follows [20]:

• Pre-processing (inputs): Bitwise generation of g, p

gi = ai · bi and pi = ai ⊕ bi. (1)

• Prefix processing: This part is the main carry-propagation com-

ponent where the concept of generate/propagate is extended to

multiple bits and G[i:j], P[i:j] (i ≥ j) are defined as

P[i:j] =

{

pi, if i = j,

P[i:k] · P[k−1:j], otherwise,
(2)

G[i:j] =

{

gi, if i = j,

G[i:k] + P[i:k] ·G[k−1:j], otherwise.
(3)

The associative operation o is defined for (G, P ) as:

(G,P )[i:j] = (G,P )[i:k] o (G,P )[k−1:j]

= (G[i:k] + P[i:k] ·G[k−1:j], P[i:k] · P[k−1:j]).
(4)

• Post-processing (outputs): Sum/Carry-out generation

si = pi ⊕ ci−1, ci = G[i:0], and Cout = cn−1. (5)

The ‘Prefix processing’ or carry propagation network can be mapped

to a prefix graph problem with inputs ik = (pk, gk) and outputs ok =
ck, such that ok depends on all previous inputs ij (j ≤ k). Any node

except the input nodes is called a prefix node. Size of the prefix graph

is defined as the number of prefix nodes in the graph. Fig. 1 shows an

example of such prefix graph of 6 bit and we can see that Cout = c5
= o5 is given by

o5 = (i5 o i4) o ((i3 o i2) o (i1 o i0)). (6)

Size (s), logic level (L) and maximum-fan-out (mfo) for this

network are respectively 8, 3 and 2. Note that here the number of
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Fig. 2: Imposing semi-regularity.

fan-ins for each of the associative operation o is two, thus this is called

radix-2 implementation of the prefix graph. However, there exist other

options such as radix-3 or radix-4, but the complexity is very high and

not beneficial in static CMOS circuits [21]. In this work, the logic levels

for all output bits are log2n, i.e., the minimum possible, to target high

performance adders.

B. Discussion on [19]

Our PGG algorithm to generate the prefix graph structures for physical

solution space exploration is based on [19]. So it is imperative to first

discuss about [19]. However, we omit the details and only mention the

key points of [19] due to space constraint.

[19] is an exhaustive bottom-up and pruning based enumeration

technique for prefix adder synthesis. This work presented an algorithm

to generate all possible n + 1 bit prefix graph structures from any

n bit prefix graph. Then this algorithm is employed in a bottom-up

fashion (from 1 bit adder to 2 bit adders, then from all 2 bit adders to

3 bit adders, and so on) to synthesize prefix graphs of any bit-width.

As a result, scalability issue arises due to the exhaustive nature of the

algorithm, which is then tackled by adopting various pruning strategies

to scale the approach. However, the pruning strategies are not sufficient

to scale the algorithm well for different fan-out constraints. So when

it intends to find the solutions for higher bit adders, the intermediate

adder solutions that need to be generated are often huge. Consequently,

it fails to get fan-out restricted (e.g. when mfo = 8, 10, 12 etc. for

64 bit adders) solutions even with 72GB RAM due to the generation

of innumerable intermediate solutions [18]. Pruning strategies, such as

size-bucketing [19], helps to achieve solutions in some cases, but with

sub-optimality. So design space-exploration based on this algorithm can

miss a significant spectrum of the adder solutions.

C. Our PGG Algorithm

To better explore the wide design space of adders, in this paper we

have enhanced [19] for different fan-out constraints by incorporating

more pruning techniques.

1) Semi-Regularity in Prefix Graph Structure

The first strategy is to enforce a sort of regularity in the prefix graphs.

For instance, regular adders, such as Sklansky, Brent-Kung, have the

inherent property that the consecutive input nodes (even and odd) are

combined to create the prefix nodes at the logic level 1. In our approach,

we constrain this regularity for those prefix nodes (logic level 1). To

explain this, let us consider Fig. 2. We can see that prefix nodes r1, r2,

r3 and r4 are constructed by consecutive even-odd nodes. For instance,

i0 and i1 are used to construct r1. But with this structural constraint,

we are not allowed to construct any node by combining i1 and i2 as

done in Kogge-Stone adders. Note that the sub-structure, as shown in

Fig. 2, is a part of some regular adders like Sklansky adder, and is

imposed in our prefix structure enumeration. However, unlike Sklansky

adders, we allow irregularity at all logic levels except level = 1.

By doing so, we have observed that (i) the solution quality (or size of

the prefix graph under same L and mfo) is not degraded in comparison

to [19], but (ii) it is able to reduce the search space significantly.

However, imposing similar regularity for level > 1 lead to sub-optimal

solutions for higher bit adders, such as n ≥ 16.



TABLE I: Comparison with [19] for 64 bit adders

mfo
Our Approach Approach in [19]

size Run-time (s) size Run-time (s)

4 244 302 252 241
6 233 264 238 212
8 222 423 - -
12 201 193 - -
16 191 73 192 149
32 185 0.04 185 0.04

2) Level Restriction in Non-trivial Fan-in

Each of the prefix node N (a:b), where a is the most-significant

bit (MSB) and b is the least-significant-bit (LSB), is constructed by

connecting the trivial fan-in Ntr (a:c) having same MSB as N , and

the non-trivial fan-in Nnon−tr (c − 1:b). For instance, in Fig. 1, o3
and b2 are respectively the non-trivial fan-in and the trivial fan-in node

for the prefix node o5. In the bottom-up enumeration technique, we

put another additional restriction that the level of the trivial fan-in

node is always less or equal to that of the non-trivial fan-in node,

i.e., level(Ntr) ≤ level(Nnon−tr). Note that this sort of structural

restriction is also inherent in regular adders, such as Sklansky or Brent-

Kung adders.

In a nutshell, our PGG algorithm is a blend of regular adders and

[19]. We borrow some properties of regular adders to enforce in [19] for

reducing its huge search space without hampering the solution quality.

To illustrate this, we have obtained the binary for [19] from the authors,

and first compared our result for lower bit adders, such as n = 16, 32.

We got the solutions with same minimum size, which proves that our

structural constraints have not degraded the solution quality. However,

for higher bit adders, we get better solution quality than [19] as shown

in TABLE I.

Column 1 presents the mfo constraint, while columns 2 and 3
respectively show the size and run-time for our enhanced algorithm,

and the corresponding entries for [19] are respectively represented in

columns 4 and 5. In general, when fan-out is relaxed or mfo is higher,

the run-time is less due to relaxed size-pruning as explained in [19].

Note that [19] cannot generate solutions for mfo = 8, 12 due to

generation of innumerable intermediate solutions as explained in [18].

On the contrary, our structural constraints can do a pre-filtering of the

potentially futile solutions, thereby allowing relaxed size-pruning and

size-bucketing to search for more effective solution space. In terms

of run-time, it is slightly worse in a few cases, but importantly, this

generation is a one-time process, and this run-time is negligible in

comparison to the design space exploration by the physical design tools.

So our imposed structural restrictions (i) do not degrade the solution

quality, (ii) achieve better solution sizes for all mfo than [19] for higher

bit adders which could not even generate solutions in all cases, and

(iii) help to obtain wider physical solution space to be demonstrated in

Section IV-A.

III. BRIDGING ARCHITECTURAL SOLUTION SPACE TO PHYSICAL

SOLUTION SPACE

In this section, we first discuss the gap between the prefix architectural

solution space and physical design solution space in adders, which

motivates the need of the machine learning based approach for optimal

adder exploration. We then present the quasi-random data sampling for

our learning models. Next a domain-knowledge based feature selection

details are presented. Finally, we propose our learning based Pareto

frontier exploration methodology for prefix adder architectures, with

trade-off between delay vs. power/area, to tackle the intractable runtime

that would have been resulted by exhaustively running physical design

flow for all individual prefix network solutions.
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Fig. 3: Gap between prefix structure and physical design of adders: (a)

Architectural solution space; (b) Physical solution space.

A. Gap Between Logic and Physical Design

Since we focus on high-performance adders and explore the prefix

adders of logic level L = log2n, the metrics at this architecture stage

are prefix node size s and max fan-out mfo. These two metrics are

conflicting, i.e., if we reduce mfo, s increases and vice-versa. Similar

competing relationship exists between delay and power/area after

physical design. It should be stressed that power and s are correlated,

and mfo indirectly controls the timing as more restricted fan-out can

mitigate congestion and load-distribution, thereby improving the delay

of the adder. However, this relationship between architectural synthesis

and physical design is approximate, and not a very high-fidelity one.

To demonstrate this, we plot node size s vs. mfo and power vs. delay

in Fig. 3 for several 64 bit adder solutions. For this experiment, we

have generated the prefix architecture solutions by PGG, and the final

power/delay numbers are obtained by running those solutions through

EDA tools as explained later in Section IV. In Fig. 3(a), we broadly

categorize the solutions into 2 groups, (i) G1 with higher node size

and lower mfo, and (ii) G2 with lower node size and higher mfo. In

Fig. 3(b), the solutions are projected into the physical solution space,

restoring the group information. The key observations here are firstly,

there is a correlation between architectural solution space and physical

design solution space. For instance, the solutions from G1 are mostly

on the upper side, and those of G2 are mostly on the lower side in

Fig. 3(b), thereby indicating a correspondence between s and power.

Nevertheless, it is not completely reliable. For example, (i) the delay

numbers for G1 and G2 are very much spread, (ii) a cluster can be

observed where the solutions from G1 and G2 are mixed up in Fig. 3(b),

and (iii) several solutions of G1 are better than several solutions of G2

in power, which is not in accordance with the metrics at the prefix adder

architecture stage. So we can not utterly rely on architectural solution

space to achieve the optimal output in physical solution space.

However, since our algorithm generates hundreds of thousands of

prefix graph structures, it is intractable to run synthesis and physical

design flows for even a small percentage of all available prefix adder

architectures. To address this fidelity gap between the two design stages

and the high computational cost together, we come up with a novel

machine-learning guided design space exploration as replacement of

exhaustive search.

B. Quasi-random Sampling for Learning Model

The adversity in building the learning model is how to choose the

training data as we can not afford to run the physical design flow

for too many architectures, and at the same time, too few training

data may degrade the model accuracy significantly. One way is to

do a random sampling to pick the training data, but that may not

be well representative. To tackle this, by observing a correlation

between architectural and physical solution space (Section III-A), we

have performed an architecture driven quasi-random data sampling to

capture the wide design space of prefix adders as described below.
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We have mainly focused on 64 bit adders in this work as this is

mostly used in today’s microprocessors. From all prefix adder solutions,

we sample a set of solutions for building the learning model via the

quasi-random approach which is conducted by a two-level binning

(mfo, s) followed by random selection, This approach aims to evenly

sample the prefix adders covering different architectural bins. The

primary level of binning is determined by mfo of the solutions.

However, there may be thousands of architectures sharing the same

mfo, so the secondary level of binning is based on s. Afterwards,

adders are picked randomly from those secondary bins.

We illustrate the quasi-random sampling with the following example:

given 5000 solutions with mfo = 4, we want to pick 50 solutions

from them. Suppose these 5000 solutions have the size distribution

from 244 to 258. First a random solution is picked from the bucket of

the solutions (mfo = 4, s = 244). Then we pick a solution randomly

from (mfo = 4, s = 245), and so on. After picking 15 solutions

from each of those buckets with mfo = 4, we again start from the

bucket (mfo = 4, s = 244). This process is repeated until we get 50
solutions. Similar procedure is done with other mfo values.

C. Feature Selection and Learning Model

We now discuss the features to be used for the learning model. Features

are considered from both prefix adder structure and tool settings,

with a focus on the former. We select node size and maximum-fan-

out (mfo) of a prefix adder as two main features for our learning

model. However, for any given mfo and node size, there will be

hundreds or even thousands of different prefix architectures. Therefore,

additional features are required to better distinguish individual prefix

adder attributes. We define a parameter sum-path-fan-out (spfo) for

this. Let a and b are the fan-in nodes of a node n. Then spfo(n) is

defined recursively as:

spfo(n) =







0, if n ∈ input,

sum(fo(a) + spfo(a),
fo(b) + spfo(b)), otherwise.

(7)

Here fo(n) denotes the fan-out of any node n. Consider the prefix

adder structure in Fig. 4, and according to the definition we have:

spfo(o1) = sum(fo(i0) + spfo(i0), fo(i1) + spfo(i1))

= sum(1, 1) = 2,

spfo(b1) = sum(fo(i2) + spfo(i2), fo(i3) + spfo(i3))

= sum(2, 1) = 3,

spfo(b2) = sum(fo(i4) + spfo(i4), fo(i5) + spfo(i5))

= sum(2, 1) = 3.

Therefore, we can use the recursive definition to calculate

spfo(o3) = sum(fo(o1) + spfo(o1), fo(b1) + spfo(b1))

= sum(3 + 2, 2 + 3) = 10,

spfo(o5) = sum(fo(o3) + spfo(o3), fo(b2) + spfo(b2))

= sum(3 + 10, 3 + 3) = 19.

In our methodology, we use the spfo of the output nodes which are

at log2 n level (there are 32 nodes at level 6 for 64 bit adder) as the

features to characterize the prefix structures, in addition to mfo, size

and target delay. The basic intuition for selecting spfo of the output

nodes as the features is that the critical path delay of the adder is the

longest path delay from input to output. So it depends on the (i) path-

lengths, which can be represented at the prefix graph stage by the logic

level of the node, and (ii) the number of fan-outs driven at every node

on the path. Note that we have skipped the spfo of the output nodes

which are not at log2 n level as for those nodes, the path length is

smaller, and those would not potentially dictate the critical path delay.

Apart from these prefix graph structural features, we also consider

tool settings as other features. We have synthesized the adder structures

using industry-standard EDA synthesis tool [22], where we can specify

the target-delay for the adder. The tool then adopts different strategies

internally to meet that target-delay which we can hardly take into

account during prefix graph synthesis. Consequently, changing the

target-delay can lead to different power/timing/area metrics. So we

have considered target-delay as an additional feature in our learning

approach.

For learning models, we explored (i) several supervised learning

techniques, such as linear regression, Lasso/Ridge, Bayesian ridge

model and support vector regression (SVR) with linear, polynomial

and radial-basis-function (RBF) kernel, and (ii) 35 features, including

3 primary features, size, mfo and target delay (tool setting), and 32
secondary features for spfo. We observed that we could get an R2

score above 0.95 for area and power even with primary features and

linear models. However, we don’t get good scores for delay with only

primary features. Best model fitting for delay is achieved with SVR

(RBF kernel) with these 3 primary and 35 secondary features. Since

SVR with RBF kernel gave good MSE (mean-squared-error) scores for

all metrics, delay, area and power, we have used this model throughout

for design space exploration. In total 300 representative adders have

been used for training/testing, and increasing the training set size further

did not give us any significant improvement in model accuracy.

The model experiments gave us the following key insights: (i) tool

setting can play an important role in building the learning models in

EDA. For instance, MSE scores for area and power improve from 0.026
to 0.005, and 0.389 to 0.022 respectively when we add the ‘target

delay’ feature in our model building, (ii) secondary features play an

important role in improving the model accuracy. For instance, when we

include spfo features in model building, MSE score for delay improves

from 0.232 to 0.164. (iii) linear models are not sufficient for modeling

delay. For instance, MSE scores improve from 0.295 to 0.164 when

we go from linear models to SVR with RBF kernel, with the same set

of features.

D. Pareto Frontier Driven Learning

The problem of exploring the Pareto frontier of rich prefix adder

space can be approached by first sampling a subset of prefix adder

architectures, and generating the power, area, delay numbers of each

prefix adder by running through the logic synthesis and physical design

flow. Those known data set will be used as the training and testing data

for supervised machine learning guided model fitting. Once the model

is fitted, we can apply the exhaustive prefix adder architectures to this

model and get the predicted Pareto frontier solution set. This is due

to the merit of much faster runtime for a machine learning model in

prediction stage than running the entire VLSI CAD flow.

However, conventional machine learning problem aims at minimizing

the prediction accuracy rather than exploring a Pareto frontier out of

a solution set. Improving the model accuracy does not necessarily

improve the Pareto frontier and the direct use of the fitted model for

Pareto frontier exploration can even miss up to 60% Pareto frontier



points [3]. We therefore need a machine learning integrated Pareto

frontier exploration methodology, where the Pareto frontier selection

does not rely only on the model accuracy.

In this paper, we develop a fast yet effective algorithmic methodol-

ogy, enabled by regression model to explore the Pareto frontier of prefix

adder solutions. We consider two spaces for Pareto frontier exploration:

the delay vs. area as well as the delay vs. power. For either space, there

exists a strong trade-off between the two metrics. For delay vs. power

space, we propose to use a joint output Power-Delay function (PD) as

the regression output rather than using any single output.

PD = α · Power +Delay. (8)

The rationale of using scalarization [23] or the linear summation of

the power and delay metrics is that such a linear relation provides a

weighted bonding between the power and the delay so that by changing

the α value, the regression model will try to minimize the prediction

error on the more weighted axis hence leads to more accuracy on

that direction. In contrast, the other metric direction will be predicted

with less accuracy hence introducing some level of relaxations. It can

be foreseen that changing the α value can lead to different fitting

accuracies of the regression model. By sweeping α over a wide range

from 0 to large positive values, each time the regression model will

be fitted to predict different best solutions which altogether form the

Pareto frontier. We call this approach α-sweep. Note that, the Power

and Delay values in Eq. (8) are normalized and scaled to the range

between 0 and 1 by Eq. (9).

x =
x−min(X)

max(X)−min(X)
, x ∈ X. (9)

Similarly, we have a joint output Area-Delay (AD) function for Pareto

frontier exploration on Area and Delay space.

AD = α · Area+Delay. (10)

This α-sweep technique can be extended to simultaneously consider

delay, area and power, using two scalars (α1 and α2) instead one

scalar factor α. For the sake of simplicity, we have demonstrated the

methodology separately for delay vs. area and delay vs. power using

one scalar at a time.

IV. EXPERIMENTAL RESULTS

In this section we show the effectiveness of our algorithms and

methodologies in the physical solution space. Since high performance

adders are typically used in CPU architectures which are typically

64 bit, we have mainly presented the results for 64 bit adders to

demonstrate the methodology. 300 solutions, sampled from all prefix

adder solutions by the quasi-random approach, are used for training

(250) and testing (50) the learning model. However, the approach is

very general to be used for adders of arbitrary bit-width. The flow

is implemented in C++ and Python on Linux machine with 72GB

RAM and 2.8GHz CPU. We use Design Compiler [22] (version F-

2011.09-SP3) for logical synthesis, and IC Compiler [24] (version J-

2014.09-SP5-3) for the placement and routing. Non Linear Delay Model

(NLDM) in 32nm SAED cell-library [25] (available by University

Program) is used for technology mapping. Primary input activity of

0.1 is used along with 1GHz operating frequency for power estimation.

Targets delays of 0.1ns, 0.2ns, and 0.3ns are used during synthesis. We

used Python based machine learning package scikit-learn [26] for the

predictions. Throughout our all experiments, the run time for machine

learning predictions is less than a minute.

To validate the optimality of the predicted Pareto frontier by α-sweep

against the real world solution space, we need to run the logical/physical

EDA flow on a large set of adder solutions. Our machine and tool

set takes about 6 min to complete this full flow of a single prefix

adder. Therefore, we select a reasonable number (3000) of prefix adder
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Fig. 6: Predicted Pareto frontier comparison.

solutions, which eventually took about 300 hours to complete, but still

a comparatively larger data set in comparison to our training data set.

Crucially, those 3000 adders are also sampled in a Quasi-random

manner in order to represent the entire solution space.

A. Physical Solution Space Comparison with [19]

In our first experiment, we show the usefulness of our algorithm for

obtaining wider solution space in physical design domain in comparison

to [19]. Among the prefix adders generated by [19], we randomly

sampled 7000 prefix adders. Those prefix adders are also exhaustively

fed into the full EDA flow to get their real delay, power and area

values (takes around 700 hours). We plot these adders by [19] and

our representative 3000 adders by quasi-random sampling in Fig. 5.

It can be seen that, although the numbers of adders by [19] is more

than 2 times of our representative adders, our adders still cover wider

solution space in physical domain, demonstrating the effectiveness

of our enhancement algorithm PGG and the quasi-random sampling

approach. This is in accordance with the solutions missed by [19]

as mentioned in TABLE I. Those availabilities eventually offer more

opportunities for our later machine learning methodology to identify

close to ground truth Pareto frontier solutions.



TABLE II: Comparison with other approaches for 64 bit adders
Method Delay (ps) Area (µm2) Power (mW )

Kogge-Stone 347.9 2563.7 8.78
Ours (P1) 340.0 2203.3 7.72
Sklansky 356.1 1792.5 6.1

Ours (P2) 353.0 1753.0 5.9
[18] 348.7 1971.4 6.98

Ours (P3) 346.0 1848.6 6.67

B. Validation of the Predicted Pareto Frontier

In this experiment, we show the effectiveness of our

Pareto frontier driven machine learning approach. We

apply the α-sweep method with 15 different α values of

(1000, 0, 100, 1
100

, 50, 1
50
, 20, 1

20
, 10, 1

10
, 8, 1

8
, 2, 1

2
, 1), and collect

the best 150 solutions for delay-area and delay-power spaces where

for each α value, the best 10 architectures with lowest PD or AD

values are fed into the logical/physical EDA flow to generate similar

Pareto points. Note that 15 + 15 = 30 learning models have been

derived for this for all, but it is very fast as the same training data

have been used, and the models are regression based.

Fig. 6(a) and Fig. 6(b) respectively show the corresponding Pareto

frontiers (PF) of the α-sweep approach and the ground truth PF for

the 3000 representative adders. Each dot in the delay-area or delay-

power space indicates one adder solution after going through the

logical/physical EDA flow. We can see that generally the predicted

PF solutions are fairly close to the real Pareto frontier, with some

exceptions. Overall, the proposed approach can effectively achieve near

optimal Pareto frontier without affording to spend expensive runtime on

every adder. So this learning based methodology can be readily adopted

to achieve Pareto frontiers for much larger solution space which is

intractable for exhaustive exploration by conventional design flow.

C. Adder Performance Comparison

Finally, we compare our explored optimal adders against legacy adders,

such as Kogge-Stone, Sklansky, as well as the state-of-the-art adder

synthesis algorithm in TABLE II. Since our approach generates numer-

ous solutions, it is not feasible to perform a one-to-one comparison.

Instead for each of the solution points in regular adders and [18], we

have picked the Pareto points from our solution set which are able to

excel them in all metrics. For instance, P1 could provide around 8ps

better delay with respectively 14% and 12% lesser area and power over

Kogge-Stone adder. For [18] we pick the best delay solution. Note for

a fixed mfo, [18] can give prefix network with smaller size, but this

approach only provides a limited set of prefix structures. As a result,

it is hard for [18] to explore the full physical design space of adders

by machine learning. It should be stressed that [18] beats the custom

adders implemented in an industrial design, and our methodology is

able to excel the adders generated by the algorithm presented in [18].

V. CONCLUSION

This paper presents a novel methodology of machine learning guided

design space exploration for power efficient high-performance prefix

adders. We have successfully demonstrated the effectiveness of our

learning model, developed by training with quasi-random sampled

data and features encapsulating architectural and tool attributes. Our

adder synthesis algorithm is able to generate a wider solution space

in comparison to a state-of-the-art algorithm, and when integrated

with the learning model, could provide a near-optimal performance

vs. area/power Pareto frontier over a large representative solution space.

To the best of our knowledge, this is the first work to bridge the gap

between architectural and physical solution space for parallel prefix

adders. With increasing design complexity and cross-layer uncertainties,

we anticipate that our methodology will become more and more relevant

in other EDA problems.

In future we would extend our methodology to address the gap

between architectural/logic stage and physical design for other circuits.

However, it may be difficult always to find the regularity in the circuit

structure like prefix adders. This can cause a hindrance to find the

features, but in that case, multilayer neural network can be employed

for efficient feature learning.
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