
Layout Hotspot Detection with Feature Tensor Generation
and Deep Biased Learning

Haoyu Yang1, Jing Su2, Yi Zou2, Bei Yu1, and Evangeline F. Y. Young1

1CSE Department, The Chinese University of Hong Kong, NT, Hong Kong
2ASML Brion Inc., CA 95054, USA

{hyyang,byu,fyyoung}@cse.cuhk.edu.hk, {jing.su,yi.zou}@asml.com

ABSTRACT
Detecting layout hotspots is one of the key problems in phys-
ical verification flow. Although machine learning solutions
show benefits over lithography simulation and pattern match-
ing based methods, it is still hard to select a proper model
for large scale problems and it is inevitable that performance
degradation will occur. To overcome these issues, in this pa-
per we develop a deep learning framework for high perfor-
mance and large scale hotspot detection. First, feature tensor
generation is proposed to extract representative layout fea-
tures that fit well with convolutional neural networks while
keeping the spatial relationship of the original layout pattern
with minimal information loss. Second, we propose a biased
learning algorithm to train the convolutional neural network
to further improve detection accuracy with small false alarm
penalties. Experimental results show that our framework out-
performs previous machine learning-based hotspot detectors
in both the ICCAD 2012 Contest benchmarks and large scale
industrial benchmarks.

1. INTRODUCTION
As transistor feature size enters the nanometer era, manu-

facturing yield is drastically affected by lithographic process
variations due to the limitations of the conventional 193nm
wavelength lithography system. Even with various resolution
enhancement techniques (RETs), manufacturing defects are
still likely to happen for some sensitive layout patterns (a.k.a,
hotspots), thus hotspot detection during physical verification
stage is very important. The conventional hotspot detection
method is full-chip lithography simulation, which has high ac-
curacy but suffers from runtime overhead issues.

To quickly and correctly recognize hotspots during physical
verification, two major methodologies were heavily developed:
pattern matching [1, 2] and machine learning [3–5]. Pattern
matching is a direct and fast method to detect layout char-
acteristics, but has a great error rate for unknown patterns.
Machine learning techniques, to some extent, are capable of
learning hidden relations between layout patterns and their
defects characteristics, thus can greatly improve detection ac-
curacy. Very recently, Zhang et al. [5] achieve tremendous per-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC’17, June 18-22, 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062270

formance improvement on ICCAD Contest 2012 benchmark
suite [6] by applying an optimized concentric circle sampling
(CCS) feature [7] and an online learning scheme. However,
there are several aspects that previous works have not taken
into account, especially when targeting a very large scale prob-
lem size. (1) Scalability: As integrated circuit has developed
to an ultra large scale, VLSI layout becomes more and more
complicated and traditional machine learning techniques do
not satisfy the scalability requirements for printability esti-
mation of a large scale layout. That is, it may be hard for
machine learning techniques to correctly model the charac-
teristics of a large amount of layout patterns. (2) Feature
Representation: The state-of-the-art layout feature extrac-
tion approaches, including density [4] and CCS [7], inevitably
suffer from spatial information loss, because extracted feature
elements are flattened into 1-D vectors, ignoring potential spa-
tial relations.

To overcome the limitations or issues of conventional ma-
chine learning methodologies, in this paper we develop a deep
learning-based framework targeting high performance and large
scale hotspot detection. Because of the automatic feature
learning technique and highly nonlinear neural networks, deep
learning has shown great success in image classification tasks
[8, 9].

The proposed framework is integrated with newly developed
techniques that are customized and more suitable for layout
hotspot detection. Inspired by the feature map in deep neural
networks, we utilize the feature tensor concept, i.e., a multi-
dimensional representation of an original layout pattern, that
performs compression to facilitate learning while keeping the
spatial relationship to avoid drastic information loss. Feature
tensor compatibility with the convolutional neural network
makes our framework more efficient when dealing with an ul-
tra large amount of layout patterns. To train a model with
high detection accuracy and low false alarm penalty, we fur-
ther developed a biased learning technique that can be easily
embedded into traditional neural network training procedures.
The main contributions of this paper are listed as follows.

• A feature tensor extraction method is proposed, where
the new feature is compatible with the emerging deep
learning structure and can dramatically speed up feed-
forward and back-propagation.

• Biased learning technique is proposed and embedded into
the deep learning framework, that offers great improve-
ments on hotspot detection accuracy with a minor cost
of false alarms.

• Experimental results show that our proposed methods
have great advantages over existing machine learning so-
lutions and achieve 5.9% accuracy improvements on av-
erage for very large scale industrial layouts.

http://dx.doi.org/10.1145/3061639.3062270

The rest of the paper is organized as follows. Section 2 intro-
duces basic concepts and problem formulation. Section 3 and
section 4 cover feature tensor generation and biased learning
algorithm, respectively. Section 5 lists the experimental re-
sults, followed by the conclusion in Section 6.

2. PRELIMINARIES
In this section, we will introduce some terminology used in

layout hotspot detection. Designed layout patterns are trans-
ferred onto silicon wafers through a lithographic process, which
involves a lot of variations. Some patterns are sensitive to
lithographic process variations and may reduce the manufac-
turing yield due to potential open or short circuit failures.
Layout patterns with a smaller process window and sensitive
to process variations are defined as hotspots.

The main objectives of the hotspot detection procedure are
identifying as many real hotspots as possible, avoiding incor-
rect predictions on non-hotspot clips, and reducing runtime.
In this paper, we use the following metrics to evaluate perfor-
mance of a hotspot detector.

Definition 1 (Accuracy [6]). The ratio between the num-
ber of correctly predicted hotspot clips and the number of all
real hotspot clips.

Definition 2 (False Alarm [6]). The number of non-hotspot
clips that are predicted as hotspots by the classifier.

In the actual design flow, detected hotspots (including false
positive patterns) are required to perform lithographic simula-
tion, it is reasonable to account for false alarms for the overall
estimation flow runtime. Therefore, an overall detection and
simulation time (ODST) is defined as follows:

Definition 3 (ODST [5]). The sum of the lithography sim-
ulation time for layout patterns detected as hotspots (including
real hotspots and false alarms) and the learning model evalu-
ation time.

With the above definitions, we can formulate the hotspot
detection problem as follows:

Problem 1 (Hotspot Detection). Given a set of clips con-
sisting of hotspot and non-hotspot patterns, the object of hotspot
detection is training a classifier that can maximize the Accu-
racy and minimize the ODST.

3. FEATURE TENSOR EXTRACTION
Finding a good feature representation is the key procedure

in image classification tasks, and so is layout pattern classifica-
tion. Local density extraction and concentric circle sampling
have been widely explored in previous hotspot detection and

optical proximity correction (OPC) research [7], which proved
to be efficient on hotspot detection tasks because of embed-
ded lithographic prior knowledge. It is notable that layout
hotspots are associated with light diffraction, whether a lay-
out suffers from hotspot is not only determined by the pattern
itself, but also affected by its surrounding patterns. There-
fore, to analyze characteristic of a clip, spatial relations of its
local regions have to be kept. However, all of these existing
features finally end up flattened into one dimensional vectors
which limits hotspot detection accuracy due to a lot of spatial
information loss.

To address the above issue, we propose a feature tensor ex-
traction method to provide lower scale representation of origi-
nal clips while keeping the spatial information of the clips. Af-
ter feature tensor extraction, each layout image I is converted
into a hyper-image (image with customized number of chan-
nels) F with the following properties: (1) size of each channel
is much smaller than I and (2) an approximation of I can be
recovered from F.

Spectral analysis of mask patterns for wafer clustering was
recently explored in literature [10, 11] and achieves good clus-
tering performance. Inspired by that work, we express the sub
region as a finite combination of different frequency compo-
nents. High sparsity of the discrete cosine transform (DCT)
makes it preferable over other frequency representations in
terms of spectral feature extraction, and moreover, it is con-
sistent with the expected properties of the feature tensor.

To sum up, the process of feature tensor generation contains
the following steps.

Step 1: Divide each layout clip into n × n sub-regions,
then feature representations of all sub-regions are obtained for
multi-level perceptions of layout clips.

Step 2: Convert each sub-region of the layout clip Ii,j (i, j =
0, 1, . . . , n− 1) into a frequency domain:

Di,j(m,n) =

B∑
x=0

B∑
y=0

Ii,j(x, y) cos[
π

B
(x+

1

2
)m] cos[

π

B
(y+

1

2
)n],

where B = N
n

is sub region size, (x, y) and (m,n) are original
layout image and frequency domain indexes respectively. Par-
ticularly, the left-upper side of DCT coefficients in each block
correspond to low frequency components, which contain high
density information, as depicted in Figure 1.

Step 3: Flatten Di,js into vectors in Zig-Zag form [12] with
larger index being higher frequency coefficients as follows.

C∗i,j = [Di,j(0, 0),Di,j(0, 1),Di,j(1, 0), ...,Di,j(B,B)]ᵀ. (1)

Step 4: Pick first k � B ×B elements of each C∗i,j ,

Ci,j = C∗i,j [: k], (2)

and combine Ci,j , i, j ∈ {0, 1, ..., n − 1} with their spatial re-
lationships unchanged. Finally, the feature tensor is given as

Division DCT

0

50

100

0 20 40 60 80 100

0

5

10

15

20

25

 0

5

10

15

20

2
6664

C11,1 C12,1 C13,1 . . . C1n,1

C21,1 C22,1 C23,1 . . . C2n,1

...
...

...
. . .

...
Cn1,1 Cn2,1 Cn3,1 . . . Cnn,1

3
7775

2
6664

C11,k C12,k C13,k . . . C1n,k

C21,k C22,k C23,k . . . C2n,k

...
...

...
. . .

...
Cn1,k Cn2,k Cn3,k . . . Cnn,k

3
7775

(
k

Encoding

Figure 1: Feature Tensor Generation Example (n = 12). The original clip (1200 × 1200 nm2) is divided into 12×12 blocks and each block
is converted to 100 × 100 image representing 100 × 100 nm2 sub region of the original clip. Feature tensor is then obtained by encoding on
DCT coefficients of each block.

…

Hotspot

Non-Hotspot

Convolution + ReLU Layer Max Pooling Layer Full Connected Node

2
6664

C11,1 C12,1 C13,1 . . . C1n,1

C21,1 C22,1 C23,1 . . . C2n,1

...
...

...
. . .

...
Cn1,1 Cn2,1 Cn3,1 . . . Cnn,1

3
7775

2
6664

C11,k C12,k C13,k . . . C1n,k

C21,k C22,k C23,k . . . C2n,k

...
...

...
. . .

...
Cn1,k Cn2,k Cn3,k . . . Cnn,k

3
7775

(
k

Figure 2: The proposed convolutional neural network structure.

follows:

F =

C11 C12 C13 . . . C1n

C21 C22 C23 . . . C2n

...
...

...
. . .

...
Cn1 Cn2 Cn3 . . . Cnn

 , (3)

where F ∈ Rn×n×k. Particularly, through reversing above
procedure, an original clip can be recovered from an extracted
feature tensor.

The nature of discrete cosine transform ensures that high
frequency coefficients are near zero. As shown in Figure 1,
large responses only present at the entries with smaller indexes,
i.e. low frequency regions. Therefore, most information are
kept even when large amounts of elements in C∗i,j are dropped.

The feature tensor also has the following advantages when
applied in neural networks: (1) Highly compatible with the
data packet transference in convolutional neural networks and
(2) forward propagation time is significantly reduced in com-
parison with using original layout image as input, because the
scale of the neural network is reduced with smaller input size.

4. BIASED LEARNING ALGORITHM

4.1 Convolutional Neural Network Architecture
To address the weak scalability of traditional machine learn-

ing techniques, we introduce convolutional neural network (CNN)
as preferred classifier. CNN is built with several convolution
stages and fully connected layers, where convolution stages
perform feature abstraction and fully connected layers gener-
ate the probability of testing instances drawn from each cate-
gory (Figure 2).

In this paper, our convolutional neural network has two con-
volution stages followed by two fully connected layers, and each
convolution stage consists of two convolution layers, a ReLU
layer and a max-pooling layer. In each convolution, a set of
kernels perform convolution on a tensor F as follows:

F⊗K(j, k) =

c∑
i=1

m∑
m0=1

m∑
n0=1

F(i, j −m0, k − n0)K(m0, n0).

(4)

where F ∈ Rc×n×n, and kernel K ∈ Rc×m×m. In this work,
the convolution kernel size is set to 3× 3 and the numbers of
output feature maps in two convolution stages are 16 and 32
respectively. ReLU is an element-wise operation that follows
each convolution layer as a replacement of the traditional sig-
moid activation function. As shown in Equation (5), ReLU
ensures that the network is nonlinear and sparse.

ReLU(x) =

{
x, if x > 0,
0, if x ≤ 0.

(5)

The max-pooling layer performs 2×2 down-sampling on the
output of the previous layer and is applied as the output layer

Table 1: Neural Network Configuration.
Layer Kernel Size Stride Output Node #

conv1-1 3 1 12 × 12 × 16
conv1-2 3 1 12 × 12 × 16

maxpooling1 2 2 6 × 6 × 16
conv2-1 3 1 6 × 6 × 32
conv2-2 3 1 6 × 6 × 32

maxpooling2 2 2 3 × 3 × 32
fc1 - - 250
fc2 - - 2

of each convolution stage. Following two convolution stages
are two fully connected (FC) layers with output node numbers
of 250 and 2, respectively. A 50% dropout is applied on the
first FC layer during training to alleviate overfitting. The sec-
ond FC layer is the output layer of the entire neural network,
where two output nodes generate the predicted probabilities
of an input instance being hotspot and non-hotspot. Detailed
configurations are shown in Table 1.

4.2 Mini-batch Gradient Descent
Determining the gradient of each neuron and the parameter

updating strategy in the neural network are two key mech-
anisms in the training procedure. Back-propagation [13] is
widely applied to calculate gradients when training large neu-
ral networks. Each training instance F has a corresponding
gradient set G= {G1,G2, ...,Gv}, where each element is a gra-
dient matrix associated with a specific layer and v is the total
layer number. All the neural network parameters are then
updated with the obtained G.

Stochastic gradient descent (SGD), where each training data
instance is randomly presented to the machine learning model,
has proved more efficient to train large data sets [14] than
conventional batch learning, where a complete training set is
presented to the model for each iteration. However, as a data
set scales to the ultra large level, e.g. millions of instances,
SGD has difficulty to efficiently utilize computation resources.
Therefore, it takes a long time for the model to cover every
instance in the training set. A compromise approach called
mini-batch gradient descent (MGD) [15] can be applied where
a group of instances are randomly picked to perform gradient
descent. Additionally, MGD is naturally compatible with the
online method allowing it to facilitate convergence and avoid
large storage requirements for training ultra large instances.

However, for large nonlinear neural networks, back-propagation
and MGD do not have rigorous convergence criteria. A frac-
tion, empirically 25%, of training instances (validation set) is
separated out and is never shown to the network for weight
updating. We then test the trained model on the validation
set every few iterations. When the test performance on the
validation set does not show much variation or starts getting
worse, the training procedure is considered to be converged.
To make sure MGD reaches a more granular solution, we re-
duce the learning rate along with training process.

The details of MGD with learning rate decay are shown in

Algorithm 1 Mini-batch Gradient Descent (MGD)

1: function MGD(W, λ, α, k, y∗h, y∗n)
2: Initialize parameters j ← 0, W > 0;
3: while not stop condition do
4: j ← j + 1;
5: Sample m training instances {F1, F2, ..., Fm};
6: for i = 1, 2, ...,m do
7: Gi ← backprop(Fi);
8: end for
9: Calculate gradient Ḡ ← 1

m

∑m
i=1 Gi;

10: Update weight W←W − λḠ;
11: if j mod k = 0 then
12: λ← αλ, j ← 0;
13: end if
14: Update weight W←W − λḠ;
15: end while
16: return Trained model f ;
17: end function

Algorithm 1, where W is the neuron weights, λ is the learning
rate, α ∈ (0, 1) is the decay factor, k is the decay step, y∗h is
the hotspot ground truth and y∗n is the non-hotspot ground
truth. The MGD can be regarded as a function that returns
the model with the best performance on the validation set. In-
dicator j will count up through iterations (line 4), and in each
iteration, m training instances {F1, F2, ..., Fm} are randomly
sampled from training set (line 5). Gradients of these training
instances (Gi) are calculated for back-propagation (lines 6–8).
Then neuron weights W are updated by subtracting the aver-
age gradient of sampled instances λḠ scaled by learning rate
γ (line 14). When j is an integer multiple of k, λ is reduced
to αλ, i.e. learning rate decays every k iterations (lines 11–
13). At the end of MGD, a trained model that has satisfying
performance on validation set will be returned (line 16).

4.3 Learning Towards Biased Target
Softmax cross entropy is able to provide speedup for back-

propagation while attain comparable network performance with
mean square error [15]. In n-category classification task, the
instance belongs to class c has ground truth y∗ ∈ Rn where y∗

has the property y∗(c) = 1 and
∑n
i=1 y∗(i) = 1. Each entry of

y∗ is regarded as the probability of the instance drawn from
each category. Predicted label vector y by classifier is defined
similarly.

In the task of hotspot detection, y∗ = y∗n = [1, 0] and y∗ =
y∗h = [0, 1] are assigned as ground truth of non-hotspot and
hotspot. To generate loss with respect to ground truth, score
x = [xh, xn] predicted by the neural network is scaled to (0, 1)
interval by softmax function shown in Equation (6).

y(0) =
expxh

expxh + expxn
, y(1) =

expxn
expxh + expxn

, (6)

and then, cross-entropy loss is calculated as follows,

l(y,y∗) = −(y∗(0) log y(0) + y∗(1) log y(1)). (7)

In case of the situation we need to calculate log 0, we define,

lim
x→0

x log x = 0. (8)

Because each entry of softmax label yi is the probability
of given instance Fi being non-hotspot N and hotspot H, we
have,

F ∈
{
N , if y(0) > 0.5,
H, if y(1) > 0.5.

(9)

y(0) + y(1) = 1. (10)

To improve the hotspot detection accuracy, a straightfor-
ward approach is shifting decision boundary, as shown in Equa-
tion (11).

F ∈
{
N , if y(0) > 0.5 + λ,
H, if y(1) > 0.5− λ, (11)

where λ > 0 is shifting level. However, this method takes effect
at large cost of false alarm.

The conventional training procedure applies ground truth
label y∗n = [1, 0] for non-hotspot instances and y∗h = [0, 1] for
hotspot instances. For non hotspot instances, the classifier
is trained towards y∗n. Suppose training procedure meets stop
criteria, then for most non-hotspot clips, f will predict them to
have high probability, close to 1, to be non-hotspot. However,
as can be seen in Equation (9), the instance would be predicted
as non-hotspot as long as the predicted probability is greater
than 0.5. Thus, to some extent, the classifier is too confident
as expected.

Intuitively, a too confident classifier is not necessary to give
a good prediction performance and on the contrary, may in-
duce more training pressure or even overfitting to the network.
Therefore, an assumption can be made that when a training
procedure meets the convergence criteria, the hotspot detec-
tion accuracy can be further improved by reducing the confi-
dent level of the non-hotspot data set. We have the following
theorem.

Theorem 1: Given a trained convolutional neural network
with ground truth y∗n = [1, 0] and y∗h = [0, 1] and hotspot
detection accuracy a on a given test set. Fine tune the net-
work with yεn = [1 − ε, ε], ε ∈ [0, 0.5), and obtain the hotspot
detection accuracy a′ of the new model. We have a′ ≥ a.

The proof of Theorem 1 is in Appendix. The bias term ε can-
not be increased without limitations, because at some point,
most of the non-hotspot patterns will cross the middle line,
where the probability is 0.5, causing a significant increase of
false alarm. Because the approach improves the performance
of hotspot detection at the cost of confidence on non-hotspots,
we call it biased learning. As the uncertainty exists for large
CNN, a validation procedure is applied to decide when to stop
biased learning. To sum up, biased learning is iteratively carry-
ing out normal MGD with changed non-hotspot ground truth,
as shown in Algorithm 2.

Algorithm 2 Biased-learning

Input: ε, δε, t, W, λ, α, k, y∗h, y∗n;
1: i← 0, ε← 0, y∗h ← [0, 1];
2: while i < t do
3: y∗n ← [1− ε, ε];
4: fε ← MGD(W, λ, α, k, y∗n, y∗h); . Algorithm 1
5: i← i+ 1, ε← ε+ δε;
6: end while

Here ε is the bias, δε represents the bias step, and t is the
maximum iteration of biased learning. In biased learning, the
hotspot ground truth is fixed at [0, 1] while the non-hotspot
truth is [1 − ε, ε]. Initially, the normal MGD is applied with
ε = 0 (line 1). After getting the converged model, fine-tune it
with ε updated by ε = ε+ δε. Repeat the procedure until the
framework reaches the maximum bias adjusting time t (lines
2–6).

Theorem 1 shows that the biased learning algorithm can im-
prove hotspot detection accuracy by taking advantage of the

ReLU property. Because biased learning is applied through
training, the false alarm penalty on the improvement of hotspot
accuracy is expected to be limited. Details of the effect of bi-
ased learning are presented in following section.

5. EXPERIMENTAL RESULTS
We implement our deep biased learning framework in Python

with the TensorFlow library [16], and test it on a platform
with a Xeon E5 processor and Nvidia K620 Graphic card. To
fully evaluate the proposed framework, we employ four test
cases. Because the individual test cases in the ICCAD 2012
contest [6] are not large to verify the scalability of our frame-
work, we merge all the 28nm patterns into a unified test case
ICCAD. Additionally, we adopt three more complicated indus-
try test cases: Industry1 – Industry3. The details for all
test cases are listed in the left side of Table 2. Columns “Train
HS#”and“Train NHS#” list the total number of hotspots and
the total number of non-hotspots in the training set. Columns
“Test NHS#”and“Test HS#”list the total number of hotspots
and total number of non-hotspots in the testing set.

In the first experiment, the neural network is trained follow-
ing the biased learning algorithm with λ = 1e−4, α = 0.5, k =
10, 000, ε = 0, δε = 0.1 and t = 4. We compare the test re-
sults with two state-of-the-art machine learning-based hotspot
detectors, as shown in Table 2. Columns “FA#”, “CPU(s)”,
“ODST(s)” and “Accu” denote false alarm, model testing time,
overall detection simulation time (ODST) and hotspot detec-
tion accuracy respectively. An industry simulator described
in [17] shows that the simulation time of each instance is ap-
proximately 10s, therefore, we induce a 10s penalty on each
detected hotspot instance for the ODST final calculation. The
experimental results show that within all test cases, our frame-
work achieves the best hotspot detection accuracy on average
of 95.5% compared to 89.6% of [5] and 66.6% of [4]. The ta-
ble also shows that when the benchmark is larger, traditional
machine learning techniques suffer great performance decay.
ODST is a unified metric on testing and lithographic simula-
tion running time and it takes all the predicted hotspots into
consideration. Although [5] exhibits a better ODST, it suffers
from a lower hotspot detection accuracy.

Note that in Table 2 only the testing runtime is reported. As
far as the proposed framework is concerned, it might take hours
in the training procedure compared with approximately 30
minutes in other machine learning works. However, the train-
ing procedure can be done once and for all. The trained model
can be effectively updated with newly incoming instances, due
to the online update capability of MGD. Besides, the fine tun-
ing procedure only has time complexity of O(m) for a fixed
network configuration, where m is the total number of new
instances. Therefore, the initial training time consumption
can be ignorable when the large performance improvement is
considered.

Although SGD has shown an advantage in emerging machine
learning techniques, it cannot fully utilize GPU resources. MGD,
on the other hand, is more compatible with parallel computing
and can provide speed up on training procedures. To evaluate
the efficiency of MGD, in the second experiment, we train the
neural network on the ICCAD benchmark with MGD and SGD
separately. SGD has learning a rate of 1e-4, while MGD has
an initial learning rate of 1e-3 1. The training procedure is
shown in Figure 3, where the X-axis is the elapsed time (s) in
training procedure and the Y-axis is the test accuracy on the

1Because the average gradient on a random picked group of
samples is smaller than the gradient of single instance, we pick
the larger learning rate for MGD to ensure a fair comparison.

0 500 1,000 1,500
0.00

50.00

100.00

Elapsed Time (s)

A
cc

u
ra

cy
(%

)

SGD MGD

Figure 3: Stochastic gradient descent(SGD) v.s. Mini-batch gra-
dient descent (MGD).

80 85 90
2,000

3,000

4,000

Accuracy (%)

F
a
ls

e
A

la
rm

Shift-Boundary Bias

Figure 4: Bias learning shows less false alarm penalty to obtain
the same hotspot detection accuracy.

validation set. The curve shows that when MGD reaches 90%
validation accuracy, SGD is still around 70%, which indicates
the neural network with the MGD learning strategy is more
efficient and effective than conventional SGD.

In the last experiment, we evaluate the biased learning al-
gorithm. The above neural network is trained with ε = 0 to
obtain an initial model, and is fine-tuned with ε = 0.1, 0.2, 0.3
on Industry3. Then we perform boundary shifting on initial
model to achieve the same test accuracy with three fine-tuned
models. As shown in Figure 4, biased learning has 600 less
false alarm penalties for same improvement of hotspot detec-
tion accuracy which is equivalent to saving 6000s of ODST
consumption.

6. CONCLUSION
To address the existing problems of machine learning-based

printability estimation techniques, we first propose a high-
dimensional feature (feature tensor) extraction method that
can reduce the size of training instances while keeping spatial
information. The feature tensor is also compatible with pow-
erful convolutional neural networks. Additionally, to improve
hotspot detection accuracy, we develope a biased learning al-
gorithm, that takes advantage of the ReLU function in CNN
to prominently increase accuracy while reducing false alarm
penalties. The experimental results show that our framework
outperforms the existing machine learning techniques. As the
technology node keeps shrinking down, we hope this paper
can be a demonstration that deep learning has the potential
to provide satisfactory solutions for advanced DFM research.

7. REFERENCES
[1] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang,

“A fuzzy-matching model with grid reduction for lithography
hotspot detection,” IEEE TCAD, vol. 33, no. 11, pp.
1671–1680, 2014.

[2] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and
C. Chiang, “Accurate process-hotspot detection using critical
design rule extraction,” in Proc. DAC, 2012, pp. 1167–1172.

[3] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang,
“Machine-learning-based hotspot detection using topological
classification and critical feature extraction,” IEEE TCAD,
vol. 34, no. 3, pp. 460–470, 2015.

Table 2: Performance Comparisons with two state-of-the-art hotspot detectors

Train

HS#

Train

NHS#

Test

HS#

Test

NHS#

SPIE’15 [4] ICCAD’16 [5] Ours

Bench FA# CPU ODST Accu FA# CPU ODST Accu FA# CPU ODST Accu

(s) (s) (%) (s) (s) (%) (s) (s) (%)

ICCAD 1204 17096 2524 13503 2919 2415 52857 84.2% 4497 989 70618 97.7% 3413 1232 60147 98.2%

Industry1 34281 15635 17157 7801 2204 557 182500 93.2% 1136 179 165780 89.9% 680 266 176748 98.9%

Industry2 15197 48758 7520 24457 1320 752 47641 44.8% 7402 233 140729 88.4% 2165 341 92298 93.6%

Industry3 24776 49315 12228 24817 3144 879 86122 44.0% 8609 279 187005 82.3% 4196 404 154005 91.3%

Average - - - - 2397 1150 45109 66.6% 5411 420 35359 89.6% 2613 561 44577 95.5%

Ratio - - - - - - 1.01 0.70 - - 0.79 0.94 - - 1.0 1.0

[4] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new
lithography hotspot detection framework based on AdaBoost
classifier and simplified feature extraction,” in Proc. SPIE,
vol. 9427, 2015.

[5] H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online
learning in lithography hotspot detection with
information-theoretic feature optimization,” in Proc. ICCAD,
2016, pp. 47:1–47:8.

[6] A. J. Torres, “ICCAD-2012 CAD contest in fuzzy pattern
matching for physical verification and benchmark suite,” in
Proc. ICCAD, 2012, pp. 349–350.

[7] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity
correction with hierarchical bayes model,” in Proc. SPIE, vol.
9426, 2015.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Proc. NIPS, 2012, pp. 1097–1105.

[9] T. Xiao, H. Li, W. Ouyang, and X. Wang, “Learning deep
feature representations with domain guided dropout for
person re-identification,” in Proc. CVPR, 2016, pp.
1249–1258.

[10] W. Zhang, X. Li, S. Saxena, A. Strojwas, and R. Rutenbar,
“Automatic clustering of wafer spatial signatures,” in
Proc. DAC, 2013, pp. 71:1–71:6.

[11] S. Shim, W. Chung, and Y. Shin, “Synthesis of lithography
test patterns through topology-oriented pattern extraction
and classification,” in Proc. SPIE, vol. 9053, 2014.

[12] G. K. Wallace, “The JPEG still picture compression
standard,” IEEE TCE, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[14] W. A. Gardner, “Learning characteristics of
stochastic-gradient-descent algorithms: A general study,
analysis, and critique,” Signal Processing, vol. 6, no. 2, pp.
113–133, 1984.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
MIT Press, 2016, http://www.deeplearningbook.org.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean
et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. OSDI, 2016, pp. 265–283.

[17] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD
contest in mask optimization and benchmark suite,” in
Proc. ICCAD, 2013, pp. 271–274.

[18] S. Hochreiter, “The vanishing gradient problem during
learning recurrent neural nets and problem solutions,”
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

APPENDIX
A. PROOF OF THEOREM 1

Consider a trained classifier f with Ol−1(Fi) as the output of
the second last layer, and the neurons have weight Wl. Then
the output can be expressed as follows:

xi = Wᵀ
l Ol−1(Fi), (12)

where Wl is learned towards the target y∗n = [1, 0]. Consider-

ing the fine tune process with yεn = [1−ε, ε], training instances
with predicted probability less than 1− ε are only supposed to
generate minor gradient to update the network, since they can
not even make prominent difference with the target yn when
the stopping criteria is met. For those training instances that
have predicted probability in (1 − ε, 1) (confident instances),
neuron weights will be updated along the gradient generated
by confident instances.

Also, gradient vanishing theory [18] indicates a later layer
in the neural network learns faster, therefore within limited
number of iterations, updates of the front layer can be ignored.
We assume the layers before Ol−1 are fixed for some iterations.
Let the updated weight for the output layer be W′

l, and the
current output for confident instance Fc is,

x′c = W′ᵀ
l Ol−1(Fc). (13)

Before adjusting the ground truth, we have

xc = Wᵀ
l Ol−1(Fc). (14)

Since xc is obtained from the classifier towards y∗n = [1, 0]
and x′c is obtained from the trained model with the ground
truth yεn,

exp xc(0)

exp xc(0) + exp xc(1)
>

exp x′c(0)

exp x′c(0) + exp x′c(1)
> 1− ε.

(15)

That is,

xc(0)− xc(1) > x′c(0)− x′c(1). (16)

Note that x ∈ R2, therefore Wl has two columns Wl,1 and
Wl,2. Similarly, W′

l = [W′
l,1,W

′
l,2]. We define w and w′ as

follows:

w = Wl,1 −Wl,2, w′ = W′
l,1 −W′

l,2. (17)

Here w′ is updated from w through gradient descent:

w′ = w − α∇wwᵀOl−1(Fc) = w − αOl−1(Fc), (18)

where α > 0 is the learning rate. For hotspot instances:

w′
ᵀ
Ol−1(Fh) = wᵀOl−1(Fh)− αOᵀ

l−1(Fc)Ol−1(Fh). (19)

Because Ol−1 is ReLU output, we have Ol−1(Fc) > 0 and
Ol−1(Fh) > 0. Therefore,

w′
ᵀ
Ol−1(Fh) < wᵀOl−1(Fh), (20)

which indicates that

xh(0)− xh(1) > x′h(0)− x′h(1), (21)

⇒ exp xh(1)

exp xh(0) + exp xh(1)
<

exp x′h(1)

exp x′h(0) + exp x′h(1)
. (22)

Therefore, the predicted probability of hotspot instances being
hotspot is expected to be greater, and the classifier is more con-
fident about those wrongly detected patterns that have predict
probability around 0.5. In other words, a′ ≥ a.

http://www.deeplearningbook.org

