
RippleFPGA: A Routability-Driven Placement for
Large-Scale Heterogeneous FPGAs

(Invited Paper)

Chak-Wa Pui, Gengjie Chen, Wing-Kai Chow, Ka-Chun Lam, Jian Kuang,
Peishan Tu, Hang Zhang, Evangeline F. Y. Young, Bei Yu

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, NT, Hong Kong

{cwpui,gjchen,wkchow,lamkc,jkuang,pstu,hzhang,fyyoung,byu}@cse.cuhk.edu.hk

ABSTRACT
As the complexity and scale of FPGA circuits grows, resolv-
ing routing congestion becomes more important in FPGA
placement. In this paper, we propose a routability-driven
placement algorithm for large-scale heterogeneous FPGAs.
Our proposed algorithm consists of (1) partitioning, (2) pack-
ing, (3) global placement with congestion estimation, (4)
window-base legalization, and (5) routing resource-aware de-
tailed placement. Experimental results show that our pro-
posed approach can give routable placement results for all
the benchmarks in the ISPD2016 contest and can achieve
good result compared to the other wining teams of the ISPD2016
contest.

1. INTRODUCTION
Field-programmable gate array (FPGA) is an integrated

circuit designed to be reconfigurable by a customer after
manufacturing. The most common FPGA architecture, island-
style, consists of a 2D array of configurable logic blocks
(CLBs), I/O pads, routing channels and other types of re-
sources such as random access memory blocks (RAMs) and
digital signal processing blocks (DSPs). Within all these
components, CLB remains an important resource since the
major part of a given net-list is technology-mapped to CLBs.

Compared to ASICs, FPGAs have faster time-to-market
and simpler design cycle, but FPGAs used to be selected
for less demanding designs due to its limited performance.
However, with its unprecedentedly increasing logic density,
FPGA has become more competitive with ASICs especially
in application specific implementations.

Placement is a key part in the FPGA design flow, which
takes roughly half of the compilation time [3]. Given a cir-
cuit net-list, an FPGA placer produces a valid mapping of
all blocks onto the target FPGA to optimize a certain ob-
jectives. Earlier works on placement for FPGAs using ap-
proaches like simulated annealing and min-cut partitioning
cannot produce high quality placement result with scalable
running time. With increasing design complexity and logic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07-10, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2980084

capacity in today’s FPGAs, routability plays an ever more
important role in placement. Therefore a high-quality, scal-
able routability-drive placement algorithm is needed.

1.1 Previous Work
The numerous previous works on FPGA placement can be

classified into three major categories: (1) simulated-annealing
based approach, (2) partitioning-based approach, and (3)
analytical approach. The most famous academic tool VPR
[11] applies simulated annealing as its main tool to optimize
objectives such as wirelength, timing, etc. Although it can
achieve high quality result, its running time becomes a major
drawback when placing a large circuit. Partitioning-based
approaches like [12] shorten the running time by recursively
partitioning a design and placing them hierarchically. How-
ever the partitioning-based methods may result in bad qual-
ity because the problem is solved locally after partitioning
and these methods are not able to consider the global opti-
mality. Compared to the above two methods, analytical ap-
proaches are more favourable especially as the gap between
FPGAs and ASICs becomes smaller . Not only the indus-
trial placers migrate from traditional simulated-annealing-
based placement to an analytical approach, but also several
new academic placement tools using analytical approach are
shown to produce competitive results with much less running
time on FPGAs. In [7], SimPL [9] is applied to FPGA place-
ment, which yields the potential of using analytical methods
in FPGA placement. In [10], NTUplace is used as the basic
framework of the proposed analytical FPGA placer. Besides
the placers mentioned above, there are also other analytical
placers like LLP [15], StarPlace [16] and QPF [17].

However, these analytical placers mainly focus on how to
migrate the traditional ASIC placement methods to FPGA
placement and do not consider those FPGA specific rout-
ing congestion issues in their algorithms, which may cause
problems in complicated designs.

1.2 Our Contributions
In this paper, we propose a routability-driven analytical

placement algorithm for heterogeneous FPGAs. The major
contributions are summarized as follows:

• An effective and efficient method is proposed to mea-
sure the routing congestion distribution on an FPGA.

• Several methods are proposed to reduce routing con-
gestion, including partitioning, multi-stage congestion-
drive global placement and a routing-resource-aware
detailed placement.

http://dx.doi.org/10.1145/2966986.2980084

Slice Switch Box RAM/DSP I/O Block

Figure 1: Our target FPGA architecture, showing different
basic components.

• A complete framework for heterogeneous FPGA flat
placement is proposed, which takes a net-list of basic
logic elements as input.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an introduction to our targeting FPGA archi-
tecture and the problem formulation. Section 3 first gives
an overview of our algorithm and then introduces its details
which include partitioning, packing, congestion estimation,
global placement, legalization, and detailed placement. Sec-
tion 4 shows the experimental results, and we finally con-
clude in Section 5.

2. PRELIMINARIES

2.1 Target Architecture
The layout of our targeting heterogeneous FPGA archi-

tecture is shown in Figure 1. The smallest unit of the archi-
tecture is called logic element, which can be LUT, flip-flop
(FF), RAM, DSP or IO. Each type of logic element can only
be put into sites of its own type. To be specific, LUTs and
FFs can only be put into sites called slice while RAMs, DSPs
and IOs can only be put into sites called RAM, DSP and
IO respectively. Unlike ASIC where each site can only have
one cell, the target FPGA architecture allows multiple cells
in a site. If two connected cells are put into the same site,
routing the nets between them uses less routing resources
compared to putting them in different sites. Among dif-
ferent types of sites, the legalization rules for slice are more
complicated than others, whose only rule is that the number
of logic elements cannot be larger than the sites’ capacity.
For slices, only one CLB is allowed to be placed in a slice
and a CLB can contain up to 8 basic logic elements (BLEs)
and each BLE can contain up to 2 LUTs and 2 FFs. Since
there are internal wires inside a BLE, it will take less routing
resources to route the net connecting the output of a LUT
and the input of a FF if we put them in the same BLE. To
simplify the terminology, we called BLE, RAM, DSP and
IO as element in the following.

2.2 Problem Formulation
Given an FPGA with logic elements, its architecture and

a design net-list, we need to map the net-list to the logic
elements of the FPGA and determine their positions to min-
imize routed wirelength such that (1) each logic element is
assigned to a legal position on the FPGA, and (2) the place-
ment legalization rules of each site are satisfied.

3. PROPOSED ALGORITHM

3.1 Overview
Similar to ASIC placement, our placer solve the problem

in three steps: (1) global placement, (2) legalization, and
(3) detailed placement. Global placement gives the loca-
tion of each logic element across the chip such that a given
cost metric (e.g. wirelength) is minimized. Legalization gives
each logic element a legal position while minimizing the dis-
turbance to the global placement result. Finally, detailed
placement further improves the solution.

In this paper, we propose a routablity-driven placement
algorithm for large-scale heterogeneous FPGAs based on an
upper-bound lower-bound global placement framework. Our
algorithm consists of the following stages: (1) partitioning,
which gives an initial location for each logic element and ad-
justs the area of the logic elements; (2) packing, which packs
logic elements into BLEs based on their connections; (3)
congestion-driven global placement with BLE, which gives
a global placement result for legalization; (4) legalization,
which determines the exact location of each logic element;
and (5) detailed placement, which refines the placement with
greedy algorithms. Several FPGA-specific techniques will be
introduced in the following sections.

3.2 Partitioning
In this section, we utilize partitioning technique (please

refer to [2] for a survey) to divide all logic elements into dif-
ferent components, followed by cluster reallocation to gener-
ate initial position for each logic element. In Section 4, this
partitioning based pre-processing step is proved to be very
useful in solving the congestion problem.

3.2.1 Identify Sub-circuits

Algorithm 1 Partitioning

Input: A given netlist(logic elements, nets)
1: for cell in logic elements do
2: G.addVertex(cell);
3: end for
4: for cell0, cell1 in logic elements do
5: if cell0.isConnect(cell1) then
6: G.addEdge(cell0,cell1,#connection);
7: end if
8: end for
9: minClusterSize← netlist.cells.size() ∗ 0.25;

10: maxCutSize← netlist.nets.size() ∗ 0.05;
11: clusterTree.root← G;
12: cut← G.getCut(minClusterSize, maxCutSize);
13: clusters← G.getCluster(cut);
14: queue.push(clusters);
15: clusterTree.addChild(root,clusters);
16: while queue.isNotEmpty() do
17: cluster← queue.pop();
18: cut← cluster.getCut(minClusterSize, maxCutSize));
19: if cut != NULL then
20: clusters← cluster.getCluster(cut);
21: queue.push(clusters);
22: clusterTree.addChild(cluster,clusters);
23: end if
24: end while

Our sub-circuits identification algorithm is shown in Al-

Table 1: The cluster number obtained by our partitioning
algorithm

Design #Clusters Design #Clusters
FPGA-1 3 FPGA-7 3
FPGA-2 3 FPGA-8 3
FPGA-3 3 FPGA-9 3
FPGA-4 3 FPGA-10 3
FPGA-5 2 FPGA-11 3
FPGA-6 3 FPGA-12 3

(a) (b)

Figure 2: Spreading in different kinds of chips: (a) chip
with balance height and width before and after spreading,
(b) chip with imbalance height and width before and after
spreading.

gorithm 1. In lines 1-8, we first model the given net-list as
a graph G(V,E). We let each logic element as a vertex in
G and there is an edge between two vertices if and only if
their corresponding logic elements are connected by a net.
Furthermore, we set the weight of an edge euv ∈ E to be the
number of nets that connect vertices u and v.

We then partition G into two clusters recursively until
the sizes of the resulting clusters are too small or the size of
the minimum cut is too large as shown in lines 9-24. The
resulting clusters of our partitioning algorithm are stored
as leaves of a tree called clusterTree, which is constructed
from line 15 to line 24. In our implementation, we set the
minimum size of a cluster no smaller than 25% of the total
number of vertices in G and the minimum cut should be at
most 5% of the total number of nets. By limiting the sizes
of the cut and the cluster, we can identify highly connected
sub-circuits of relatively large sizes. As shown in Table 1,
most of the designs in our experiment can be separated into
clusters using our partitioning algorithm.

3.2.2 Reallocate Clusters
In traditional ASIC placement, to decrease the routing

congestion level in an area, we will usually reduce the routing
demand of that area by decreasing the cell density there as
Figure 2(a) shows. However, this kind of methods cannot
work on chips that are significantly imbalanced between its
height and width. Not only because they have more cells
in one direction which results in more demand of routing
resources, but also because the lack of area in the other
direction will limit the benefit of cell spreading.

As Figure 2(b) shows, given a net-list, the routing conges-
tion cannot be resolve even if we spread the cells across the
chip because we cannot decrease the congestion any more
once our placement reach the horizontal bound of the chip.

If a net-list can be split into several clusters such that
each of them is highly connected and there are only a few

(a) (b)

Figure 3: The difference of spreading in global placement:
(a) without reallocation using partitioning (b) with reallo-
cation.

connections between the clusters, routing congestion can be
reduced if they are placed separately. Given two sparsely
connected clusters, if we put them vertically (or horizon-
tally, depending on the aspect ratio of the chip) instead of
mixing them up as shown in Figure 3(a), the congestion can
be reduced since there will be more spaces in the other direc-
tion for spreading within a cluster and their demands in the
vertical (horizontal) routing resources will be distributed to
different parts of the chip as shown in Figure 3(b).

The initial position of each cluster is determined by the
lower bound computation which minimizes the HPWL, and
changing the initial positions of the clusters may result in
larger HPWL. In order to minimize the disturbance to the
lower bound result, we will reallocate the clusters using the
method as shown in Algorithm 2. In global placement, the
initial position of each cluster is determined by the connec-
tions to IO and the connection between the clusters. Since
the connections to IO have relatively small contribution in
the routed wirelength, our reallocation algorithm only min-
imizes the disturbance to the connections among clusters as
shown in Algorithm 2. First, in line 4, we sort the clusters
by their y coordinates, which are the average of the y coor-
dinates of the cells belonging to the clusters. The clusters
are then placed from the bottom of the chip one by one. The
height of each cluster is calculated in line 7 and its width is
equal to the width of the chip. Finally we will spread the
cells within each cluster as sparsely as possible while main-
taining their relative locations as shown from line 8 to line
15.

3.2.3 Adjust Cell Area
We also use the partitioning result to adjust the sizes of

the logic elements. Given a netlist, if the clusterTree ob-
tained in Algorithm 1 has only one node, the connections
between different components in the net-list are very strong.
Thus, it is very likely to cause routing congestion and we will
increase the size of each logic element by about 50% in our
implementation so that the elements can be placed more
sparsely to reduce routing congestion.

3.3 Packing
In many previous works [4,5,11], LUTs and FFs are packed

into CLBs according to some architecture-specified rules and

Algorithm 2 Reallocate cluster

Input: A given netlist(logic elements, nets)
1: clusterTree← partitioning(netlist);
2: clusters← clusterTree.getLeaves();
3: ly ← 0;
4: sort clusters by the y coordinate
5: for cluster in clusters do
6: insts← clusers.getInsts(cluster);
7: dy ← areaOfInsts/chipWidth;
8: sort insts by the x coordinate;
9: for i← 1 : sizeof(insts) do

10: insts[i].x← i/insts.size() ∗ chipWidth;
11: end for
12: sort insts by the y coordinate;
13: for i← 1 : sizeof(insts) do
14: insts[i].y ← i/insts.size() ∗ dy + ly;
15: end for
16: ly ← ly + dy;
17: end for

A B

(a)

C

(b)

Figure 4: The difference in shortest wirelength if merge
BLE A and B to form BLE C: (a) minimum wirelength
before packing (b) minimum wirelength after packing.

optimization rules. By doing this, FPGA placement resem-
bles ASIC standard cell placement. As mentioned in Sec-
tion 2.1, since the interconnect inside a BLE is hardwired,
packing LUTs and FFs into BLEs can reduce the number of
nets need to be routed. Instead of packing LUTs and FFs
into CLBs like in other applications, our packing algorithm
stops at the BLE level, which gives more flexibility to the
later placement stages. Since BLE serves as the basic ele-
ment in the later stages of our algorithm, the packing result
will not violate the legalization rules.

In general, our packing algorithm consists of three stages:
(1) global placement, (2) forming BLEs that consists of only
one LUT and at least one FFs, (3) merging two BLEs into
one if at least one of them do not contain FFs and their
LUTs have many connections.

In stage one, a few iterations of global placement are per-
formed to give the physical location of each logic element
considering their connections globally. Packing locally op-
timizes HPWL by reducing the number of nets need to be
routed, but the global optimality may be overlooked. We
need this global placement step to consider HPWL globally.
An example is given in Figure 4. If A and B are not merged,
their optimal positions are as shown in Figure 4(a). If they
are merged, their resulting HPWL will be longer as shown in
Figure 4(b). Therefore in the later two stages, we will avoid
packing logic elements whose physical locations are too far
away from each other.

In stage two, we form BLEs which consists of only one
LUT and at least one FFs. We first construct a graph

G(V,E) where V represents LUTs and FFs and E represent
nets connecting the LUTs’ output pins and the FFs’ input
pins. We solve a maximum cardinality matching problem on
G, each matching represents a BLE obtained in stage two.
For the remaining LUTs and FFs, we will further packed
them into BLEs in stage three.

In stage three, we merge two BLEs into one if at least
one of them do not contain FFs and their LUTs have strong
connections. We first let each of the remaining LUTs and
FFs that has not been packed in stage two form a BLE
on its own. Similar to stage two, we construct a Graph
G(V,E) where V represents BLEs and there is an edge euv ∈
E iff at least one of the BLEs represented by u, v do not
contain FFs and their LUTs share more than two input pins.
Furthermore, we let the weight of an edge euv be the number
of input pins u, v share. We then solve a maximum weight
matching problem on G, each matching indicates that the
two corresponding BLEs should be merge into one.

In summary, we get three types of BLEs from our packing
algorithm above: (1) BLEs containing both LUTs and FFs,
(2) BLEs containing LUTs only, (3) BLEs containing FFs
only.

3.4 Global Placement

3.4.1 Our Global Placement Framework
Our global placement framework is based on Ripple [8],

which can be divided to two major parts: (1) lower-bound
computation and (2) upper-bound computation.

In the lower-bound computation, the global placement
problem for wirelength minimization can be formulated as a
quadratic optimization problem, where the Bound2Bound
(B2B) [14] net model is used to capture the HPWL ob-
jective. By minimizing the quadratic objective, we obtain
a lower-bound computational result with minimized wire-
length. Since the lower-bound computation aims at opti-
mizing the HPWL, the result will have many overlaps. In
the upper-bound computation, we will divide the chip into
bins and spread the cell until the cell density of each bin is
small enough. A pseudo-net is then added for each cell, that
connects the location of the cell obtained from the previous
round of upper-bound computation and the cell itself. By
iteratively calling the lower-bound and upper-bound compu-
tation and increasing the pseudo-net weights, we can obtain
a converged global placement result with very few overlaps
and minimized wirelength.

In heterogeneous FPGA placement, we also need to con-
sider the types of logic elements available in the sites. Oth-
erwise, due to type mismatch, legalization may still cause
large displacement to the global placement result even if
the result has very few overlaps. In our global placement,
fence constraint is used to avoid placing logic element in
site whose type does not match with that logic element, e.g.
placing DSPs into sites for CLBs. When spreading DSPs in
the upper-bound computation, the cell density of the sites
whose types are not DSP will be set to zero, so DSP will
only go to the location where it can be placed. Similarly,
RAMs and other logic elements are spread to sites of their
types only.

3.4.2 Three Stage Optimization
Based on the framework, our global placement can be di-

vided into three stages. In the first two stages, we search for

DSP/RAM BLE

(a) (b)

Figure 5: The mismatch between global placement and le-
galization (a) Legalize DSP/RAM and BLE with the same
displacement (b) Legalizing DSP may induce more displace-
ment.

good placement result in terms of HPWL. Since the phys-
ical locations for the elements on FPGAs are discrete, le-
galizing high-pin large-area elements like DSPs and RAMS
may cause large disturbance to the global placement result.
As Figure 5(a) shows, with the same displacement, DSPs
and RAMs will increase the HPWL much more than BLEs
because there are a lot of pins on DSPs and RAMs. More-
over, since the sizes of DSP and RAM are much bigger than
that of other elements, legalizing DSPs and RAMs tends
to induce more displacement as Figure 5(b) shows. We thus
divide the traditional global placement into a two-stage pro-
cess to reduce the disturbance caused by legalizing high-pin
large-area elements. In each stage, we run global placement
once with the same setting except that we perform a legal-
ization process for RAMs and DSPs after stage one and fix
their positions in later stages.

In the third stage, we more focus on routing congestion
while maintaining previous good HPWL, where an iterative
congestion-driven global placement is applied for a number
of iterations. We tend to put more BLEs at locations with
low congestion while those with high congestion should have
less BLEs. Therefore in each iteration, the sizes of BLEs
placed in congested and uncongested areas are inflated and
shrunk respectively. In our implementation, we inflate the
sizes of BLEs in the top 10% most congested areas and
shrink those in the 30% least congested areas. Moreover,
we will accumulate the inflation (shrinkage) rate in each it-
eration. It is because if an area stays congested in several
iterations, that area is more likely to have congestion prob-
lem and the inflation rate of the cells in that area should be
higher in order to lower the cell density in that region. The
rationale for accumulating shrinkage rate for cell in least con-
gested areas is similar. After changing the sizes of the BLEs,
a short global placement with high pseudo net weight will
be executed to adjust the positions of the BLEs to alleviate
routing congestion. Since shrinking the sizes of the BLEs
may result in placing too many BLEs in a region which may
cause large displacement during legalization. Legalization
will be applied at the beginning of each iteration, the aver-
age displacement of each site during legalization is used to
estimate the cell density to ensure that the sizes of the BLEs
at locations with large displacement will not be shrunk. By
the procedure above, routing congestion can be distributed
more evenly across the chip while the global placement re-
sult from the first two stages will not be worsened too much.
As shown in Section 4, this congestion-driven stage is effec-

(a) (b)

Figure 6: Bounding Boxes of Different Nets: (a)Bounding
Box of a 10-Pins Net (b)Bounding Box of a 2-Pins Net.

tive in reducing routing congestion, which results in shorter
routed wirelength.

3.5 Congestion Estimation
To estimate routing congestion of a placement result more

precisely in the congestion-driven placement stage described
in the previous section, a congestion map is needed.

In [19], the congestion map is built according to the net
bounding box (BB). It estimates routing congestion by how
many nets may possibly use the routing resources of that
site. It accumulates the number of BB overlapping a site by
equation (1) to estimate the routing congestion.

Congsitei
= #BB overlaps with sitei. (1)

However BB of a net cannot reflect the physical locations
of its internal pins, which can result in congestion estimation
inaccuracy. Consider a 10-pin net na as shown in Figure 6(a)
and a 2-pin net nb as shown in Figure 6(b), they induce the
same overlaps on the sites that their BBs cover, but neta
obviously need more routing resource than netb. In order
to take this into account, a weighted sum of the number of
bounding box overlapping is used to measure congestion. In
FPGAs, routing resources are allocated to switch boxes, so
we will first divide the FPGA chip into global routing cell
(G-Cells) such each G-Cell represents a switch box. For a
G-Cell, the pins of the logic elements inside the sites that it
covers are mapped to the G-Cell pins. After obtaining a new
netlist between the G-Cells, we can calculate the weighted
bounding box overlaps of each sites by,

Congsi
=

∑
m∈Ni

Wm ·HPWLm

#G-Cells covered by net m
,

where Wm is a weight proportional to the number of pins
of net m and Ni is the set of nets connected to the G-Cells
covering site si. We give an example of this method in Fig-
ure 7: there are two nets on the chip and they contribute
1 and 1.7 to their covering sites respectively in the conges-
tion map, resulting in a congestion map as shown in Fig-
ure 7. As Figure 8 shows, our model can estimate routing
congestion distribution quite accurately comparing with the
routing congestion distribution obtained by Vivado.

3.6 Legalization
During legalization, we need to consider the legality of a

move and to minimize the disturbance to the global place-
ment result simultaneously. Unlike ASIC legalization [6,13],
our targeting FPGA architecture allows multiple cells in a
site and we also need to follow the complex legalization rules.

As shown in Algorithm 3, our legalization algorithm uses
a window-base method. We first find all the sites at a same
certain distance to the cell as indicated in line 8. These sites

11

11

11

1 1

11

2.7 2.7

1.7

1.7 1.7

1.7

G-Cell Switch Box Pin BB

Figure 7: Congestion map example.

(a) (b) (c) (d)

High

Low
C

o
n

g
estio

n
 L

ev
el

Figure 8: Congestion Maps of e2 and e3 in ISPD2016 con-
test: (a) actual routing congestion of e2 obtained from Vi-
vado; (b) our estimation of e2; (c) actual routing congestion
of e3 obtained from Vivado; (d) our estimation of e3.

form a window, such that putting the cell to any position in
the window will result in the same disturbance to the global
placement result. HPWL then becomes the prime objective
and a legal site for the cell will be found as shown in line
11 to line 19. In our implementation, we assume that the
disturbance to global placement caused by a displacement of
less than four sites is the same. As this algorithm is highly
flexible in choosing the second object (HPWL in ours), it
can also be adapted to optimize other objectives like timing,
power, etc.

Unlike DSPs and RAMs, the legalization of BLEs is much
more complicated. First, we need to check whether a move
will violate the complex legalization rules. Secondly, when
putting BLEs into CLBs, there are various choices such
as whether a BLE should be broken into LUTs and FFs,
whether a BLE should be merged, and which BLEs should
be merged, etc. To decide whether we should break a BLE
back into basic logic elements, we need to consider the trade-
off between area utilization and the number of nets need to
be routed. In our algorithm, we prefer not to break the
BLEs obtained by packing since this not only can reduce
the computational resources in legality checking significantly
but also will result in less routing congestion. To increase
the area utilization while still using BLE as the basic ele-
ment in legalization, we will greedily merge a BLE to one of
the BLEs already in a slice. However, if a net-list has com-
plicated control nets, it is likely to fail in legalization if the
BLE cluster is not allowed to be changed. Thus, to ensure
that legalization can return a legal result, we allow BLEs to

be broken if the design cannot be legalize without breaking
BLEs. This situation will rarely happen given the premise
that the legality check and the merging algorithm for BLE
(IsLegal in line 13) has good performance. Actually in the
experiment, there are only a few very complicated designs
that need to break BLEs back into LUTs and FFs in order
to legalize the global placement result.

Algorithm 3 LegalizeWin

Input: Cells, their locations and breakBLE
Output: The legal location of each cell
1: for all cell in cells do
2: winSize← 0;
3: isPlace← false;
4: while !isPlace do
5: sites← ∅;
6: while sizeof(sites) < 20 do
7: sites← sites

⋃
GetCandSites(winSize);

8: winSize← winSize + 1;
9: end while

10: sort sites ascending by HPWL;
11: for all site in sites do
12: if IsLegal(site,cell,breakBLE) then
13: dispcell ← GetDispcell(site);
14: loccell ← GetLoc(site);
15: isPlace← true;
16: break;
17: end if
18: end for
19: end while
20: end for
21: return loc, disp;

3.7 Detailed Placement
In our detailed placement, two procedures, (1) slice swap-

ping and (2) BLE moving , are executed in every iteration
to refine the placement result. To optimize HPWL in slice
swapping, we move a slice to an empty space in its opti-
mal region if it exists. Otherwise, it will be swapped with a
slice in its optimal region if the HPWL is improved after the
swap. Similarly in BLE moving, a BLE is moved to a slice in
its optimal region if the move satisfies the legalization rules.

However, given a placement, HPWL only considers the
wirelength but not the actual routed wirelength which is
affected by the routing congestion and the routing resources.
In order to better optimize routed wirelength in our detailed
placement, HPWL is used as primary objective and routing
resources are used as secondary objective.

In our algorithm, we prefer putting BLEs in sites that
needs less routing resources (RR). Given a BLE and its po-
sition, we can calculate its RR by equation (2), which ac-
cumulates all the RR needed to connect this BLE to other
connected BLEs.

RRBLEi(x, y) =
∑

c∈CBLEi

f(x, y, c), (2)

where BLEi is the BLE to be moved, CBLEi represents the
elements connected to BLEi, f(x, y, c) is a function that
returns how many RR it will use to connect BLEi and ele-

Connected BLE BLE to be movedSwitch Box

(a) (b) (c) (d) (e)

Figure 9: Five kinds of candidate locations for the BLE to
be moved: f(x, y, c) = fswitchbox(x, y, c) + fshape(x, y, c): (a)
4 = 2 + 2, (b) 3 = 1 + 2, (c) 2 = 1 + 1, (d) 1 = 0 + 1, (e)
0 = 0 + 0.

ment c if BLEi is placed at position (x, y).

f(x, y, c) = fswitchbox(x, y, c) + fshape(x, y, c). (3)

The value of f(x, y, c) in equation (3) consists of two parts.
The first part fswitchbox(x, y, c) returns how many switch
boxes are needed to route the net connecting c and BLEi

and it’s calculate by the equation below,

fswitchbox(x, y, c) =


0, if nSwitchbox= 1,

1, if nSwitchbox= 2,

2, if nSwitchbox≥ 3,

where nSwitchbox denotes the minimum number of switch
boxes thatBLEi needs to used to connect to c if it is placed
in (x, y). The other part considers the RR in terms of the
shape of the chip. Without loss of generalty, we assume that
the height of the chip is larger than its width. Since we prefer
our placement to use horizontal routing resources instead of
vertical ones and prefer putting as many connected BLEs in
the same site as possible, we use the following equation to
calculate fshape(x, y, c),

fshape(x, y, c) =


0, if BLEi, c are on the same site,

1, if BLEi, c are horizontally aligned,

2, otherwise.

An example is given in Figure 9. Since we only use one
switch box to route the net in Figure 9(d) and 9(e), their
values of fswitchbox(x, y, c) equal 0. While in Figure 9(b)
and 9(c), two switch boxes are needed, so the values of their
fswitchbox(x, y, c) are 1. In Figure 9(a), three switch boxes
are needed to route the net, the value of fswitchbox(x, y, c) is
2. Since the two BLEs are placed in the same site in Fig-
ure 9(e), the value of fshape(x, y, celli) is 0. In Figure 9(c)
and 9(d), the two BLEs are horizontally aligned, so the val-
ues of their fshape(x, y, celli) are one. In Figure 9(a) and
9(b), the BLEs are neither in the same site nor horizontally
aligned, so the values of their fshape(x, y, celli) equal two.
We then add fshape(x, y, celli) and fswitchbox(x, y, celli) up
to get the resulting RR.

4. EXPERIMENTAL RESULTS
To evaluate our proposed method, the algorithms are im-

plemented in C++. The experiments were performed on a
64-bit Linux workstation with Intel Xeon 3.7GHz CPU and
16GB memory, using the benchmarks provided by ISPD2016
Routability-Driven FPGA Placement Contest [18]. Table 2
shows the statistics of the benchmarks. We compare the
quality of our placement algorithm with the placers of the
wining teams in the ISPD2016 contest.

Table 2: Statistics of the ISPD2016 contest benchmark.
Design #LUT #FF #RAM #DSP #Ctrl set

FPGA-1 50K 55K 0 0 12
FPGA-2 100K 66K 100 100 121
FPGA-3 250K 170K 600 500 1281
FPGA-4 250K 172K 600 500 1281
FPGA-5 250K 174K 600 500 1281
FPGA-6 350K 352K 1000 600 2541
FPGA-7 350K 355K 1000 600 2541
FPGA-8 500K 216K 600 500 1281
FPGA-9 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 600K 600 500 1281
resource 526K 1100K 1600 770 -

The last row gives the total available resources on the FPGA.

In our experiments, we use the architecture of the com-
mercial device family, Xilinx UltraScale [1], for our compar-
ative study. The device aspect ratio and average spacing
between blocks were determined based on the Xilinx Ultra-
Scale VU095, the latest 20nm FPGA chip. For fair compari-
son, all the placers were executed with single thread. We set
Vivado using the same configurations in ISPD2016 contest,
which uses two threads in routing and limits the running
time to be 12 hours.

Table 4 shows our routing wirelength and running time
compared to the winners of ISPD2016 contest. Since we can-
not get the executables of the placers of the first and third
place winners, both the running time and routed wirelength
results of those two placers come from the ISPD2016 con-
test organizer. Note that since our computer configuration
is different from that used in the contest, the running time
is just listed for reference and cannot be compared directly.
From the result, we can see that, our placer show good per-
formance compared to the other three and can successfully
generate a routable placement for all test cases.

The results in Table 3 show that the partitioning based
pre-processing step mentioned in Section 3.2 and the congestion-
driven global placement step described in Section 3.4.2 per-
form well in reducing congestion.

Table 3: Comparisons of routed wirelength between apply-
ing different methods

Design raw cong gp partition both
FPGA-1 362563 364143 378029 377883
FPGA-2 681418 677563 696417 689360
FPGA-3 4027586 3999517 3645846 3617466
FPGA-4 6037293 6087199 6265158 6357766
FPGA-5 - - - 10455204
FPGA-6 7801736 7723476 7016684 6960037
FPGA-7 10248020 10615672 10338763 10580828
FPGA-8 9171179 9392039 8874454 9013564
FPGA-9 12954350 13437554 - 13834692
FPGA-10 - 10372369 8782789 8564363
FPGA-11 - - 11226088 11688504
FPGA-12 - 10286583 - 8928528

In the second column, “raw” represents the flow without using
partition (Section 3.2) and cong gp (Section 3.4.2). The third and
fourth column give the routed wirelength of applying only one
of the methods to “raw” respectively. The last column gives the
routed wirelength of applying both cong gp and partition to“raw”.

5. CONCLUSION
Although the traditional simulated-annealing based FPGA

placement algorithm can achieve high-quality result, the scal-
ability problem becomes unacceptable as the circuits grow
larger. Analytical placement algorithm for FPGA becomes

Table 4: Placement quality comparison with ISPD2016 contest winners

Design
RippleFPGA 1st Place 2nd Place 3rd Place
WL TIME(s) WL TIME(s) WL TIME(s) WL TIME(s)

FPGA-1 362563 74 - - 379932 118 581975 97
FPGA-2 677563 167 677877 435 679878 208 1046859 191
FPGA-3 3617466 1037 3223042 1527 3660659 1159 5029157 862
FPGA-4 6037293 621 5628519 1257 6497023 1449 7247233 889
FPGA-5 10455204 1012 10264769 1266 - - - -
FPGA-6 6960037 2772 6330179 2920 7008525 4166 6822707 8613
FPGA-7 10248020 2170 10236827 2703 10415871 4572 10973376 9196
FPGA-8 8874454 1426 8384338 2645 8986361 2942 12299898 2741
FPGA-9 12954350 2683 - - 13908997 5833 - -
FPGA-10 8564363 5555 - - - - - -
FPGA-11 11226088 3636 11091383 3227 11713479 7331 - -
FPGA-12 8928528 9748 9021768 4539 - - - -

The computer used for RippleFPGA is a Linux workstation with 3.7GHz CPU and 16GB memory. The computer used for the three contest
placers is a Linux Machine with 2.7GHz CPU and 16GB memory.

the main stream of FPGA placement because it can ob-
tain competitive result with significantly shorter running
time compared to other approaches. Moreover, routabil-
ity has become a main issue in placement when the design
complexity grows higher. This paper has proposed an ef-
ficient and effective routability-driven analytical placement
for large-scale heterogeneous FPGAs. The proposed algo-
rithm consists of five stages: (1) partitioning, (2) packing,
(3) global placement with congestion estimation, (4) legal-
ization, and (5) routing-resources-aware detailed placement.
The experimental results show that our placement algorithm
can achieve good quality and running time compared to the
state-of-the-art academic placers.

6. REFERENCES
[1] Xilinx inc. http://www.xilinx.com.

[2] C. J. Alpert and A. B. Kahng. Recent directions in
netlist partitioning: a survey. Integration, the VLSI
Journal, 19(1):1–81, 1995.

[3] H. Bian, A. C. Ling, A. Choong, and J. Zhu. Towards
scalable placement for FPGAs. In ACM Symposium
on FPGAs, pages 147–156. ACM, 2010.

[4] D. T. Chen, K. Vorwerk, and A. Kennings. Improving
timing-driven FPGA packing with physical
information. In IEEE International Conference on
Field Programmable Logic and Applications (FPL),
pages 117–123. IEEE, 2007.

[5] Y.-C. Chen, S.-Y. Chen, and Y.-W. Chang. Efficient
and effective packing and analytical placement for
large-scale heterogeneous FPGAs. In IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pages 647–654. IEEE Press, 2014.

[6] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Y.
Young. Cell density-driven detailed placement with
displacement constraint. In ACM International
Symposium on Physical Design (ISPD), pages 3–10.
ACM, 2014.

[7] M. Gort and J. H. Anderson. Analytical placement for
heterogeneous FPGAs. In IEEE International
Conference on Field Programmable Logic and
Applications (FPL), pages 143–150. IEEE, 2012.

[8] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam,
W. Cai, and E. F. Y. Young. Ripple 2.0: high quality
routability-driven placement via global router
integration. In ACM/IEEE Design Automation
Conference (DAC), pages 152:1–152:6. IEEE, 2013.

[9] M.-C. Kim, D.-J. Lee, and I. L. Markov. SimPL: An

effective placement algorithm. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 31(1):50–60, 2012.

[10] T.-H. Lin, P. Banerjee, and Y.-W. Chang. An efficient
and effective analytical placer for FPGAs. In
ACM/IEEE Design Automation Conference (DAC),
page 10. ACM, 2013.

[11] J. Luu, J. Goeders, M. Wainberg, A. Somerville,
T. Yu, K. Nasartschuk, M. Nasr, S. Wang, T. Liu,
N. Ahmed, et al. VTR 7.0: Next generation
architecture and CAD system for FPGAs. ACM
Transactions on Reconfigurable Technology and
Systems (TRETS), 7(2):6, 2014.

[12] P. Maidee, C. Ababei, and K. Bazargan.
Timing-driven partitioning-based placement for island
style FPGAs. 24(3):395–406, 2005.

[13] P. Spindler, U. Schlichtmann, and F. M. Johannes.
Abacus: fast legalization of standard cell circuits with
minimal movement. In Proceedings of the 2008
international symposium on Physical design, pages
47–53. ACM, 2008.

[14] P. Spindler, U. Schlichtmann, and F. M. Johannes.
Kraftwerk2: A fast force-directed quadratic placement
approach using an accurate net model. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 27(8):1398–1411, 2008.

[15] D. Xie, J. Xu, and J. Lai. A new FPGA placement
algorithm for heterogeneous resources. In
International Conference on ASIC (ASICON), pages
742–746. IEEE, 2009.

[16] M. Xu, G. Gréwal, and S. Areibi. StarPlace: A new
analytic method for FPGA placement. Integration, the
VLSI Journal, 44(3):192–204, 2011.

[17] Y. Xu and M. A. Khalid. QPF: efficient quadratic
placement for FPGAs. In IEEE International
Conference on Field Programmable Logic and
Applications (FPL), pages 555–558. IEEE, 2005.

[18] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and
R. Aggarwal. Routability-driven FPGA placement
contest. In Proceedings of the 2016 on International
Symposium on Physical Design, pages 139–143. ACM,
2016.

[19] Y. Zhuo, H. Li, and S. P. Mohanty. A congestion
driven placement algorithm for FPGA synthesis. In
IEEE International Conference on Field
Programmable Logic and Applications (FPL), pages
1–4. IEEE, 2006.

http://www.xilinx.com

