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ABSTRACT
Conventional silicon physical unclonable function (PUF) ex-
tracts fingerprints from transistor’s analog attributes, which are
vulnerable to environmental and operational variations. Re-
cently, digitalized PUF prototypes have emerged to overcome
the vulnerability issues, however, the existing prototypes are
either hybrid of analog-digital PUFs which are still under the
shadow of vulnerability, or impractical for real-world implemen-
tation. To address the above limitations, we propose a learn-
ing resilient and reliable digital PUF (LRR-DPUF). The finger-
prints are extracted from VLSI interconnect geometrical ran-
domness induced by lithography variations. Crucially, we use
strongly skewed latches to ensure the immunity against envi-
ronmental and operational variations. Further, a cross-coupled,
highly non-linear logic network is proposed to effectively spread
and augment even subtle interconnect randomness, as well as
to achieve strong resilience to machine learning attacks.

We demonstrate that a 64-bit LRR-DPUF exhibits close to
ideal statistical performances, including 0 intra Hamming Dis-
tance. We also mathematically prove that each output of the
LRR-DPUF follows uniform distribution. Various state-of-the-
art machine learning models show almost no better than random
prediction accuracies when applied to LRR-DPUF.

1. INTRODUCTION
The pervasive embedded computing devices require reliable

and low cost authentication mechanisms to ensure safety of sen-
sitive information and life-critical actions. An increasing de-
mand on high performance security solutions can be foreseen
in the era of Internet of Things (IoT). Silicon Physical Unclon-
able Function (PUF) is an innovative low cost hardware security
primitive [1–5] that derives authentication fingerprints from in-
tegrated circuits manufacturing process variations.

PUFs are classified into strong PUF and weak PUF, depend-
ing on the number of unique challenge-response pairs (CRPs)
the PUF can produce. A strong PUF has sufficiently large CRP
space, hence it is impossible to enumerate or predict any CRP
within a limited time-frame. By contrast, a weak PUF is often
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used for secure key generation due to the limited CRP space.
We discuss strong PUF in this paper.

A number of PUF architectures have been proposed in lit-
erature, and today the most popular PUFs are often modeled
with memory [6–8], delay [9–12], etc. All those PUF architec-
tures utilize transistors’ intrinsic randomness under process
variations, which are by nature analog attributes. Just as any
analog circuit systems, analog PUFs are commonly vulnerable
to environmental and operational variations. Therefore, analog
PUF architectures are often equipped with a fuzzy extractor [13]
or an error correction system [14]. Those auxiliary circuits of-
ten require hardware cost and power consumptions several or-
der magnitude higher than the PUF circuit itself. In addition,
some analog PUF models, e.g., delay based PUF, have been
demonstrated insecure from side channel and machine learning
attacks [15,16].

There is a strong demand to derive digital PUFs in order to
tackle the reliability limitations in analog PUFs as well as to
provide low latency, high throughput PUF solutions. In the
recent years, there have been some literatures proposing proto-
type digital PUFs [17, 18]. Xu et al. [17] proposed an FPGA
based digital PUF that combines FPGA fabric with a standard
analog PUF. The analog PUF is used at initialization stage and
can be discarded afterwards. However, this is not a completely
digitalized PUF, hence it faces the same limitations as analog
PUF does, particularly in the initialization stage. Later in [18],
Xu et al. proposed the first conceptual level fully digitalized
PUF by using defective digital IC chips. It is based on the ob-
servation that a small circuit fault can drastically impact the
overall functionality of a digital logic, hence such circuit faults,
which were modeled as stuck-at-faults and bridge-faults, can be
used as the fingerprint for digital PUF. However, those fault
models are too simplified to catch the physical impacts induced
by the fault. Depending on specific contexts, some circuit faults
may lead to serious physical and logical chain-effect, and ulti-
mately break down the entire circuit system. This contradicts
to the original purpose of using digital PUFs. For example, the
Wired-AND model in CMOS circuits may result in a direct cur-
rent path from supply voltage to ground, and put the CMOS
gate to an uncertain operating region. This may cause large
power waste and even unstable outputs in CMOS gates. There-
fore, it is necessary to reconsider the feasibility by direct use of
a defective IC chip as digital PUF. Nevertheless, the concept of
utilizing faulty circuits is still valuable and inspires our digital
PUF development.

In addition, one critical question is yet to be addressed– what
would be the optimal logical circuit to use for the maximal se-
curity? In [18], an array multiplier was taken to demonstrate
the defective IC PUF concept, however, neither linearity anal-
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ysis nor learning based reverse engineering was conducted. In
fact, unlike analog PUFs where the non-linearity is derived by
transistor natures, many digital logic circuits intrinsically can
be linearly-separable [19], and relying on arbitrary logic cir-
cuits may lead to insecure PUFs vulnerable to even linear model
machine learning attacks. Therefore, a highly non-linear logic
architecture is desired to realize a secure digital PUF.

In this paper, we propose a novel learning resilient and re-
liable digital PUF (LRR-DPUF) that resolves the reliability
drawbacks in analog PUFs as well as the practicality and se-
curity issues in existing digital PUFs. Our LRR-DPUF takes
advantages of Boolean type interconnect randomness induced
by lithography variations, and crucially, the digitalization is re-
alized by using strongly skewed latch to ensure the Boolean
status for all internal signals. The interconnect randomness is
ultimately spread and cross-coupled by a novel highly non-linear
logic network architecture. The proposed LRR-DPUF shows
close to ideal statistical performance and strong resilience to
machine learning attacks.

Our major contributions are summarized as follows:

• Quantitatively justify the feasibility of utilizing the inter-
connect randomness induced by lithography variations;

• Propose to use strongly skewed latches to ensure a com-
plete and reliable digital PUF architecture;

• Propose a novel highly non-linear logic network architec-
ture that can effectively spread and augment any inter-
connect randomness, as well as achieve strong resilience
to machine learning attacks.

The rest of the paper is organized as follows: in Section 2, we
discuss the source of Boolean type randomness during lithog-
raphy process. In Section 3, we propose our solution to make
the interconnect randomness compatible to CMOS technology.
In Section 4, we propose our LRR-DPUF architecture. In Sec-
tion 5, we analyze the properties of the LRR-DPUF. In Sec-
tion 6, we show statistical evaluations and learning resilience. In
Section 7, we further discuss additional issues on LRR-DPUF,
followed by the conclusion in Section 8.

2. BOOLEAN RANDOMNESS BY
LITHOGRAPHY

Identifying a feasible Boolean randomness source is half the
battle to make a digital PUF. Conventional analog PUFs rely
on transistor’s intrinsic randomness, including delay, current,
resistance, capacitance, etc. Xu et al. [18] first proposed to take
advantage of the randomness from VLSI interconnect, namely
the metal wires. Such interconnect randomness, by itself, is a
Boolean type variable, i.e., in either connected or disconnected
status1. The feasibility of utilizing the interconnect random-
ness, however, was not justified. It was also unclear whether or
how such randomness can be controlled during design and man-
ufacturing stages. In this section, we will analyze how process
variations affect the VLSI interconnect, and will quantitatively
demonstrate the feasibility of utilizing such randomness.

As VLSI technology node scales down to nanometer regime,
one of the major interconnect geometrical variations comes from
lithography. The lithography variations can be categorized into
“systematic” and “local” variations2. The systematic variation,
including dose (light density) and focus variations in lithogra-
phy system, refers to a systematic offset applied to a group of
adjacent layout patterns, and is often considered as inter die

1We will discuss further on high-resistance case in Section 7.
2Local variations are also referred as random variations.
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Figure 1: Interconnect under lithography variations. (a) Mask
stripe-pairs with split distance of 20nm (top) and 28nm (bot-
tom). The top mask is zoomed in. (b) Lithography simulation
outputs (shapes on wafer).

variation. The local variation, by contrast, including mask er-
rors and line edge roughness (LER), refers to localized or intra
die randomness for each individual layout pattern. Considering
typical PUF circuits to be small in size, the local variation is
more of importance to generate unique fingerprints and should
dominate the systematic variations.

There have been literatures utilizing lithography variations
for PUF designs [20–22]. Kumar et al. [20] proposed to utilize
local pitch variations for PUF design. Rather than Boolean
type randomness, the lithography variations were used to gen-
erate transistor analog fingerprints, leading to an analog PUF.
Both [21] and [22] claimed to use focus and dose variations
as a ubiquitous approach applied to general PUF designs. As
aforementioned, dose and focus are systematic variations mostly
impacting inter-die variations, the overall performance improve-
ments can be limited.

In this paper, we utilize the interconnect randomness from the
very local mask variation when producing a photo mask by an
electron beam lithography system (the conventional mask man-
ufacturing tool). Mask error enhancement factor (MEEF) [23]
is used to quantify how mask variations will be reflected in
the final wafer. In advanced technology nodes, even with grid-
ded design rules (GDR) and resolution enhancement techniques
(RET), the MEEF value on line-end can be up to 10× [24],
which means a 5nm variation in mask line-end pattern would
cause 50nm change in the final wafer pattern. In practice, an
electron beam system can easily lead to mask variations well
exceed this 5nm variation threshold [25].

In this paper, the interconnect randomness is realized by in-
tentionally positioning two interconnect layout line-ends close
to each other, and due to mask variations, the generated masks
will have mismatches. Such mismatch is further magnified by
MEEF factor on the wafer, and ultimately leads to uncertain
connectivity status. Figure 1(a) shows two mask stripe-pairs
split by a small distance. The bottom stripe-pair is with the
original split distance of 28nm, while the top stripe-pair is with
distance of 20nm due to mask variations. Here we assume 3nm
and 5nm mismatches for the two line-ends, respectively. We
use an industry lithography simulator [26] to simulate these
two mask stripe-pairs, and Figure 1(b) shows the final output
images. The 8nm difference of the split distance in the two
stripe-pairs is now converted to two Boolean connectivity sta-
tuses: the top stripe-pair is merged and connected, while the
bottom remains disconnected.

We now justify how the overall connectivity statistics are im-
pacted by the layout split distance as well as local and sys-
tematic lithography variations. Before that, we introduce the
concept of connectivity rate as the number of eventually con-
nected stripe-pairs over the number of total stripe-pairs. Note
that the split distance can be controlled by circuit engineers
when designing VLSI layout, and the local variation, specifically
the mask error, can be modeled by centered Gaussian distribu-



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 35  40  45  50

selected mean

C
o

n
n

e
c
ti
v
it
y
 R

a
te

Layout Split Distance (nm)

(a)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  1  2  3  4  5

selected stdv.

C
o

n
n

e
c
ti
v
it
y
 R

a
te

Mask Error Stdv. Distance (nm)

(b)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.98  0.99  1  1.01  1.02

C
o

n
n

e
c
ti
v
it
y
 R

a
te

Dose Value (normalized)

(c)

Figure 2: Interconnect connectivity rate under lithography variations: (a) Layout split distance under mask error stdv. of 4nm;
(b) Mask error stdv. under split distance of 46nm; (c) Dose values.

tion3 [23,27], where the standard deviation (stdv) is depending
on the accuracy and settings of the electron beam system. Both
factors can be configured in today’s VLSI manufacturing setup.
By contrast, the dose variation is a systematic offset applied to
specific wafer zones which should be minimized. Such offsets
could shift the connectivity status towards a single direction
on certain wafer zones, hence degrade the level of interconnect
randomness and further the PUF performance. Therefore, the
central task in the rest of this section is to justify the feasi-
bility of minimizing the impact from systematic variations by
carefully configuring the split distance and mask error.

We first evaluate the mask variations under various split dis-
tances ranging from 35nm to 53nm with 1nm step. For each
split distance, we further sweep the mask error stdv ranging
from 0nm to 5nm, leading to various mask stripe-pair sets,
each with size of 10K. These variously configured 10K stripe-
pair sets are later fed into the lithography simulator [26] to get
the ultimate stripe shapes on wafer. We then measure the con-
nectivity rate of each 10K stripe set. For example, Figure 2(a)
shows when the mask error stdv. is 4nm, by changing the lay-
out split distance, connectivity rate can vary from about 0.4 to
0.99. And Figure 2(b) shows when the layout split distance is
46nm, connectivity rate changes from 1.0 to 0.8 when the mask
error varies from 0nm to 5nm.

Further, we evaluate the impact from dose variation that
would cause potential systematic offsets to the split distance 4.
In Figure 2(c), we sweep the normalized dose value from 0.98 to
1.02 (the maximum available range) with split distance of 46nm
and mask error stdv. of 4nm, where the 46nm and 4nm are
the selected configurations that can minimize the dose impact.
Clearly, the connectivity rate retains in a high value between
0.75 and 0.93. We show in later section that, higher connectivity
rate (but less than 1) generally leads to better security perfor-
mance in our proposed digital PUF architecture. Therefore, by
carefully configuring the layout split distance and electron beam
system accuracy, it is feasible to minimize the impact from the
systematic offset like dose.

Overall, we have justified the feasibility of using interconnect
geometrical variation for PUF design. However, such intercon-
nect randomness cannot be directly used in the VLSI circuit
systems, especially for CMOS circuits, due to serious physical
incompatibilities. In next section, we will propose our solution
to make such randomness compatible to digital VLSI systems.

3. MAKING IT CMOS COMPATIBLE
3We show in Section 5 that, the performance of LRR-DPUF
relies on the cumulative connectivity rate regardless of any spe-
cific distribution pattern.
4In this paper, we ignore the systematic variations from focus,
as it can be dealt with in a similar manner as dose [22].
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Figure 3: Handling dangled poly-gate by strongly skewed
latch. (a) Inverter pair skewed latch structure; (b) The VTC
relation of a strongly skewed latch.

In CMOS circuits, any unexpected open-circuit and short-
circuit may lead to serious circuit failures. Such failures are
not only in logical perspective, but can also adversely affect the
physical reliability and power efficiency. Particularly, for the
case of open-circuit failure, the transistor poly-gate is dangled
with floating voltage level. This makes the transistor vulnerable
to environmental noise which may even change the transistor
operating region. For the case of short-circuit failure, where
two CMOS gates’ drains are connected, there will be a good
chance to create a direct current path from supply voltage to
ground, resulting huge power waste as well as unknown transis-
tor operating region. Apparently, both scenarios are opposite
to the original wish of digital PUF. In this section, we propose
our solution to completely eliminate the aforementioned issues
and make the interconnect randomness compatible to CMOS
circuits.

The goal is to identify a pure logical structure so that it can
work with both open-circuit failures as well as normally con-
nected circuits5. A CMOS latch, by connecting two inverters
head-to-tail, can be a good candidate. A latch is supposed to
either remain a pre-existing state until a new input is applied,
or preset an initial state and later never change it. The first
feature ensures the compatibility to normal circuit operations,
and the latter one makes it possible to work with open-circuit
failures. For open-circuit failures, the input to latch is dangled,
and the initial state will be automatically set during the power
up state [6]. However, for a regular symmetric latch, the initial
power up state may be affected by static noises, hence can be
inconsistent from time to time. To completely eliminate such
uncertainties induced by static noise, in Figure 3(a), we propose
to use a strongly skewed-1 inverter that head-to-tail connects

5The short-circuit failure case will be constructively avoided in
our LRR-DPUF architecture.



to a strongly skewed-0 inverter. The skewed-0 inverter can fur-
ther strengthen the skewed-1 inverter, hence together form a
strongly skewed-1 latch. Note that, without any loss of gener-
ality, we only discuss skewed-1 latch in this paper. Here, the
skewed-1 inverter is realized by specifying i) PMOS width sev-
eral times wider than its NMOS counterpart, and ii) lower volt-
age threshold (VT) for PMOS and higher VT for NMOS. The
skewed-0 inverter can be derived by the opposite configuration.
In Figure 3(a), if pin A gets disconnected, minor static noise
cannot change the power up state of this skewed latch, and the
latch will favor more to stay at logic 1. Note that after power
up phase, the latch will remain in the logic value until supply
voltage is removed. In addition, the skewed-1 inverter has to
be designed with larger size than the skewed-0 inverter for the
case that when the latch is normally connected to the network
without open-circuit failure, the skewed-1 inverter should dom-
inate the skewed-0 inverter. In that case, the skewed latch is
reduced to a regular inverter.

In Figure 3(b) we show the HSPICE simulations with PTM-
45nm model for voltage-transfer curves (VTC). The skewed-1
inverter has 10× wider width on PMOS than its NMOS counter-
part, and the skewed-0 inverter has 4× wider width on NMOS
than its PMOS. Besides, the PMOS in skewed-1 inverter uses
low VT PMOS and high VT NMOS transistors, and vice versa
for skewed-0 inverter. It can be observed that in the power up
voltage region, i.e., less than 0.3V, the noise margin is maxi-
mized to favor logic 1, hence practically guarantees a determin-
istic power up state. When voltage increases to 1.0V, the latch
will remain in logic 1 unless pin-A is applied by a new input.

Note that in memory based PUF literatures, latch skewness
was also discussed and used as the power-up fingerprint [6, 7].
The major difference against memory PUF is that, in memory
circuits, all latches are designed to be symmetric, and the skew-
ness comes from the intrinsic process variation and is used as
the source of fingerprint. However, such intrinsic variation does
not guarantee all latches to be skewed in memory PUFs, which
is the very root cause of the reliability drawbacks for such type
of PUFs. By contrast, we intentionally skew all latches in order
to completely eliminate any possible environmental vulnerabil-
ity as well as to make the interconnect randomness compatible
to CMOS systems. We will further demonstrate by HSPICE
in Section 6 that, such strongly skewed latches retain consis-
tent power-up state across very wide temperature and voltage
ranges. With above preparation, in next section, we introduce
our learning resilient digital PUF architecture.

4. THE LRR-DPUF ARCHITECTURE
To this point, we have converted the PUF design to be a

pure logic design problem. Our focus now is to identify a non-
linear logic network that can maximize and spread any subtle
interconnect randomness, and ultimately realize a highly secure
digital PUF. We propose to derive a logic network constructed
by regularly repeated nodes, and we call each node a unit
cell. In the following, we will first discuss the design of unit
cells, and then propose the overall logic network topology. In
Section 5 , we will further analyze in details the properties of
the proposed LRR-DPUF.

4.1 Unit Cell
In cryptography, Exclusive-OR (XOR) logic is the most pop-

ular function due to the simplicity in realization and perfect
security nature. Due to the linearly non-separable attribute, an
XOR logic outstands other logics like AND, OR, etc., offering
intrinsic resilience to many learning based attacks. As shown
in Figure 4, to separate the output of a 2-input XOR logic, at
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Figure 4: Linear non-separable nature for XOR logic. (a) The
2-input XOR logic Y = A⊕B requires at least 2 lines to separate
the 1 and 0 dots; (b) The 3-input XOR logic Y = A ⊕ B ⊕ C
requires at least 3 planes for separation.
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Figure 5: Unit cell: left figure shows the complete logic struc-
ture; right figure is the simplified symbol.

least 2 lines are required, and 3 planes are required for a 3-
input XOR logic. Another intriguing feature of XOR logic is
the uniform output distribution. In Lemma 1, we show that
for a 2-input XOR, as long as one of the inputs is uniformly
distributed, the XOR output is ensured uniformly distributed.
This property will be further discussed in Section 5 once the en-
tire LRR-DPUF topology is introduced. Therefore, XOR logic
can be a perfect candidate for our unit cell design.

Lemma 1. Pr[y = 1] = Pr[y = 0] = 0.5 holds, as long as
Pr[a = 1] = Pr[a = 0] = 0.5, ∀b ∈ B,
where a and b are the two inputs of a 2-input XOR gate, and
y is the output. The symbol Pr[y = 1] refers to the probability
of output y being logic 1, and vice versa.

Proof. For a 2-input XOR gate, the probability of output
being logic 1 can be written as Pr[y = 1] = Pr[a = 1]× Pr[b =
0]+Pr[a = 0]×Pr[b = 1]. Consider Pr[a = 1] = Pr[a = 0] = 0.5,
we have Pr[y = 1] = 0.5 × Pr[b = 0] + 0.5 × Pr[b = 1] =
0.5×(Pr[b = 0]+Pr[b = 1]) = 0.5. Hence Pr[y = 0] = 1−Pr[y =
1] = 0.5.

Figure 5 shows the unit cell structure. It is a 2-input 1-output
logic block, constructed by a 2-input XOR gate with one of its
inputs connected to the strongly skewed-1 latch. The key pin is
the actual information bit that passes through this XOR gate.
The virtual connection pin is the source of the randomness.
It may or may not connect to the logic network depending on
the interconnect randomness status. If this virtual connection
pin is connected to a stable logic value, the output of the entire
unit cell has logic expression of key ⊗ virtual connection. If it
is dangled, as discussed in Section 3, since the skewed-1 latch
stays in logic 1 state after power up, the output of the unit
cell equals to key. In general, the unit cell can be viewed as
a random “bit-flip” block, where a 1-bit information (key pin)
may or may not get inverted depending on the interconnect
randomness. Apparently, in any case, the unit cell output is
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Figure 6: The LRR-DPUF architecture. (a) The general architecture with N-row by M-column. Some boundary virtual connection
pins are marked by “Z” indicating dangling status; (b) An 8-row by 8-column LRR-DPUF. Logic cone of out2 is highlighted in red
color.

a legal and stable logic value. For simplicity, we use a bubble
symbol to represent the unit cell in Figure 5, and the dashed
arrow for the virtual connection pin.

4.2 The LRR-DPUF Logic Network
Recall that in Figure 4, higher dimension of XOR inputs re-

quire more number of hyper-planes for separation hence indicat-
ing higher level of non-linearity. This hints a cross-coupled XOR
logic network. We therefore propose our LRR-DPUF architec-
ture in Figure 6(a). It is an XOR based logic network with N -
input and N -output. There are N rows and M columns, where
one column refers to one unit cell per row. Note that the dashed
arrow refers to virtual connection pin of the unit cell, indicating
possible disconnection from the network. The unit cell’s output
pin is sequentially cascaded to next unit cell’s key pin, and the
virtual connection pin is possibly connected to its neighbor
row. For 0th and (N − 1)th rows, i.e., the boundary rows, some
unit cells’ virtual connection pins are always dangled, and they
are marked by letter “Z”. The two boundary rows will have
undistinguishable impact on the overall PUF performance due
to the highly coupled XOR network dependencies.

We write down the logical expression for non-boundary nodes
in recursion manner. Boundary node expressions can be easily
derived by substituting with input or Z pins. Here the ki,j
refers to i-row j-column output, and v refers to the virtual
connection status.

ki,j =


ki,j−1 ⊕ (v · ki+1,j−1 + v), i even, j even;

ki,j−1 ⊕ (v · ki−1,j−1 + v), i even, j odd;

ki,j−1 ⊕ (v · ki−1,j + v), i odd, j even;

ki,j−1 ⊕ (v · ki+1,j + v), i odd, j odd.

(1)

For better understanding of the LRR-DPUF network, we can
view each row as a magic “signal tunnel”. When the 1-bit input
information is passing through this tunnel, it may or may not be
flipped due to the uncertain status of virtual connections pins.
Crucially, since each pair of neighbor rows have bi-directed vir-
tual connections in between, each virtual connection also relies
on its precedent as well as upper and lower neighbors’ virtual
connection statuses, resulting in a highly non-linear dependency
graph. As long as the number of column M is no less than the
number of row N , i.e., M > N , the logic cone of each outi
will have the potential to cover all the inputs inj . We show an
8-row by 8-column LRR-DPUF example in Figure 6(b). The

logic cone of out2 is highlighted in red color which covers all
inputs. The same coverage is true for every output. In next
section, we will discuss in detail the LRR-DPUF properties.

5. PROPERTY ANALYSIS
In this section, we reveal important properties of the LRR-

DPUF. First of all, it is intriguing to figure out how does the
probability of the overall interconnect status impact the LRR-
DPUF performance. In line with the definition used in Sec-
tion 2, we define “connectivity rate” as the number of the non-
dangled virtual connection pins over the total number of virtual
connection pins in an LRR-DPUF architecture. For the two cor-
ner cases, i.e., the connectivity rate is 0 or 1, this LRR-DPUF
logic network is reduced to a deterministic Boolean function,
hence no longer a PUF. We therefore need to carefully control
the connectivity rate. As we have discussed in Section 2, the
connectivity rate can be controlled by circuit designers and/or
lithography system accuracy.

Consider an N -row by N -column LRR-DPUF, the total num-
ber of the virtual connections, is N2. From PUF design perspec-
tive, on one hand, the connectivity rate should not be too high
in order to generate a rich space of unique PUFs. Suppose m
out of the N2 virtual connections are connected, i.e., the rate is
m
N2 , there will be m-combinations of N2, i.e., N2!

m!(N2−m)!
unique

PUFs. We know the maximum number of unique combinations
occurs when connectivity rate is 0.5. For a 64-row by 64-column
LRR-DPUF, this ends up with 1.8e + 1696 unique PUF chips.
However, on the other hand, intuitively, higher connectivity rate
means more complex dependencies in the logic network, hence
leads to stronger resilience to learning based attacks.

Property 1. The LRR-DPUF logic network is non-linear, and
higher connectivity rate leads to stronger non-linearity.

As shown in Figure 4, since an XOR gate is linearly non-
separable, the cascaded XOR is also linearly non-separable.
High connectivity rate means more unit cells are cross-coupled,
hence a higher level of non-linearity for the dependency graph.
The maximum non-linearity happens when connectivity rate is
1, whereas, such a circuit is no longer a PUF. We will show in
Section 6 that the LRR-DPUF shows strong resilience to non-
linear machine learning attacks.



Theorem 1: Equation Pr[outj = 1] = Pr[outj = 0] = 0.5
holds as long as Pr[inj = 1] = Pr[inj = 0] = 0.5, ∀j ∈ N ,
where N refers to the number of rows in LRR-DPUF.

Proof. Since Pr[inj = 1] = Pr[inj = 0] = 0.5, with Lemma 1,
the output of the first unit cell Uj0 in row j has Pr[Uj0 =
1] = Pr[Uj0 = 0] = 0.5, regardless of the virtual connec-
tion status on the node Uj0. Notion Ujk refers to the kth

unit cell in row j. By repeatedly applying Lemma 1 to Ujk

∀k ∈ M , we have Pr[Ujk = 1] = Pr[Ujk = 0] = 0.5. Hence,
Pr[outj = 1] = Pr[outj = 0] = 0.5. Here M refers to the
number of columns.

Theorem 1 ensures that, when input follows uniform distri-
bution, output in the same row retains the uniform distribution
nature, i.e., equal chance to output 1 and 0. This theorem holds
regardless of the virtual connection status.

Property 2. There will be a sufficiently large space of unique
LRR-DPUFs even if the connectivity rate is high.

Consider a 64-row by 64-column LRR-DPUF, if 10 virtual
connections get disconnected, there will be 3.6e+29 unique PUFs,
and the connectivity rate is 4086

4096
= 99.76%. When it increases

to 20, the unique PUF space size goes up to 6.9e+53 and the
connectivity rate is still as high as 4076

4096
= 99.51%. Therefore,

high connectivity rate does not adverse the uniqueness of the
LRR-DPUF and is more preferred for better learning resilience.

Property 3. Increasing the number of columns strengthens
the resilience to machine learning attack.

In Figure 6(a), increasing the column number of unit cells cre-
ates more interleaving connections between the neighbor rows,
hence higher level of XOR logic dependency can be foreseen for
each output. Furthermore, wider columns means more inter-
dependent paths exist in the LRR-DPUF network, hence stronger
resilience to learning based attack. Related discussion will be
verified in Section 6.

Property 4. Any subtle change on the virtual connections will
be reflected to multiple outputs.

Unlike other logics, like AND, OR, etc., for XOR logic, any
input change will be reflected on the output. In addition, due
to the cross-coupled and recursive dependencies in LRR-DPUF
network (see Equation (1)), such changes will be propagated
to multiple outputs. Even slight difference between two LRR-
DPUFs can lead to significantly different CRPs characteriza-
tions, realizing high uniqueness of fingerprints. This will be
verified by the inter Hamming Distance and “avalanche” effect
in Section 6.

6. LRR-DPUF EVALUATIONS
In this section, we evaluate the performance of the LRR-

DPUF, including statistical metrics and resilience to adverse
attacks. We evaluate two LRR-DPUF configurations: 8-row by
8-column (8×8) and 64-row by 64-column (64×64), where we
use the 8×8 LRR-DPUF in order to illustrate a full statistical
image over the entire 256 CRPs. The 64×64 LRR-DPUF, by
contrast, represents a practical PUF implementation, but due
to the huge CRP space, we only evaluate a CRP subset.

6.1 Statistical Evaluation
There are four commonly used metrics for evaluating the sta-

tistical performance of a PUF [28]: inter Hamming Distance
(inter HD), intra Hamming Distance (intra HD), Uniformity,
and Bit-aliasing. Inter HD represents the ability of a PUF to

Table 1: Statistical evaluation on 8× 8 LRR-DPUF with 256
CRPs

Type (Ideal Value)
conn. rate = 0.2 conn. rate = 0.9
Mean Stdv. Mean Stdv.

Inter HD (0.5) 0.4188 0.0302 0.4943 0.0061
Intra HD (0.0) 0 0 0 0
Bit Alias (0.5) 0.5000 0.2067 0.5000 0.0730

Uniformity (0.5) 0.5000 0.1768 0.5000 0.1678

Table 2: Statistical evaluation on 64 × 64 LRR-DPUF with
100K CRPs

Type (Ideal Value)
conn. rate = 0.2 conn. rate = 0.9
Mean Stdv. Mean Stdv.

Inter HD (0.5) 0.4999 0.0009 0.5000 0.0009
Intra HD (0.0) 0 0 0 0
Bit Alias (0.5) 0.5000 0.0504 0.5000 0.0499

Uniformity (0.5) 0.5000 0.0625 0.5000 0.0624

uniquely distinguish two chips under the same challenge. Intra
HD captures how reliable of a particular PUF under operational
and environmental variations. Uniformity checks how uniform
the ratio of 1s and 0s is in the response bits of a PUF. And the
Bit-aliasing captures whether any response bit is biased and
showing nearly identical result across different chips.

We first simulate the simple 8×8 LRR-DPUF with HSPICE
using 45nm-PTM SPICE model. The skewed latch is designed
to have 10× wider PMOS width for skewed-1 inverter, and 4×
wider NMOS width for skewed-0 inverter. Besides, the PMOS
in skewed-1 inverter uses low VT PMOS and high VT NMOS
transistors, and vice versa for skewed-0 inverter. We specify the
connectivity rate of 0.2 and 0.9 two cases, in order to reveal the
connectivity impact on the LRR-DPUF performance. When
the virtual connection pin of the latch is disconnected, we set
high impedance to its input. For intra HD simulation, we sweep
temperatures from −20◦C to 100◦C and voltages from 0.7V to
1.2V. All 256 unique CRPs are used for the simulation. We
show results in Table 1. Clearly, the intra HD is 0 across wide
environmental and operational conditions, due to the nature of
digitalized system as well as the use of strongly skewed latch.
Higher connectivity rate shows better statistical performance
which agrees the earlier discussions in Section 5.

We further examine the performance of 64×64 case. However,
it is impractical to simulate a 64×64 LRR-DPUF by HSPICE
due to the unacceptable simulation runtime. We therefore de-
veloped a behavioral emulator. Note that the only difference
between the HSPICE simulation and the behavioral emulation
is the emulator can not catch the intra HD metric, whereas all
the rest statistical metrics can be fully emulated due to the dig-
ital nature. Consider the intra HD for 8×8 LRR-DPUF shows
0 by SPICE simulation, which is regardless of the network size,
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Figure 7: Avalanche effect of 8×8 LRR-DPUF over each input.
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Figure 8: SVM attack for LRR-DPUFs over different configurations. (a) 8-row LRR-DPUFs with connectivity rate of 0.2 over
different column sizes and training sizes; (b) 8-row LRR-DPUFs with connectivity rate of 0.9 over different column sizes and training
sizes; (c) 64×64 LRR-DPUF over different connectivity rate and training size.
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Figure 9: Additional learning model attacks on 64×64 LLR-
DPUF, including a) Artificial neural network (ANN) with 10
hidden layers using Sigmoid function, and b) Random Forest
(RF) with 15 trees in the forest.

the intra HD can be safely extrapolated to be 0 for 64×64 case
as well. The results are shown in Table 2. 100K randomly se-
lected unique CRPs are tested. For 64×64 LRR-DPUF, even
small connectivity rate produces close to ideal inter HD as well
as Bit-Alias and Uniformity, showing a outstanding statistical
performance.

In addition, we examine the“avalanche effect”of LRR-DPUF,
i.e., the Property 4. The avalanche effect checks that how many
outputs will be affected (flipped) by changing an individual
input bit. This property needs to be examined over the ex-
haustive CRP space, hence the 8×8 LRR-DPUF is used. We
simulate 1000 unique 8×8 LRR-DPUF chips over the complete
256 CRPs. For each input bit flip, we exhaustively collect the
number of flipped outputs over all the 27 cases. The average
number of output flips for each input is plotted in Figure 7.
For connectivity rate of 0.9, about 4 outputs, i.e., half of the 8
outputs, are flipped due to this single input change. Hence the
adversary prediction via one bit change at a time is no better
than a simple random guess. In other words, the LRR-DPUF
provides the theoretically best potential of anti-prediction. In
addition, when connectivity rate is 0.2, the number of impacted
outputs is reduced to 2. This further supports the conclusion
that a higher connectivity rate leads to better avalanche effect.

6.2 Adversary Attacks
In the end, we evaluate the resilience to various learning based

reverse engineering attacks. We also verify that the connectivity
rate and the LRR-DPUF column size will affect the resilience,
i.e., the Properties 1 and 3. We attack the LRR-DPUF by

support vector machine (SVM), where the nonlinear radial bias
function (RBF) kernel is used. Again, we first check the 8-row
LRR-DPUF chip family with different column sizes of 8, 16,
32, 128. The 256 CRPs are divided into training and testing
sets. Considering that the training set size may affect the over-
all prediction accuracy, we sweep the training size from 10% to
90% of the 256 CRPs, and test with the rest CRPs for each
case. The ideal prediction error should be exactly 0.5, meaning
the machine learning prediction is no better than just random
guess. Prediction error of 0 means the PUF can be completely
predicted. For each LRR-DPUF, we apply the SVM attack onto
each output bit at a time, and we report only the best predic-
tion error among all output bits. It can be seen in Figure 8(a)
and Figure 8(b) that, large size of columns helps to increase the
prediction error. Besides, LRR-DPUFs with connectivity rate
of 0.9 in Figure 8(b) generally show stronger resilience than that
of 0.2 in Figure 8(a). Combining these two factors together, in
Figure 8(b), we can see the attacks on the LRR-DPUF of 8-row
128-column show constantly bad predictions (about 0.4 predic-
tion error) even when training set size is 90%.

Further, we apply SVM attack onto 64-row by 64-column
LRR-DPUF in Figure 8(c). We randomly sampled 100K CRPs
and divide them into various sizes of training and testing sets
as well. For connectivity rate of 0.9 and 0.2, the LRR-DPUF
constantly shows close to ideal resilience to the attack. Even
when connectivity rate is reduced to 0.1, the prediction error is
still above 0.35, and until the connectivity rate drops to 0.01,
we start to observe low prediction errors.

Ultimately, some additional state-of-the-art learning models,
including artificial neural network (ANN) and random forest
(RF), are also applied to attack the 64×64 LRR-DPUF in Fig-
ure 9, where the ANN model is configured with 10 hidden layers
and Sigmoid functions, and the RF model consists of 15 random
trees. The prediction accuracy for both models, however, is con-
stantly around 0.5 across wide range of connectivity rate and
training set size. Overall, the proposed LRR-DPUF exhibits
extraordinary resilience to learning based reverse engineering
attacks.

7. FURTHER DISCUSSIONS
In this section, we further discuss some manufacturability

issues for the proposed LRR-DPUF. Recall in Section 2, the
VLSI interconnect variation is a Boolean variable with status
of either connected or disconnected. When the metal stripe-
pair is connected through tiny area, however, there will be high
resistance (high-R) in between the two wire ends. Although



this still counts a connected status, the connectivity may be
changed after certain time period which is called interconnect
aging. To resolve this aging problem, we may need to pre-
shrink all such high-R wires by applying high supply voltage and
temperature before the PUF is characterized based on Black’s
equation [29,30]:

MTF =
A

jn
exp(

Ea

kT
), (2)

where MTF refers to mean time to failure, i.e., the time needed
to shrink the wire ends to be disconnected. j refers to current
density, and T is the temperature. For typical metal wires, n
equals to 2. All the others are irrelevant or constant factors.

Depending on the metal materials, the MTF for high-R re-
gion (i.e., metal wires with marginal connections) can take from
hours to days [31]. Overall, by taking advantages of EM effects,
such high-R wires will quickly shrink and transit into a stable
disconnected status. Afterwards, the CRP can be characterized.
Due to the limited space, we do not perform detailed simulation
on this aspect which can be further validated by silicon results
in future work.

8. CONCLUSION
In this paper, we proposed a novel learning resilient and re-

liable digital PUF. The randomness of the LRR-DPUF comes
from the lithography process variations and is reflected in the
form of interconnect randomness. We use strongly skewed latch
to make the interconnect randomness compatible with digital
CMOS circuit system ensuring 0 intra HD. A novel highly non-
linear logic architecture is developed to effectively spread and
augment any interconnect randomness throughout the logic net-
work. The LRR-DPUF has been demonstrated with outstand-
ing statistical performance as well as strong resilience to various
state-of-the-art machine learning attacks. We hope the pro-
posed techniques can open a door for further exploring digital
PUF designs and stimulate related researches in the future.
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