

Laplacian Eigenmaps and Bayesian Clustering Based Layout Pattern Sampling and Its Applications to Hotspot Detection and OPC

Tetsuaki Matsunawa¹, Bei Yu² and David Z. Pan³

¹Toshiba Corporation ²The Chinese University of Hong Kong ³The University of Texas at Austin

Outline

- Background
- Pattern Sampling in Physical Verification
- Overall flow
- Laplacian Eigenmaps
- Bayesian Clustering
- Applications
 - Lithography Hotspot Detection
 - OPC (Optical Proximity Correction)

Conclusion

Background

- Issue: Systematic method for pattern sampling is not established
- Goal: Pattern sampling automation for process optimization

Pattern Sampling

Pattern Sampling in Physical Verification

- Key techniques: Dimension reduction and Clustering
 - I. W. C. Tam, et al., "Systematic Defect Identification through Layout Snippet Clustering," ITC, 2010
 - II. S. Shim, et al., "Synthesis of Lithography Test Patterns through Topology-Oriented Pattern Extraction and Classification," SPIE, 2014
 - III. V. Dai, et al., "Systematic Physical Verification with Topological Patterns," SPIE, 2014

Open Questions

- Undefined similarity
 - A criterion for defining pattern similarity to evaluate essential characteristics in real layouts is unclear
- Manual parameter tuning
 - Most clustering algorithms require several preliminary experiments (total number of clusters)

Laplacian Eigenmaps and Bayesian Clustering

• We develop

- An efficient feature comparison method
 - With nonlinear dimensionality reduction / kernel parameter optimization
- An automated pattern sampling using Bayesian model based clustering
 - Without manual parameter tuning

Problem formulation: Layout Pattern Sampling

- Problem: Given layout data, a classification model is trained to extract representative patterns
- Goal: To classify the layout patterns into a set of classes minimizing the Bayes error

Bayes Error (BE)

- To quantify the clustering performance
 - Define a quality of clustering distributions based on Bayes' theorem $P(\omega|x)$: conditional

$$BE = \prod_{k=1}^{k} \min\{1 - p(\omega_k | x)\} p(x) dx$$

 $P(\omega|x)$: conditional probability in class ω

P(x): prior probability of data x

Comparison between BE and Within-Class Scatter/Between-Class Scatter

Overall Flow

(1) Sampling phase

(2) Application phase

Sample Plan Application

Model training for

- Hotspot detection,
- Mask Optimization,
- Process Simulation,
- •Wafer Inspection, etc.

Feature Point Generation & Feature Extraction

Why dimension reduction and Bayesian clustering?

Required feature comparison for optimal feature selection

> The optimal characteristics for layout representation vary in different applications

How to compare diverse layout feature types?

#of dimensions differs with different types of features

Hard to achieve completely automatic clustering

Hypothetical parameters are required for typical clustering task

Laplacian Eigenmaps

To reduce dimensions while preserving complicated structure

Solve an eigenvalue problem: $L\psi = \gamma D\psi$

Laplacian matrixDiagonal matrixKernel : k-nearest neighborsL = D - W $D = \operatorname{diag}\left(\sum_{i'=1}^{n} W_{i,i'}\right)$ $W_{i,i'} = \begin{cases} 1 & \operatorname{if} x_i \in kNN(x_{i'}) \\ or x_{i'} \in kNN(x_i) \\ 0 & \operatorname{otherwise} \end{cases}$

Comparison with linear/nonlinear algorithm

Kernel Parameter Optimization

• Optimization through estimating density-ratio $\hat{r}(\mathbf{x}) = \mathbf{w} \Phi(\mathbf{x})$ between given feature vectors $P(\mathbf{x})$ and embedded feature vectors $P'(\mathbf{x})$

$$\max_{w} \sum_{i=1}^{n'} \log \left(w^{\mathrm{T}} \phi(x_i') \right)$$

Subject to $\sum_{i=1}^{n} w^{\mathrm{T}} \phi(x_i) = n$ and $w \ge 0$

This is **convex** optimization, so repeating **gradient ascent** and **constraint satisfaction** converges to global solution

Bayesian Clustering

- Clustering automation without arbitrary parameter tuning
- Bayesian based method: express a parameter distribution as an infinite dimensional distribution

$$p(\mathbf{x}|\alpha, p(\mathbf{\theta})) = \sum_{k=1}^{\infty} \pi_k \mathcal{N}(\mu_k, \sigma_k)$$

$$p(\mathbf{x}|\alpha, p(\mathbf{\theta})) = \sum_{k=1}^{\infty} \pi_k \mathcal{N}(\mu_k, \sigma_k)$$
Centroid Similarity
$$p(z_n = k | x_n, z_1, ..., z_{n-1}) \propto \begin{cases} p(x_n | k) \frac{n_k}{\alpha + n - 1} & (k = 1 \cdots K) \\ p(x_n | k^{new}) \frac{\alpha}{\alpha + n - 1} & (k = K + 1) \end{cases}$$

Experiments

Pattern sampling

- Comparison of conventional methods
 - Dimensionality reduction
 - Principal Component Analysis (PCA) vs. Laplacian Eigenmaps (LE)
 - Clustering
 - K-means (Km) vs. Bayesian clustering (BC)
- Applications to
 - Lithography Hotspot Detection
 - -OPC

Effectiveness of Pattern Sampling

• Representative patterns could be automatically selected

Application to Lithography Hotspot Detection

To detect hotspot in short runtime

- Experiments
 - Detection model training with different patterns
 - PCA+Km, LE+Km, PCA+BC, LE+BC
 - Learning algorithm is fixed to Adaptive Boosting (AdaBoost)
 - Metrics: detection accuracy and false alarm

Effectiveness of Hotspot Detection

- Comparison with conventional clustering method
- Result: Proposed framework achieved the best false-alarm

Application to Regression-based OPC

To predict edge movements in short runtime

Experiments

- Prediction model training with different patterns
 - PCA+Km, LE+Km, PCA+BC, LE+BC
 - Learning algorithm is fixed to Linear regression
- Metric: <u>RMSPE</u> (Root Mean Square Prediction Error)

Effectiveness of OPC regression

Proposed framework achieved the best prediction accuracy

Conclusion

- ➤We have introduced a new method to sample unique patterns.
 - By applying our dimension reduction technique, dimensionality- and type-independent layout feature can be used in accordance with applications.
 - The Bayesian clustering is able to classify layout data without manual parameter tuning.
 - The experimental results show that our proposed method can effectively sample layout patterns that represent characteristics of whole chip layout.