High Performance Dummy Fill Insertion with Coupling and
Uniformity Constraints

Yibo Lin , Bei Yu, and David Z. Pan

ECE Department, University of Texas at Austin, Austin, TX, USA
{yibolin, bei}@cerc.utexas.edu, dpan@ece.utexas.edu

ABSTRACT

In deep-submicron VLSI manufacturing, dummy fills are widely
applied to reduce topographic variations and improve layout
pattern uniformity. However, the introduction of dummy fills
may impact the wire electrical properties, such as coupling ca-
pacitance. Traditional tile-based method for fill insertion usu-
ally results in very large number of fills, which increases the
cost of layout storage. In advanced technology nodes, solving
the tile-based dummy fill design is more and more expensive. In
this paper, we propose a high performance dummy fill insertion
and sizing framework, where the coupling capacitance issues
and density variations are considered simultaneously. The ex-
perimental results for ICCAD 2014 contest benchmarks demon-
strate the effectiveness of our methods.

1. INTRODUCTIONS

In current VLSI manufacturing process, chemical mechanical
polishing (CMP) is a planarizing technique widely used to sat-
isfy the planarity requirements. Both mechanical and chemical
methods are adopted in the CMP process. In spite of its pop-
ularity, the CMP-induced design challenge is its dependence on
the features of device and interconnect in deep-submicron tech-
nology [1]. The quality of CMP patterns is highly-related to the
uniformity of density distribution, and a predictable layout is
desired for good CMP performance. To achieve uniform density
distribution in a layout, dummy fills are inserted to increase the
density of sparse regions. Even though there are specific design
rules to restrict the side effects from the addition of dummy
fills, it is still not enough to resolve all the problems in density
variation or coupling capacitance. Hence powerful CAD tools
for multi-objective fill insertion are still in great demand.

The flow for layout density optimization can be generalized
as two phases: density analysis and fill synthesis [2]. Density
analysis first collects information of wire density and available
fill regions and then calculates the amount of fills for the lay-
out. In density analysis, regions with violations of density rules
(lower /upper bound) are identified. It is usually based on fixed
dissection where a layout is divided into windows with dimen-
sion of w X w. Each window consists of w/r x w/r tiles as shown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

DAC’15, June 07-11 2015, San Francisco, USA.

Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.

http://dx.doi.org/10.1145/2744769.2744850

S

w

Figure 1: An example of w x w windows with 72 tiles.

in Fig. 1. The extension to multi-window and multi-layer anal-
ysis was also proposed [3]. Fill synthesis determines how many
fills to be inserted into the layout. Traditional methods usu-
ally aim at minimizing both the density variation and the num-
ber of fills through linear programming (LP) formulation [4, 5,
6]. In these methods, layout is divided into windows and each
window is further split into tiles for fill insertion. As the ad-
vancement of technology node, circuits become larger and larger
that LP-based method reaches their limitation due to problem
sizes. In both [1] and [7], analysis of an example layout with
200pm x 200pm windows results in over 160K variables, thus the
runtime becomes the bottleneck for LP-based method. Alterna-
tive approaches based on Monte Carlo or heuristic algorithms
have been proposed. However, they are still lacking in either
performance or speed [8, 9, 10].

Furthermore, the introduction of dummy fills will incur addi-
tional coupling capacitance, causing performance degradation.
The first integer linear programming (ILP) based approach con-
sidering coupling capacitance is proposed by Chen et al. [11].
Xiang et al. [12] also studied the fill-induced coupling effects
and proposed another ILP-based coupling constrained dummy
fill algorithm to handle coupling capacitance. Their methods ef-
ficiently analyze density distribution and conduct fill optimiza-
tion based on slots.

Besides runtime, another problem for traditional tile-based
approaches lies in the requirement of large amount of fills for
good uniformity, resulting in the difficulty for layout storage.
Although current layout file standard like GDSII and OASIS can
achieve good reduction in data volume, the problem is not solved
due to the increasing complexity of circuits. In addition, large
file size often leads to usability limitation and also increases data
transfer time [13].

To motivate the development of more effective dummy fill
algorithms, ICCAD 2014 held a dummy fill contest [13] and re-
leased a suite of industrial benchmarks. Many conventional is-
sues and emerging concerns were holistically modeled with layer
overlay, density variation, line hotspots, outlier hotspots and file
size. A dummy fill optimizer with comprehensive optimization
is desired. The definitions of these concepts will be discussed
in detail in the next section (Section 2). This is a brand new
challenge since file size was not taken into consideration before

N Columns

é
=
=
(a) (b)
Figure 2: Example of (a) overlay between layers (b)

square windows for density analysis.

and previous tile-based method is not suitable.

In this paper, we develop a high-performance framework for
dummy fill insertion. Our main contributions can be summa-
rized as follows.

1. The dummy fill insertion is based on geometric properties
instead of tiles. Target density planning is done at win-
dow level and then candidate fills are generated under the
guidance of target density.

2. We propose an ILP formulation and then its dual min-cost
flow formulation to optimize overlay and layout density
efficiently.

3. Experimental results show that our algorithms outperform
the top teams by over 10% on ICCAD 2014 DFM contest
benchmarks [13].

The rest part of this paper is organized as follows: Section 2
shows the definitions of related concepts and problem formula-
tion. Section 3 explains the optimization algorithms in detail.
Section 4 presents the experimental results in different scores.
In the end, we conclude our work in Section 5.

2. PRELIMINARIES
2.1 Overlay Between Layers

The spatial overlaps between neighboring layers will lead to
coupling capacitance, which is not desired in the layout design.
Dummy fills are actually metal tiles, and their interaction with
other signal wires will inevitably introduce additional capaci-
tance, resulting in performance degradation. Therefore, it is
necessary to avoid coupling capacitance during dummy fill in-
sertion. In this work (as in ICCAD 2014 contest), coupling
capacitance is evaluated with the amounts of overlay area be-
tween fills and their neighboring layers (including signal wires
and fills) [14, 15]. As shown in Fig. 2(a), the enclosure regions
of orange lines are counted to overlay area.

2.2 Layout Density

The performance of CMP is highly related to the layout den-
sity of a given window, and uniform density distribution con-
tributes to high CMP quality [7]. In other words, density vari-
ation along windows is very critical, which is also the purpose
of introducing dummy fills.

The distribution of window densities in this work is evaluated
with 3 scores: variation, line hotspots, and outlier hotspots [14,
15]. The whole layout is divided into N x M square windows as
shown in Fig. 2(b). Variation is standard deviation of window
layout densities, represented with o. It aims at capturing the
uniformity at layout level. Line hotspots are summation of
column-based variation. For a layout shown in Fig. 2(b), we

compute line hotspots as follows,

N M]-Vildi, .
1h:22|d(i,j>—¥\, (1)

i=1 j=1

where d(i, j) stands for the layout density at window (¢,). This
score is used to verify variations along each column. Outlier
hotspots are summation of outlier deviations. This score is
designed to evaluate the deviation of window densities outside
30 range,

N M B
oh = Z Zrnax(o7 |d(i,7) — d| — 30), (2)

i=1 j=1

where d denotes the average density over the layout, and o
indicates the variation.

All the 3 scores above evaluate different perspectives of the
density distribution, which is used in ICCAD 2014 contest.
Variation may only provide a general view to the density map,
while line hotspots and outlier hotspots collect more concrete
information about it.

2.3 Problem Formulation

The addition of dummy fills needs a comprehensive view of the
layout. That means both performance degradation and CMP
quality should be taken into consideration. Hence, in this work,
the optimization will be focused on a combined objective of
layout overlay and density variation.

Given an input layout with initial fill regions and wire densi-
ties across each window, we insert dummy fills to maximize the
following score,

SCOre = QovSov + Qo So + QRSIL + QonSoh + QfsSfs, (3)

where so0 = fou(D_,cp 0v(l)) denotes total overlay score for
all layers in set L; so = fo(3 ;o o(l)) stands for total vari-
ation score for all layers; sin = fin(D_;cp, [h(l)) means total line
hotspot score for all layers; son = for (3, (1) - >, oh(l))
represents total outlier score for all layers; sfs = frs(fs) is file
size score. Function f shows how the score is calculated with
its corresponding variables and it can be generalized to

f(m):max(oalfg)v (4)

where a and 8 are benchmark-related parameters in the contest.

We can see that overlay, variation, line hotspots and outlier

hotspots in each layer are added up for scores. File size score

s¢s is introduced to reduce the difficulty for layout storage. In

ICCAD 2014 contest, GDSII format is used as a standard 1O
format.

3. DUMMY FILL INSERTION ALGORITHMS

The flow of our algorithm is summarized in Fig. 3. After
reading the input fill regions, we need to convert polygons to
rectangles[16] and assign fill regions to each window. After the
available fill regions for each window are calculated, the density
distribution is ready for density planning and target densities
can be obtained. Then we generate candidate fills according to
density demands and overlay cost. After this, another round
of density planning is performed due to the inconsistency be-
tween candidate fills and initial plans. In the end, dummy fills
are inserted with proper sizes to improve overlay and density
variations.

Initial Fill Regions Density Planning |

v

I Candidate Fill Generation |

)

‘ Density Planning |

'

I Dummy Fill Insertion |

Output Fills

Figure 3: Our dummy fill insertion flow.

3.1 Target Density Planning

Due to the complexity of objective function and large amounts
of windows in a layout, direct optimization over the locations
and sizes of dummy fills across all windows is very expensive
and thus time consuming. Density planning is rather impor-
tant, since it can serve as a guidance for candidate fill region
generation (Section 3.2) and final fill insertion (Section 3.3) in
each window. Good density plan is also capable of reducing
the problem size, and eventually contributes to the reduction of
run-time.

With the information of feasible fill regions, it is possible to
calculate the density bound of each window. The lower bound
for the window density is the wire density in that window, while
its upper bound is usually related to the area of its fill regions.

During this step, we do not consider overlay penalty, so the
goal of density planning is to maximize density score, the sum-
mation of variation score, line hotspot score and outlier hotspot
score. It is a function of the density of each window in each layer.
Actually this objective considers multiple windows in multiple
layers. To simplify the analysis, we assume in all the following
notations, the information of layers is implicitly included. For
each window, its density d(i, 7) is bounded by existing wire den-
sity and available fill regions. Let the lower and upper bound
of d(i,) be I(i,7) and u(s, j) respectively.

Definition 1 (Target Layout Density). A density value for
one layer represented by tq. Its relation with d(i,j) can be
shown as follows,

1(27])7 Iftd < l(l,])
d(laj) = U(Za])a iftqg > 'LL(Z,]) (5)
ta, other

The density planning problem is now transformed to find the
best tq for maximum density score. To find the best ¢4, we can
analyze the following two cases.

Case I If the ranges of d(i,j) for all windows are large
enough, we can get a trivial solution that is optimal by setting

tqa = max (I(k,n)),Vk € 1,2,..,.N,n€ 1,2,.... M, (6)

It means the target density t4 is equal to the largest wire density
throughout the layout. In this way, an ideal uniform distribution
is achieved since densities in all windows are the same.

Case II: Not all windows are able to get to target layout
density. For example, the largest wire density may be 0.9, while
a window can only achieve a density as high as 0.7. This kind
of situation will occur when 3(i, 7) satisfies

u(i,7) < max (I(k,n)), (7)

Then the target density for window (i,j) can only be set to
u(t, j) instead of maz(l(k,n)). In this case, we simply search all

Figure 4: Case I Zero Overlay: Example of (a) Fill
Regions in Neighboring Layers in a Window (b) Fill
Solution without Overlay.

Figure 5: Case II Non-zero Overlay: Example of (a)
Fill Regions in Neighboring Layers in a Window (b) Fill
Solution with Overlay.

combinations of target layout densities for all layers with small
steps and then choose the best one. The search range for ¢4
can be limited to values between max(l(k,n)) and min(u(k,n)).
The run-time for this step is still very fast due to the simplicity
of each calculation and limited number of layers.

3.2 Candidate Fill Region Generation

In this section, we generate candidate fills in each window
under the guidance of target density and at the same time min-
imize overlay. After this step, with all the candidate fills, the
density in a window will be no less than its target density. So
the output of this step is an upper bound of fills which needs
further optimization in the next section to reduce density vari-
ation. For convenience, we only use 2 layers to explain our
strategies.

To optimize overlay area, it is necessary to consider fill regions
in multiple layers simultaneously. The problem can be analyzed
from two cases.

Case I Zero Overlay: Fig. 4(a) shows one case of fill regions
for 2 neighboring layers. We can divide these fill regions into 3
parts, marked as 1, 2 and 3 in the figure. In Region 1, there is
only one empty space in Layer 1 and the same space in Layer 2
should contain signal wires. If dummy fills are inserted to Layer
1 in this region, it is likely to have overlay with wires in Layer
2, since in this region there is wire distribution with a certain
density. In Region 2, the condition is similar to Region 1 and
Layer 1 contains signal wires, while it is empty in Layer 2. In
Region 3, spaces in both layers are free of signal wires. There
is no need to consider overlay with signal wires any more in
this region. But we should be aware of overlay between fills in
different layers. If we only insert fills to Region 3, it is possible
to achieve zero overlay, as shown in Fig. 4(b).

Case II Non-zero Overlay: Fig. 5(a) shows that Region 3
may be too small to meet the density requirements. In this case,
if we still limit fills inside Region 3, there will be inevitable dete-
rioration in density variation. So the extension of fills to Region
1 and 2 becomes a necessity and small fill-to-fill overlay is also
allowed for better density distribution. We evaluate the quality
of a candidate fill using a score considering its overlay with fills
in lower and upper layers and its area, shown as Eqn. (8),

ill overla ill area
g=-1 g (8)

fill area window area’

where v is a parameter, and we set it to 1 in the experiment.
Fills with high quality scores have priority in candidate fill se-
lection.

Algorithm 1 Candidate Fill Region Generation

Input: Feasible fill regions of all layers in a window.
Output: Generate candidate fills with small overlay under den-
sity constraints

Assume layer numbers in layer set L are 1, 2, ... N;
Define fr(l) as the fill region in Layer I;

Define d;(1) as the target density in Layer [;

Define d, (1) as the wire density in Layer [;

Define dy4(1) as the density gap in Layer [;

Define d(l) as the layout density of Layer [;

Define a,, as the area of the window;

Define \ as a parameter, A > 1;

9: for | = odd number of layers in L do

10: frs = intersect(fr(l), fr(l+1));

11: dg(l) = de(l) — dw(D);

12: dg(l+1)=de(l+1) —dw(l+1);

13: if area(frs) > (dg(1) + dg(1+ 1)) - aw then
14: assign fills to Layer [until d(I) > X - d¢(1);
15: else

16: sort fills in fr(l) by area,;

17: assign fills to Layer ! until d(I) > X - d:(1);
18: end if

19: end for

20: for [= even number of layers in L do

21: dg(l) = d:(l) — dw(1);

22: sort fills in fr(l) by quality score g;

23: assign fills to Layer [until d(I) > X - d¢(I);
24: end for

Since the number of layers is usually larger than 2, the actual
implementation combines the previous ideas, which is summa-
rized in Alg. 1. It is impossible to calculate the overlay between
fills before any fill is inserted to the lower /upper layer, so we de-
termine candidate fills in odd layers first as a reference for even
layers. Function intersect returns the shared fill region between
fr(l) and fr(l + 1). If the shared fill region fails to meet the
density requirements in layer [and layer [+ 1, fill qualities are
simply evaluated with the size of the fill. After the generation
of candidate fills in odd layers, we select fills in even layers ac-
cording to their quality score ¢ with Eqn. (8). A is a parameter
to control how many fills to generate for each layer. It is no less
than 1 because the amount of fills should be large enough to
achieve target density.

3.3 Dummy Fill Insertion

In this section, we will determine the sizes of fills to further
reduce density variation and overlay in an efficient way. Table 1
gives the definitions of symbols used in the following explana-
tion.

3.3.1 Mathematical Formulation

So far we have a set of candidate fills as an upper bound, but
there are still DRC errors and maybe large deviations between
fill density and target density. Further steps are necessary to fix
spacing rule violations and optimize density variation together
with overlay. In this step, the final sizes of fills are determined
by shrinking candidate fills.

Given a set of candidate fills in a window, determine the di-
mension of fills under DRC constraints to minimize overlay area

and density variation. Our problem can be described with math-
ematical Eqn. (9),

min g dg(l)+7n- g ov(l,1+1) (9a)
@ 5‘; leL leL
Vi

st dg() =1 > wi-hi—di(l)-aw|, L€ L (9b)

ieF(l)
o(l,l+1) = Y w;-hi, (9¢)
1€O(l)

W; Z wm,hi 2 W,
w; - h’L Z QAm,

e(i,J) = sm, (9
N RTINS

where 7 is a weight for overlay cost, which is 1 in the experi-
ment. The objective tries to minimize a combination of density
gap and weighted overlay. In Constraint (9b), density gap dg is
defined as the difference between the area of fills and the tar-
get fill area (derived from target fill density). Constraint (9c)
defines the overlay area ov. Constraints (9e) to (9g) state re-
quired DRC rules, such as minimum width, minimum area and
minimum spacing. Eqn. (9) defines a non-convex problem, so it
is very expensive to solve it.

3.3.2 Problem Relaxation

Previous formulation contains multiplication operations be-
tween variables in two directions, which results in non-convex
features. We can alternatively fix one direction when optimizing
the other one, and then the problem is relaxed to a linear pro-
gram. Without loss of generality, we set vertical direction fixed
and all the variables related to that direction become constants.
Then Constraint (9b) and (9c) can be relaxed to

O=1> wi-
ieF (1)
= > e

v(l,l+1)
1€0(1)

hio — dt(l) . aw\, l e L, (10)

0, LEL, (11)

where h;o is the initial height of candidate fills from Section 3.2.
Constraint (9e) to (9f) can be merged into one equation,

am
w; > max(Wy, —). 12
(om o) (12)

Constraint (9g) will only exist for pairs of fills that are very
close to each other. For these fill pairs, following constraint will
force fills to keep enough space in horizontal direction,

e"(i,5) > sm. (13)

With Eqn. (10), (11), (12) and (13), a relaxed problem solv-
able with ILP is formed.

We alternatively optimize the problem in horizontal and ver-
tical directions. In other words, ILP will be run iteratively.
During each iteration, variables are bounded to a certain range
to ensure performance, i.e. I} < z! < ol and I < 2P < W],
These ranges need to be updated according to the results of
each iteration.

3.3.3 Dual Min-Cost Flow Formulation

The relaxed problem in previous section may still suffer from
high run-time penalty when the problem size is large, as ILP

Table 1: Notations used in Fill Insertion Problem

Sm, Wm, am | DRC rule for min. spacing, width and area
Ay Window area
dg Density gap (normalized to area)
di Target density
ov Overlay.
w;, hy width and height of a candidate fill
L Set of layers
F(l) Set of fills on layer [
o) Set of fill overlays between layer | and [+ 1
P(l) Set of fill pairs with spacing rule violations
e(3,7) Euclidean distance between fill ¢ and j, V(i,j) €
P(l)
mé, x? left and right bound of fill 4
yé, ylh lower and upper bound of fill ¢

problem is generally NP-hard to solve. Here we show that the
formulation is able to achieve further speedup with dual min-
cost flow.

Eqn. (10) contains an absolute operation which ensures the
fill density will converge to target density. Since in this stage,
fills can only shrink in each iteration. It is possible to relax the
problem by removing the absolute operation. We are always
able to calculate the upper bound of fill area by taking the
current sizes of fills. If the upper bound is smaller than d;(1)-a.w,
then |Zi€F(l> w; - hio — di(l) - aw| is equivalent to d¢(1) - aw —
ZieF@ w; - hijo. On the other hand, if current fill density is
larger than target density, we can still remove it by reducing the
shrinking steps for fills in each iteration. It should be noted that
after current iteration fill density drops below target density, we
will switch to the first case and hence the fill density cannot keep
getting away from target density.

Then the relaxed problem in Section 3.3.2 can be written in
a generalized mannerNWithout any absolute operation,

nglciin CGTi (14a)
i=1

st. x; —x; > by, (i,7) € E, (14b)
l; leguz, ’iZl,Q,...,N, (14C)
xT; € Z,

Eqn. (14) is a linear program with only differential constraints
and bounded variables, which can be transformed to a dual
min-cost flow problem [17]. Min-cost flow problem is a relative
mature field with very fast algorithms, which is often adopted
in the physical design flow [18, 19, 20].

Our problem can be transformed to the following typical dual
min-cost flow format,

I%i-n CiYi, (15a)
* =0
sty —y; > by, (6,5) € B, (15b)
Yi € Z,
where
Ti = Yi — Yo, = 1,2,...,N (163)
r_ Ci 1=1,2,...,N
S (165)
bl] (17]) € E
b;j = l; i=1,2,...,.N,5=0 (16¢)
—U; i=0,7=12,...,.N

Figure 6: (a) Example of min-cost flow graph: edges
are marked with cost/capacity pairs and node is marked
with name/supply pairs (b) Corresponding solution
graph: edges are marked with flow values and nodes
are marked with name/potential pairs.

Lemma 1. Eqn. (14) and Eqn. (15) are equivalent.

The proof is omitted due to space limitations.

So far the dual min-cost flow problem can be mapped to a
graph with N + 1 nodes. The supply of node i is ¢} and for each
(i,7) pair in E’, an edge starting from node i to node j with a
cost of —b’ij is inserted to the graph. The edge capacity is set to
infinity. Final solution of y can be obtained from the potential
of each node and = can be derived from Eqn. (16a).

For example, we want to minimize x1 4+ 2x2 + 3x3 + 4x4 with
constraints 1 — x2 > 5 and x4 — x3 > 6 and all variables are
integers bounded with [0, 10]. The min-cost flow graph can be
constructed as Fig. 6(a). The nodes in the graph are directly
named with yo, y1, y2, y3 and y4. The corresponding solution
graph is given by Fig. 6(b). We are able to calculate = with
Eqn. (16a): 5,0,0, 6.

4. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++ and tested on an
8-Core 3.40 GHz Linux server with 32 GB RAM. The results of
ICCAD 2014 contest top three teams are tested on a 2.6 GHz
machine with 64 GB RAM. LEMON |[21] is used as the min-cost
flow solver. Our solutions have been verified by the contest or-
ganizer [13]. Statistics about benchmarks are listed in Table 2.
It contains coefficients to calculate following scores. Overlay™
denotes the overlay score stated in Section 2; Variation™ rep-
resents variation score; Line™ is the score for line hotspots;
Outlier™ is the score for outlier hotspots; Size* is the score for
the volume of solution GDSII files, which is the standard input
and output format in the contest; Run-time™ stands for run-
time score; Memory™ denotes memory score and it measures
the peak memory usage during the execution. All the scores
above are calculated with Eqn. (4). According to ICCAD 2014
contest [13], Testcase Score is the weighted summation of all
the scores above. Testcase Quality is similar to testcase score
but excludes run-time score and memory score. It measures
the quality of solutions. a and f respect to the coefficients in
Eqn. (3) and (4). Run-time score and memory score are also
calculated with Eqn. (4). All the scores are obtained from the
contest organizer [13] except run-time and memory usage. To
evaluate the effectiveness of our algorithm, we compare our re-
sults with top three teams in the contest.

Table 3 lists the evaluation results for our algorithm and top
three teams from the ICCAD 2014 contest. It is shown that our
fill insertion engine produces both the highest quality scores and
overall scores for all the testcases. On average, our quality score
is 13% better and the overall score is about 10% higher than the

Table

2: ICCAD 2014 Benchmark Statistics

* ot E3 Ak ok Ak : * *
Design 4P 41, | File size _ Overla}l; \;arlatloﬂrl _ Line . CMOutherﬁ _ Size . lzlun tlm; Cly\/[emoryﬁ
s 382K 3 48M 0.2 79154 0.2 | 0.077 | 0.2 | 11.758 | 0.15 0.014 0.05 32 0.15 60 0.05 1024
b 8.1M 3 1.1G 0.2 | 6111303 | 0.2 | 0.517 | 0.2 3578 0.15 | 22.801 | 0.05 | 2048 | 0.15 | 600 | 0.05 | 32768
m 31.8M 3 2.2G 0.2 | 10276835 | 0.2 | 0.53 | 0.2 6052 0.15 | 27.56 | 0.05 | 1536 | 0.15 | 1200 | 0.05 | 32768
Table 3: Experimental Results on ICCAD 2014 Benchmark
Design | Team | Overlay™ | Variation® | Line* | Outlier® | Size* | Run-time* | Memory* | Testcase Quality | Testcase Score
1st 0.743 0.636 0.733 1.000 0.976 0.877 0.885 0.621 0.797
S 2nd 0.743 0.909 0.967 0.975 0.103 0.846 0.831 0.675 0.844
3rd 0.613 0.985 0.990 1.000 0.158 0.842 0.429 0.676 0.823
ours 0.723 0.948 0.979 0.994 0.887 0.872 0.818 0.724 0.895
1st 0.748 0.368 0.364 0.871 0.924 0.515 0.891 0.473 0.594
b 2nd 0.841 0.381 0.534 0.000 0.053 0.513 0.828 0.354 0.472
3rd 0.576 0.485 0.601 0.000 0.568 0.554 0.339 0.361 0.461
ours 0.685 0.499 0.470 0.953 0.765 0.351 0.852 0.512 0.607
1st 0.598 0.462 0.486 0.204 0.941 0.556 0.845 0.387 0.513
m 2nd 0.668 0.460 0.618 0.000 0.000 0.780 0.761 0.349 0.504
3rd 0.510 0.509 0.689 0.000 0.807 0.748 0.772 0.382 0.533
ours 0.493 0.643 0.766 0.088 0.905 0.750 0.786 0.439 0.591
top team in the contest. [4] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, “Filling

According to score calculation, density related scores (varia-
tion, line hotspots and outlier hotspots) take 45%, and overlay
score takes 20%. From Table 3 we can see that our overall den-
sity scores are among the highest. e.g. for benchmark m we get
the best density scores, though the overlay score is a little bit
lower than top three teams. We ascribe it to the comprehensive
density analysis and simultaneous control over density and over-
lay during fill insertion. We can also see that our size score is
high, which means the number of fills inserted is much smaller
than others. Although the contest 1st team gets even higher
size score, their solutions suffer from larger density variation.
When the size of layout file increases, it takes longer time for
reading and writing. This impact on runtime becomes very seri-
ous especially in benchmark b where more than 40% of the total
runtime is spent on file IO. In summary, the results demonstrate
that our algorithms produce more balanced solutions which can
handle overlay and density requirements simultaneously.

5. CONCLUSION

This work proposes a new methodology for the holistic fill
optimization problem in which file size is included to the ob-
jective along with other cost functions. Experimental results
show the effectiveness of our algorithms in optimizing multi-
ple objectives including overlay, density variation and file size.
Future work would include evaluation on lithography related
impacts and methodologies considering lithograph-friendliness
during dummy fill insertion.

Acknowledgment

Thanks to Dr. Rasit Topaloglu for the evaluation of experimen-
tal results and helpful comments.

6. REFERENCES

[1] A. B. Kahng and K. Samadi, “CMP fill synthesis: A survey of
recent studies,” IEEE Transactions on CAD, vol. 27, no. 1, pp.
3-19, 2008.
C. Feng, H. Zhou, C. Yan, J. Tao, and X. Zeng, “Efficient
approximation algorithms for chemical mechanical polishing dummy
fill,” IEEE Transactions on CAD, vol. 30, no. 3, pp. 402—415, 2011.
A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, “New
multilevel and hierarchical algorithms for layout density control,” in
ASPDAC, 1999, pp. 221-224.

(2]

5]

6]

(7]

8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

algorithms and analyses for layout density control,” IEEE
Transactions on CAD, vol. 18, no. 4, pp. 445-462, 1999.

R. Tian, D. Wong, and R. Boone, “Model-based dummy feature
placement for oxide chemical-mechanical polishing
manufacturability,” IEEE Transactions on CAD, vol. 20, no. 7, pp.
902-910, 2001.

H. Xiang, L. Deng, R. Puri, K.-Y. Chao, and M. D. Wong, “Fast
dummy-fill density analysis with coupling constraints,” IEEE
Transactions on CAD, vol. 27, no. 4, pp. 633—-642, 2008.

C. Feng, H. Zhou, C. Yan, J. Tao, and X. Zeng, “Provably good and
practically efficient algorithms for CMP,” in DAC, 2009, pp.
539-544.

Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, “Monte-Carlo
algorithms for layout density control,” in ASPDAC, 2000, pp.
523-528.

Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, “Practical
iterated fill synthesis for CMP uniformity,” in DAC, 2000, pp.
671-674.

X. Wang, C. C. Chiang, J. Kawa, and Q. Su, “A min-variance
iterative method for fast smart dummy feature density assignment
in chemical-mechanical polishing,” in ISQED, 2005, pp. 258-263.
Y. Chen, P. Gupta, and A. B. Kahng, “Performance-impact limited
area fill synthesis,” in DAC, 2003, pp. 22-27.

H. Xiang, L. Deng, R. Puri, K.-Y. Chao, and M. D. Wong, “Dummy
fill density analysis with coupling constraints,” in ISPD, 2007, pp.
3-10.

R. O. Topaloglu, “ICCAD-2014 CAD contest in design for
manufacturability flow for advanced semiconductor nodes and
benchmark suite,” in ICCAD, 2014, pp. 367—368.

R. O. Topaloglu, “Energy-minimization model for fill synthesis,”
ISQED, 2007, pp. 444-451.

A. B. Kahng and R. O. Topaloglu, “A DOE set for
normalization-based extraction of fill impact on capacitances,”
ISQED, 2007, pp. 467-474.

K. D. Gourley and D. M. Green, “Polygon-to-rectangle conversion
algorithm.” IEEE COMP. GRAPHICS & APPLIC., vol. 3, no. 1,
pp. 31-32, 1983.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications. Prentice Hall/Pearson,
2005.

J. Vygen, “Algorithms for detailed placement of standard cells,”
DATE, 1998, pp. 321-324.

X. Tang, R. Tian, and M. D. Wong, “Optimal redistribution of
white space for wire length minimization,” in ASPDAC, 2005, pp.
412-417.

S. Ghiasi, E. Bozorgzadeh, P.-K. Huang, R. Jafari, and

M. Sarrafzadeh, “A unified theory of timing budget management,”
IEEE Transactions on CAD, vol. 25, no. 11, pp. 2364-2375, 2006.
“LEMON,” http://lemon.cs.elte.hu/trac/lemon.

in

in

in

