

RankTuner: When Design Tool Parameter Tuning Meets Preference Bayesian Optimization

Peng Xu¹, Su Zheng¹, Yuyang Ye¹, Chen Bai¹, Siyuan Xu², Hao Geng³, Tsung-Yi Ho¹, Bei Yu¹

¹ The Chinese University of Hong Kong

² Huawei Noah's Ark Lab

³ ShanghaiTech University

October 28, 2024

1 Introduction

Introduction

Starting from EDA Tool Parameter Tuning

High-dimensional Black-box Optimization

- High-dimensional: A lot of values of design parameters need to be determined or tuned (n_{Params} ≥ 150)
- Multiple quality-of-result (QoR) metrics (e.g., area, power, and delay) to be optimized
- "Black-box" parameter-to-performance mappings: no explicit function expressions
- **Time-consuming** EDA tool evaluation, i.e., expensive data annotation

EDA Tool Parameter Tuning

- EDA tools provide effective and complex optimization options
- Efficient Tool Parameter Tuning
 - XGBoost¹
 - Neural Networks (NN)²
 - Gaussian process (GP)³
- These approaches typically view tool parameter tuning as a regression task!

³Hao Geng et al. (2022). "PTPT: physical design tool parameter tuning via multi-objective Bayesian optimization". In: *IEEE TCAD* 42.1, pp. 178–189.

¹E. Ustun et al. (2019). "LAMDA: Learning-Assisted Multi-stage Autotuning for FPGA Design Closure". In: *Proc. FCCM*, pp. 74–77.

²Jihye Kwon, Matthew M. Ziegler, and Luca P. Carloni (2019). "A Learning-Based Recommender System for Autotuning Design Flows of Industrial High-Performance Processors". In: *Proc. DAC*.

Motivation

- Existing methods focus on predicting the exact QoR values
 - The enormous options make it difficult to train an accurate model⁴
 - A lack of uncertainty modeling leads to inaccurate Pareto relationship⁵
- What do we need? Ranking-based tuning framework!
 - Preference Bayesian Optimization \rightarrow Pairwise GP + Duel-Thompson Sampling

⁴Hao Geng et al. (2022). "PTPT: physical design tool parameter tuning via multi-objective Bayesian optimization". In: *IEEE TCAD* 42.1, pp. 178–189.

⁵Qi Sun et al. (2022). "Correlated multi-objective multi-fidelity optimization for HLS directives design". In: *ACM Transactions on Design Automation of Electronic Systems (TODAES)* 27.4, pp. 1–27. Algorithm

The Pairwise Gaussian Process

A pairwise likelihood function is defined as:

$$p_{\text{ideal}}(\boldsymbol{x}_{v} \succeq \boldsymbol{x}_{u} | f(\boldsymbol{x}_{v}), f(\boldsymbol{x}_{u})) = \begin{cases} 1 & \text{if } f(\boldsymbol{x}_{v}) \ge f(\boldsymbol{x}_{u}) \\ 0 & \text{otherwise.} \end{cases}$$
(1)

The Dominating Uncertainty Region

Using a Gaussian noise to model the dominance uncertainty, the pairwise likelihood function could be formulated as:

$$\Phi(z_k) = p\left(\mathbf{x}_v \succeq \mathbf{x}_u \mid f\left(\mathbf{x}_v\right), f\left(\mathbf{x}_u\right)\right),$$

$$= \iint p_{\text{ideal}} \left(\mathbf{x}_v \succeq \mathbf{x}_k \mid f\left(\mathbf{x}_v\right) + \delta_v, f\left(\mathbf{x}_u\right) + \delta_u\right)$$

$$\mathcal{N}\left(\delta_v; 0, \sigma^2\right) \mathcal{N}\left(\delta_u; 0, \sigma^2\right) \, \mathrm{d}\delta_v \mathrm{d}\delta_u,$$
where $z_k = \frac{f(\mathbf{x}_u) - f(\mathbf{x}_u)}{\sqrt{2\sigma}}$ and $\Phi(z) = \int_{-\infty}^2 N(\gamma; 0, 1) \mathrm{d}\gamma.$
(2)

10/21

Acquisition Function for Pareto-dominance Comparison

• Exploration and Exploitation of Comparisons

- Searching across the entire search space of parameter tuning requires an effective balance between **exploration and exploitation**
- The key aspect is to select informative parameter pairs for comparison

Pareto-Dominace Thompson Sampling

1 Selecting x The first element of the new comparison, x_{next} , is selected as:

$$\boldsymbol{x}_{\text{next}} = \arg \max_{\boldsymbol{x} \in \mathcal{X}} \int_{\mathcal{X}} \pi_{\tilde{f}} \left([\boldsymbol{x}, \boldsymbol{x}'] \right) d\boldsymbol{x}'.$$
(3)

Selecting x': The second element is selected as the parameter configuration that maximizes the variance of $\sigma(f_*)$ in the direction of x_{next} ,

$$\boldsymbol{x}_{\text{next}}' = \arg \max_{\boldsymbol{x}_{\star}' \in \mathcal{X}} \mathbb{V}\left[\sigma\left(f_{\star}\right) \mid \left[\boldsymbol{x}_{\star}, \boldsymbol{x}_{\star}'\right], \boldsymbol{x}_{\star} = \boldsymbol{x}_{\text{next}}\right].$$
(4)
12/21

The Overall Flow of Our RankTuner Framework

- 1 Random Embedding Generation
- 2 Trust-region Initialization
- **③** Informative Comparision Selection between Regions
- 4 Multi-fidelity Evaluation and Update

Experiments

Experimental Setup

- Benchmarks: RISC-V processors (RISCV321⁶ and Rocket⁷), and BlackParrot⁸ processors (BP).
- The QoR-related metrics are used to compare the parameter tuning methods as in⁹:
 - Hypervolume (HV)
 - Maximum performance improvement (MPI1), Maximum power improvement (MPI2), Maximum area improvement (MAI).
 - Maximum performance-power improvement (MPPI), and Maximum performance-area improvement (MPAI)

⁶James E. Stine, Ryan Ridley, and Teodor-Dumitru Ene (2021). *OSU Datapath/Control RV32 Single-Cycle and Pipelined Architecture in SV*.

⁷Krste Asanovic et al. (2016). "The rocket chip generator". In: *EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17* 4.

⁸Daniel Petrisko et al. (2020). "BlackParrot: An Agile Open-Source RISC-V Multicore for Accelerator SoCs". In: *Proc. MICRO* 40.4, pp. 93–102.

⁹Su Zheng et al. (2023). "Boosting VLSI Design Flow Parameter Tuning with Random Embedding and Multi-objective Trust-region Bayesian Optimization". In: 28.5, pp. 1–23.

Comparison Between Ours and Previous Methods

Method	FIST	DAC'19	MLCAD'19	ICCAD'21	PTPT	REMOTune	DATE'24	Ours
$HV(10^5)$	1.57	1.55	1.63	1.68	1.48	1.75	1.44	1.84
$HV_{0,1}$ (10 ³)	2.85	2.72	3.00	2.95	2.70	3.05	2.63	3.44
$HV_{0,2}$ (10 ³)	2.94	2.99	3.00	3.07	2.95	3.12	2.84	3.43
$HV_{1,2}$ (10 ³)	2.97	2.97	3.00	3.14	2.79	3.23	2.77	3.00
MPI1(%)	3.16	2.54	5.00	3.81	3.56	4.38	2.08	13.64
MPI2(%)	3.90	2.12	5.12	5.23	0.85	6.27	0.68	5.04
MAI(%)	5.47	7.18	4.64	7.10	5.15	7.45	4.74	5.12
MPPI(%)	6.94	4.51	9.88	8.83	4.37	10.38	1.30	13.73
MPAI (%)	8.46	9.53	9.41	10.63	8.52	11.53	5.43	12.26

Table: Comparison of Parameter Tuning Methods on RISCV32I Benchmark.

- RankTuner consistently outperforms them across all benchmarks up to 40.34% improvement of hypervolume.
- RankTuner acquires 4.89% and 3.59% higher hypervolumes than the best baseline method, REMOTuner¹⁰, on RISCV321 and Rocket benchmarks.

¹⁰Su Zheng et al. (2023). "Boosting VLSI Design Flow Parameter Tuning with Random Embedding and Multi-objective Trust-region Bayesian Optimization". In: 28.5, pp. 1–23.

The Attained Hypervolume v.s. Iteration

The RankTuner framework also offers a notable advantage in constantly improving the explored Pareto front:

- The RankTuner framework offers a notable advantage in constantly improving the explored Pareto front.
- Although RankTuner has nearly the lowest initial HV value, it continuously improves during the exploration process and eventually surpasses all other methods at around 100 iterations.

The Runtime Comparison & Breakdown

- RankTuner is nearly $4.83 \times$ faster than PTPT¹¹ due to the parallel exploration
- The most consuming part is the EDA Physical Design part, which takes 75.5% of the total runtime. The initialization and optimization time only take about 1.25% in total.

¹¹Hao Geng et al. (2022). "PTPT: physical design tool parameter tuning via multi-objective Bayesian optimization". In: *IEEE TCAD* 42.1, pp. 178–189.

Conclusion

- We propose RankTuner, a ranking-based EDA tool parameter tuning framework.
- We introduce a pairwise Gaussian process and a Duel-Thompson sampling to sample informative comparisons.
- RankTuner outperforms state-of-the-art methods in terms of search quality in competitive runtime.

THANK YOU!