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ABSTRACT
Pre-silicon power and IR-drop estimation are crucial parts of the
chip design process. Vector-based and vectorless assessments are
commonly employed to estimate the worst peak power and dynamic
IR-drop of the design. However, with rapid growth in chip scale and
complexity, the waveform-driven vector-based assessment encoun-
ters the coverage challenge due to the difficulty in generating test
waveforms that encompass all potential worst-case scenarios. Addi-
tionally, Vectorless assessments consistently yield overly pessimistic
estimations which may lead to significant overdesign. This paper
proposes a semi-vector-based assessment flow aimed at offering a
more reasonable estimation of worst-case peak power and IR-drop.
In the proposed assessment, functionally independent modules are
identified through the analysis of module toggle activity correlation
(MTAC) on the existing waveform. By making these functionally in-
dependent modules toggle simultaneously, an augmented waveform
approximating the worst peak power and dynamic IR-drop scenario
is actively generated while preserving a similar MTAC to the exist-
ing waveform. By applying dynamic power and IR-drop analysis
to the augmented waveform, previously unaddressed weaknesses
are identified. Experimental results on an industrial design indicate
that the proposed worst-case assessment result is 3× and 2.5×more
accurate than the vector-based result for worst peak power and
dynamic IR-drop. Similarly, it is 33× and 6× more accurate than the
vectorless result.

1 INTRODUCTION
As chip performance increases and process nodes shrink, the chal-
lenges of power consumption and power integrity in the design
process of very large-scale integrated circuits (VLSI) have become
increasingly prominent. The high power density resulting from peak
power dissipation poses challenges for both packaging and cooling
solutions, as well as for system reliability [1]. In addition, larger
power consumption on instances imposes excessive transient cur-
rent on the power delivery network, which causes severe IR-drop.
The drop not only introduces timing uncertainty but also slows
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Figure 1: The coverage weakness of the traditional vector-
based and vectorless assessment (a) and the improvement
of proposed semi-vector-based assessment by the waveform
augmenting (b).

down the cell slew rate, ultimately degrading the overall perfor-
mance of the chip [2]. Hence, accurate estimation of the worst-case
peak power and dynamic IR-drop during the design process becomes
essential [3].

However, the traditional vector-based and vectorless power and
IR-drop assessments face challenges in covering the true worst-
case scenarios in the complex and large-scale modern design, as
demonstrated in Fig. 1(a). In industrial design flows, vector-based
assessment is employed to address the power and IR-drop of certain
real test programs. Dynamic transient analyses are conducted on
waveform files generated from gate-level simulations [4]. However,
the analysis is constrained by the runtime and resource limitations,
restricting the length of waveform files that can be solved. In this
case, anticipating the waveform segment that activates the true
worst-case power and IR-drop scenario is challenging [5]. Conse-
quently, vector-based estimates only reflect the lower bound of the
actual worst-case peak power and dynamic IR-drop. Unexpected
power and IR-drop weaknesses that are not addressed by the wave-
form can significantly impact the reliability and performance of chip
products. On the other hand, vectorless assessment [6–11] estimate
the worst-case without relying on an accurate activity waveform.
However, the results of vectorless assessments are heavily influ-
enced by user-defined activity settings, such as the toggle rate on
the primary inputs. In vectorless analysis, the switching activity of
instances is determined by switching probability propagation on
the netlist, which fails to accurately reflect real working scenarios
and consistently yields overly pessimistic estimations. As a result, a
large gap exists between the vector-based and the vectorless assess-
ments, leading to estimations of the true worst-case that are either
overly optimistic or overly pessimistic.

In this paper, a semi-vector-based assessment is proposed to es-
timate the worst-case power and dynamic IR-drop. As illustrated
in Fig. 1(b), different from the previous works [12–14] which find
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the worst-case input vector focusing on the netlist structure, the
statistical information of the existing waveform is investigated in
the proposed approach. First, the activity dependence relationships
of modules in the waveform are quantified by module toggle activ-
ity correlation (MTAC) analysis. Then, functionally independent
modules are identified by a graph clustering algorithm based on the
distance measured by the MTAC. Finally, the existing waveform is
actively augmented to approximate the worst power and IR-drop
scenario while keeping a similar MTAC. The main contributions of
the proposed semi-vector-based assessment method are as follows:

• The proposed assessment focuses on the toggle activity within
the existing waveforms, eliminating the need for a netlist struc-
ture. This not only improves the efficiency of large-scale designs
but also makes it applicable to various design types.

• The proposed assessment identifies the functionally indepen-
dent modules resulting from both the netlist structure and the
system-level scheduling of working scenarios within the exist-
ing waveform. This aids designers in enhancing test cases to
more effectively cover real worst-case scenarios.

• The proposed assessment approximates the worst-case scenario
by aligning the highest toggle waveform segment of function-
ally independent modules. This augmenting strategy maintains
the waveform within each module unchanged, thus preserving
their correspondence to real working scenarios, which alleviates
unreasonable pessimistic estimations.

Experiments conducted on a paralleled hash processor verified
that the proposed method accurately identified the functionally
independent modules. Additionally, the proposed method was ap-
plied to an industrial multi-core ARM CPU design to validate the
improvement in worst-case estimation. On average, the proposed
method estimated the peak power with a relative error of 2.93%
compared to the golden value and estimated the worst dynamic
IR-drop with a relative error of 7.62%, which is 3× and 2.5× smaller
than the vector-based result respectively. Similarly, the relative er-
ror of the proposed result is 33× and 6× smaller than the vectorless
result. This indicates that the proposed method avoids an overly
pessimistic estimation of the worst-case.

The rest of this paper is organized as follows: Section 2 reviews
the previous work on worst-case peak power and dynamic IR-drop
estimation. Section 3 discusses the proposed semi-vector-based as-
sessment. Section 4 gives out the experimental. Section 5 concludes
this paper.

2 PRELIMINARIES
The instance power dissipation of CMOS circuits is calculated in
Eq. (1) by the summation of internal power 𝑃internal, switching
power 𝑃switching, and leakage power 𝑃leakage where𝐶𝐿 is the switch-
ing capacitance, 𝑓 is the frequency of clock, 𝑉DD is the voltage of
power supply, 𝑡𝑣 is the voltage settling time, 𝐼short is the short cur-
rent and 𝛼 is the switching activity [15].

𝑃t = 𝑃switching + 𝑃internal + 𝑃leakage
𝑃switching = 𝛼𝐶𝐿𝑉

2
DD 𝑓

𝑃internal = 𝛼𝑡𝑣𝑉DD𝐼short
𝑃leakage = 𝑉 𝐼leakage

(1)

Once the instance power is solved, the instance current profile is
determined, and the dynamic IR-drop is described by a linear ordi-
nary differential equation (ODE) [3]. To obtain accurate estimates of
dynamic power and IR-drop, the toggle activity 𝛼 is crucial as both
𝑃internal and 𝑃switching are proportional to 𝛼 . Depending on how tog-
gle activity is determined, assessment methods can be classified into
two categories including vector-based and vectorless assessments.

In the vector-based assessments [4], gate-level simulations are
utilized to find which instants can switched and to determine when
the switching occurs based on some real test vector. The dynamic
power and IR-drop analysis is driven by waveform dumped in the
voltage change dump (VCD) format, which records the changes in
signal values over time during the simulation. The vector-based
assessment provides a ground truth for peak power and IR-drop
under the preset working scenarios of the waveform. However, the
vector-based assessment encounters challenges for the following
reasons. Firstly, the waveform may not be accessible in the early
stages of the design flow [16]. Secondly, simulating the design with
all possible inputs is inefficient due to the required time and limited
machine resources [15]. Last but not least, since it is difficult to
prove that the waveform indeed covers the worst-case, the vector-
based assessment is hard to reflect the worst-case dynamic power
and IR-drop [5].

In contrast, vectorless assessment does not rely on accurate
switching activity information for instances. The current constraints-
based approaches [17–21] initiated in [17] use current constraints to
restrict the range of instances current, then solve a linear equation
to evaluate the worst-case static IR-drop. [18, 21] extend the vector-
less verification with transient current constraints. [19, 20] improve
the efficiency of vectorless analysis to get a scalable performance
on modern large designs. However, these methods ignore the exact
circuitry under the grid [22], which leaves a challenge on how to
set appropriate current constraints that meet the real working sce-
narios. Furthermore, knowing the power consumption in advance
is necessary to profile the current constraints, which is also chal-
lenging. On the other hand, the statistical and probabilistic-based
methods [6–11] consider what instances switched and how often
they switched in a statistical perspective, without relying on actual
waveform-based simulations. The transition density first proposed
in [6], also equivalent to the toggle rate, represents the switching
probabilities of the signal in the netlist. The toggle rate of the netlist
input is specified and then propagated throughout the entire netlist
using the statistical method, such as the sample-based method [11],
the stochastic sequential machine [8], the Bayesian network [9],
and the correlation-based methods [7, 10]. Once the switching prob-
ability of all instances is determined, a virtual switching vector
is generated. The power consumption is then computed and the
dynamic current profile for the IR-drop analysis is also generated.

However, probabilistic-based methods still require manual speci-
fication of the toggle rate on primary inputs of the netlist, leading
to the challenge of input dependence [23]. Essentially, the average
power of the chip is directly determined by the toggle rate speci-
fied on the primary inputs [24]. The higher the toggle rate is set,
the greater the power applied and the larger the area of IR-drop
hotspots generated. A commonly used trick is tuning the toggle
rate to match the total switching percentage to a known scenario
in some real waveform. However, real waveforms typically only



Figure 2: Semi-vector-based peak power and dynamic IR-drop
assessment flow.

activate logic in a small region, while vectorless assessment propa-
gates toggles throughout the entire netlist, which always leads to
disagreement [25]. Tuning the toggle rate to match the waveform
in a local region often leads to significant pessimistic estimations.
Therefore, in industrial design flows, vectorless assessment is com-
monly used to estimate the early power and IR-drop. Once the real
waveform is simulated, power and IR-drop signoff primarily rely
on the vector-based results.

To address the coverage problem of vector-based analysis men-
tioned above, one effective approach is to identify the functionally
independent parts of the circuit and allow them to switch at the
same time to capture the worst-case scenario. The maximum in-
stantaneous current (MIC) estimation [5] identifies the mutually
exclusive gates that may or may not toggle at the same time by
the logic structure of the netlist. [26] transfers this question to the
boolean satisfiability (SAT) problem and [27] considers the variance
in the number of switching events. [12–14] intend to find the input
vector that can activate the worst-case. However, these methods
focus on the gate-level maximum instantaneous current in a single
clock cycle, which ignores the implicit constraints from system
behaviors in complex designs. Although some functional paths are
mutually exclusive in the netlist structure, they will never toggle
at the same time due to the system scheduling. Considering those
instances working at the same time can lead to pessimistic estima-
tions. Due to the design complexity, these implicit constraints are
hard to foresee based on the netlist logical structure, especially at
the instance or in-depth module level. Fortunately, these constraints
are always reflected in the existing waveform since it is simulated
from a real test program. Essentially, the toggle activity of modules
in waveform can be viewed as a time series. Therefore, statistical
methods, such as correlation analysis method [28] can be utilized
to model the inherent dependence characteristic in the waveform.
The recent research [29] uses the correlation coefficient to identify
the reliability of high-correlated gates. However, how to analyze
the waveform to identify the potential worst power and IR-drop
scenario is still an open question.

3 SEMI-VECTOR-BASED ASSESSMENT VIA
MODULE TOGGLE ACTIVITY CORRELATION
(MTAC) BASEDWAVEFORM AUGMENTING

The flowchart of the proposed semi-vector-based peak power and
IR-drop assessment is shown in Fig. 2. Different from the traditional

vector-based assessment which applies power and IR-drop analysis
only to the given waveform, the proposed semi-vector-based assess-
ment augments the waveform to approximate the potential worst-
case. Firstly, the MTAC of the original waveform is analyzed and
the functionally independent modules are identified in section 3.1.
Then, the waveform is augmented in section 3.2 while maintaining
a similar MTAC. Finally, the dynamic analysis is applied to both the
original waveform and the augmented waveform.

3.1 Functionally independent modules
identification through MTAC analysis

As illustrated in the blue block in Fig. 2, the functionally independent
modules are identified in the following steps. First, the waveform
is quantified into modules toggle activity vectors in both the time
domain and the hierarchical domain of instances. Then, correlation
coefficients are calculated between different modules. Finally, the
modules are divided into functionally independent clusters based
on their MTAC distance.
3.1.1 Quantifying waveform to module toggle vectors.

The number of instances in a modern design can be vast. Analyz-
ing waveform toggle activity at the instance level would result in
unacceptable resource and runtime costs. Fortunately, instances are
typically organized in a hierarchical tree structure at different levels
of abstraction to break down complex systems. Therefore, activity
analysis could be conducted on the hierarchical instances (H-insts)
rather than the flattened instances to reduce resource and runtime
consumption. As shown in Fig. 3, the modules are specified as the
deepest H-insts that include a total number of instances larger than
the given granularity 𝐺𝑚 .

On the other hand, toggle events of each instance may occur
on every clock cycle. A typical waveform in the industrial design
flow often spans over tens of thousands of clock cycles, which is
quantitatively large. Therefore, toggle events are also quantified
into time slots, resulting in the module toggle activity vector T in
Eq. (2). 𝑇 𝑡

𝑖
denotes the number of toggle events on all instances

in module 𝑖 in the 𝑡-th time slot corresponding to the time period
(𝑡 − 1) · 𝜏 ∼ 𝑡 · 𝜏 , where 𝜏 denotes the period length of the slot.

T𝑖 =
[
𝑇 1
𝑖

𝑇 2
𝑖

· · · 𝑇 𝑡
𝑖

· · · 𝑇T
𝑖

]
(2)

3.1.2 Calculating MTAC coefficient.
To measure the dependence relationship of toggle activity be-

tween modules, the Pearson Product-Moment Correlation Coeffi-
cient [28] (PPMCC) 𝑐𝑖 𝑗 is used to represent the MTAC coefficient
between two modules 𝑖 and 𝑗 in Eq. (3). 𝑇𝑖 and 𝑇𝑗 denote the toggle

Figure 3: Specifying modules from the instances hierarchical
structure.
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Figure 4: Example of (a) positive-correlated modules,
(b) negative-correlated modules, and (c) correlation-
independent modules.

vectors of two modules; cov denotes the covariance between two
vectors and 𝜎 denotes the standard deviation of vector.

𝑐𝑖 𝑗 =
cov(T𝑖 ,T𝑗 )
𝜎T𝑖𝜎T𝑗

(3)

𝑐𝑖 𝑗 measures the linear correlation of module toggle activity over
time and takes values in the range [−1, 1]. Given a threshold 𝑐𝜖 , the
modules toggle activity exhibits three typical correlation cases.

For the case 𝑐𝑖 𝑗 ≥ 𝑐𝜖 , modules 𝑖 and 𝑗 exhibit positive corre-
lation, indicating that the two modules have consistently worked
together. An example is provided in Fig. 4(a), where modules 𝑖 and
𝑗 are located on the same path. The toggle activity propagates from
module 𝑖 to 𝑗 , resulting in both modules exhibiting a similar ten-
dency of toggle activity variation, demonstrating a strong positive
correlation with MTAC coefficient 𝑐 = 0.89. For the case 𝑐𝑖 𝑗 ≤ −𝑐𝜖 ,
modules manifest a negative correlation, indicating that the two
modules have not worked simultaneously. An example is provided
in Fig. 4(b), where modules 𝑖 and 𝑗 are located on two output paths
of a demultiplexer. The selection of two paths are mutually exclu-
sive that if one path is hit, the other will be idle. In this case, the
toggle activity vector of 𝑎 and 𝑏 exhibit a strong negative correlation
with 𝑐 = −0.87. For the case −𝑐𝜖 < 𝑐𝑖 𝑗 < 𝑐𝜖 , modules exhibit little
correlation, indicating that the toggle activity of two modules is
independent. An example is provided in Fig. 4(c), where modules
𝑖 and 𝑗 are located on two input paths of a multiplexer. Since the
two modules are on different functional paths, the toggle activity
vectors exhibit independence with 𝑐 = 0.02.

Considering all modules in the entire design, the overall MTAC is
denoted by a complete graph 𝑮{𝑽 , 𝑬} = 𝐾𝑛 , where𝑛 equals the num-
ber of modules. Vertices in 𝑽 correspond to each module, and the
weights of edges in 𝑬 represent the MTAC coefficient between pairs
of modules. Since the MTAC coefficients are calculated between
any two modules, 𝑮 is fully connected. Thus, the MTAC graph ad-
jacency matrix A𝑮 , also known as the modules correlation matrix,
is sufficient to represent all the correlations among modules where

(a) (b)

Figure 5: The correlation-independent clusters (a) on the
MTAC graph and the clusters correlation matrix (b).

A𝑮 [𝑖, 𝑗]𝑖=𝑗 = 1 on the leading diagonal andA𝑮 [𝑖, 𝑗]𝑖≠𝑗 = 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖
representing the MTAC coefficient between module 𝑖 and 𝑗 .
3.1.3 Identifying functionally independent module clusters.

After calculating the MTAC, the functionally independent mod-
ules are identified through the correlation-independent module
clusters, as shown in Fig. 5(a). The clusters are represented by the
disjoint set 𝑪 which includes𝑁 cluster sets {𝐶1, · · · ,𝐶𝑁 }. Each clus-
ter set includes modules {𝑚1,𝑚2, · · · }. Eq. (4) defines the clusters
correlation weight c by averaging all edges 𝑐𝑖 𝑗 connecting modules
in two different clusters 𝐶𝑎 and 𝐶𝑏 on the MTAC graph, which
measures the overall correlation between two clusters. c is defined
similarly to the graph 𝑐𝑢𝑡 in [30], but solving the average of all edges
rather than the summation to eliminate the effect of the number of
modules in clusters.

c(𝐶𝑎,𝐶𝑏 ) =
1

|𝐶𝑎 | |𝐶𝑏 |
∑︁

𝑖∈𝐶𝑎, 𝑗∈𝐶𝑏

��𝑐𝑖 𝑗 �� (4)

i(𝐶𝑎) =
2

|𝐶𝑎 |2 − |𝐶𝑎 |

∑︁
𝑝,𝑞∈𝐶𝑎,𝑝≠𝑞

��𝑐𝑝𝑞 �� (5)

Eq. (5) defines the internal correlation weight i of one cluster by
averaging all edges inside the cluster, which measures the MTAC
compactness of the cluster.

The correlation-independent clusters set C satisfies the con-
straints in Eq.(6): c between any two clusters should be no greater
than the independent threshold 𝑐𝜖 (6a) and i of any cluster should
be no less than 𝑐𝜖 (6b). This constraint ensures the MTAC between
different clusters should be small compared to the internal MTAC
inside one cluster, which reflects the clusters independence.

c(𝐶𝑎,𝐶𝑏 ) ≤ 𝑐𝜖 (6a)

i(𝐶𝑎) ≥ 𝑐𝜖 , i(𝐶𝑏 ) ≥ 𝑐𝜖 (6b)
∀𝐶𝑎 ∈ C,∀𝐶𝑏 ∈ C, 𝑎 ≠ 𝑏

Finding C is well studied in graphic spectral clustering [31]. The
Shi–Malik (S-M) algorithm [32] which is widely used in commu-
nity detection in social networks is an effective method. The S-
M algorithm computes the eigenvalues and eigenvectors of the
graph Laplacian matrix and selects the eigenvector with the second-
smallest eigenvalue to bi-partition the graph where the normalized
cut between two clusters is minimized.

Applying the S-M algorithm to the MTAC graph, the identifi-
cation of correlation-independent clusters is summarized in algo-
rithm 1. Different from the split-only process in [32], the proposed
clustering algorithm employs a two-stage ‘V’ structure flow. Firstly,
it recursively breaks the modules into disjoint clusters. Then, it



Algorithm 1: Identify the correlation-independent module
clusters on the MTAC graph.
input :Adjacent matrix of the MTAC graphA𝑮 ;

Independence threshold 𝑐𝜖
output :Correlation-independent module clusters disjoint

set 𝑪 = {𝐶1, · · · ,𝐶𝑁 } includes 𝑁 clusters, which
satisfied Eq. (6)

SPLIT(𝑪 , 𝑁 , A𝑮𝑖 , 𝐶𝑖):
1* Split 𝐶𝑖 to 𝐶𝑎 and 𝐶𝑏 by the S–M algorithm in [32];
2* Calculate c(𝐶𝑎,𝐶𝑏 ) by Eq. (4);
3* if c(𝐶𝑎,𝐶𝑏 ) < 𝑐𝜖 then
4* Update 𝑪 by replacing 𝐶𝑖 to 𝐶𝑎 and 𝐶𝑏 ;
5* Update 𝑁 = 𝑁 + 1;
6* if |𝐶𝑎 | ≥ 2 then
7* A𝑮𝑎 = A𝑮𝑖 [∀𝑀𝑎 ∈ 𝐶𝑎,∀𝑀𝑎 ∈ 𝐶𝑎];
8* SPLIT(𝑪 , 𝑁 ,A𝑮𝑎 , 𝐶𝑎)
9* end
10* if |𝐶𝑏 | ≥ 2 then
11* A𝑮𝑏 = A𝑮𝑖 [∀𝑀𝑏 ∈ 𝐶𝑏 ,∀𝑀𝑏 ∈ 𝐶𝑏 ];
12* SPLIT(𝑪 , 𝑁 ,A𝑮𝑏 , 𝐶𝑏)
13* end
14* end
MERGE(𝑪 , 𝑁):
1· for 𝐶𝑎 in 𝑪 do
2· for 𝐶𝑏 in 𝑪 − {𝐶𝑎} do
3· Calculate c(𝐶𝑎,𝐶𝑏 ) by Eq. (4);
4· if c(𝐶𝑎,𝐶𝑏 ) ≥ 𝑐𝜖 then
5· Update 𝑪 by merging 𝐶𝑏 into 𝐶𝑎 ;
6· Update 𝑁 = 𝑁 − 1;
7· MERGE(𝑪 , 𝑁)
8· end
9· end

10· end
1 Set 𝑪 = {𝐶0}, 𝐶0 = {1, 2, · · · , 𝑛}, 𝑁 = 1;
2 SPLIT(𝑪 , 𝑁 , A𝑮 , 𝐶0)
3 MERGE(𝑪 , 𝑁)
4 Return 𝑪 ;

continually merges pairs of clusters until Eq. (6) is satisfied. In the
“SPLIT” process from line 1∗ to line 14∗, the S-M algorithm is utilized
to bi-partition theMTAC graph. Then, this bi-partition is recursively
conducted on the sub-graph corresponding to the two clusters until
the S-M algorithm fails to achieve a well split which c < 𝑐𝜖 , indicat-
ing that the graph is completely partitioned. This ensures all clusters
meet the constraint (6b). However, only applying the “SPLIT” pro-
cess is not enough to satisfy the constraint (6a). Thus, the “MERGE”
process from line 1· to line 10· continuously merges pairs of clusters
which 𝑐 ≥ 𝑐𝜖 , until all clusters satisfy the constraint (6a). It is easy
to prove that merging clusters will not violate the constraint (6b).

To more intuitively identify the correlation-independent module
clusters, the clusters correlation matrixA𝑪 in Eq. (7) spy the clus-
ters correlation in partitioned matrix format. The diagonal blocks
𝒄𝑎 · · · 𝒄𝑏 represent the clusters 𝐶𝑎 · · ·𝐶𝑏 where 𝐽 |𝐶𝑎 | denotes the

(a) (b) (c)

Figure 6: The modules correlation matrix (a), the clusters
correlation matrix obtained by the S–M algorithm (b) and by
the proposed algorithm (c).

all-one matrix shape with modules number in the cluster; The off-
diagonal blocks 𝒄𝑎𝑏 represent the average MTAC between different
modules 𝑎 and 𝑏.

A𝑪 =
©­­«
c𝑎 · · · c𝑎𝑏
.
.
.

. . .
.
.
.

c𝑏𝑎 · · · c𝑏

ª®®¬
c𝑎 = i(𝐶𝑎) ⊙ 𝐽 |𝐶𝑎 |

c𝑏 = i(𝐶𝑏 ) ⊙ 𝐽 |𝐶𝑏 |

c𝑎𝑏 = c(𝐶𝑎,𝐶𝑏 ) ⊙ 𝐽 |𝐶𝑏 | |𝐶𝑎 | = c𝑇
𝑏𝑎

(7)

An example of the correlation-independent modules identifica-
tion on a real design waveform is shown in Fig. 6. The modules
correlation matrix is shown in Fig. 6(a); The clusters correlation ma-
trix obtained by the original S-M algorithm in [32] and the proposed
algorithm 1 are shown in Fig. 6(b) and Fig. 6(c) correspondingly.
The independent threshold 𝑐𝜖 is set to 0.2 and absolute values were
taken to better illustrate the strength of MTAC between clusters.
The result indicates that clusters from the original algorithm in [32]
did not satisfy the constraint (6a), as the correlation weight between
clusters in the top-left corner remains larger than the threshold. By
merging those violation clusters, the proposed algorithm 1 ensures
all the constraints in Eq. (6).

3.2 Worst-case approximation by waveform
augmenting

As depicted in the yellow block in Fig. 2, the worst scenario wave-
form is approximated relying on the MTAC features of the original
waveform. The basic idea of augmenting the waveform to the worst-
case is aligning the highest toggle slots to assume those correlation-
independent modules switching simultaneously, which is illustrated

Figure 7: Augment the waveform by aligning the highest
switching slot of correlation-independent modules clusters.



Algorithm 2: Approximate the worst peak power and dy-
namic IR-drop waveform by aligning top-toggle slots.
input :Waveform V with start time 𝑡0 and end time 𝑡𝑒 ;

Module clusters disjoint set 𝑪 ;
Modules toggle vector T with slot length 𝜏

output :Augmented waveform V̂

1 for 𝐶 in 𝑪 do
2 Set T𝐶 =

∑
𝑚∈𝐶 T𝑚 ;

3 Set 𝑡𝑠 = (argmax(T𝐶 ) − 1) · 𝜏 ;
4 for𝑚 in 𝐶 do
5 Set V̂𝑚 = concat(V̂𝑚 [𝑡𝑠 : 𝑡𝑒 ], V̂𝑚 [𝑡0 : 𝑡𝑠 ]);
6 end
7 end
8 Return V̂;

Table 1: The functionally independent module clusters iden-
tification result on multi-channel hash processor

Indepedent channels 2 4 6 8

Identified indepedent
module clusters number 6 12 18 24

ARI 0.73 0.80 0.83 0.82

by the waveform shifting process in Fig. 7. The waveforms of mod-
ules within the same correlation-independent cluster are considered
collectively as their toggle activity are highly interrelated. Altering
those could disrupt the MTAC of waveform, leading to an unrea-
sonable augmenting. However, modules in different clusters are
behaviorally independent, implying they may switch simultane-
ously. If such simultaneous switching does not occur in the existing
waveform, the worst power and IR-drop scenarios are not covered.
By shifting the original waveform to align the highest switching slot,
the augmented waveform approximates the worst-case scenario.

The details of generating the augmented waveform are outlined
in algorithm 2. The total toggle vector T𝐶 of all modules in cluster
is calculated in line 2. Then, the start time of the highest switching
slot 𝑡𝑠 is calculated in line 3. Finally, the waveform is shifted so that
the highest switching slot is aligned at the beginning of waveform,
as indicated in line 5.

4 EXPERIMENTAL RESULT AND DISCUSSION
In this section, the proposed semi-vector-based dynamic power and
IR-drop assessment is validated on several test designs. First, the
accuracy of identifying functionally independent module clusters is
tested in Section 4.1. Then, the proposed semi-vector-based worst
peak power and dynamic IR-drop estimation are validated on a
modern multi-core ARM CPU design and compared with traditional
vector-based and vectorless methods in Section 4.2. The waveforms
in all experiments were simulated by a commercial functional ver-
ification tool. For module toggle vector construction, the module
granularity was set to 𝐺𝑚 = 100 instances, and the time slot length
was set to 𝜏 = 10 ns (30+ clock cycles). The independent threshold
in algorithm 1 was set to 𝑐𝜖 = 0.2.

(a) (b)

(c) (d)

Figure 8: The comparison between functionally-independent
module clusters identified in algorithm 1 and the ground
truth in parallel hash processor implemented with (a) 2 chan-
nels, (b) 4 channels, (c) 6 channels, and (d) 8 channels.

4.1 Accuracy of functionally independent
module clusters identification

In this section, the proposed MTAC-based identification of function-
ally independent module clusters is validated on a hash processor
design with 2, 4, 6, and 8 paralleled channels implementation cases.
In this test design, the modules belonging to each channel are natu-
rally functionally independent, making it appropriate to verify the
accuracy of cluster identification in algorithm 1. For each imple-
mentation case, a 10000𝑛𝑠 test waveform was simulated, including
5 to 8 random hits of each channel.

The MTAC-based clustering result obtained by algorithm 1 and
the ground truth is compared in Fig. 8. Each data point in the figure
represents a module in the design. The location of the data points in
2-D correlation space was arranged using the spring layout, respect-
ing the MTAC coefficient so that modules with high correlation
were plotted near each other. The different colors of data points rep-
resent the different clusters identified by the proposed algorithm 1,
and the different shapes of data points represent the ground truth
classification of modules belonging to different paralleled channels.
For all four test designs in Fig. 8, there were a few points with the
same color but different shapes. This indicates that the proposed al-
gorithm accurately identified the functionally independent modules
belonging to different channels. The numbers of identified inde-
pendent clusters and the Adjusted Rand Index (ARI) [33], which
objectively measures the similarity between two clusterings, were
shown in Table 1. The average ARI of the four test designs was 0.79,
indicating a good clustering result. The lowest ARI = 0.73 appeared
in the 2-channel design. This is because the internal structure of
each channel still contains functionally independent parts that are
not reflected in the ground truth labels but were still captured by
the proposed algorithm 1.



Figure 9: Selection of validationwaveform and test waveform.

Table 2: Statistics of design blocks in a modern CPU

Type Instances
number

Modules
number

Clusters
number

Augmented
corr. error

1 CPU-core 600000+ 200+ 7 0.0058
2 CPU-core 1000000+ 100+ 6 0.0007
3 CPU-core 1500000+ 1000+ 3 0.0009
4 Cache 1000000+ 500+ 13 0.0081
5 SoC-core 3000000+ 1500+ 15 0.0029
6 Soc-core 1500000+ 1000+ 13 0.0018
7 Inter 1000000+ 1000+ 3 0.0030
8 Inter 1000000+ 1000+ 3 0.0024

4.2 Worst-case dynamic power and IR-drop
estimation

The proposed semi-vector-based assessment was tested based on a
cutting-edge multi-core ARM CPU design. Eight different design
blocks, including the CPU core, the system-on-chip (SoC) core, the
cache, and the interconnection controller, were assessed by both
the traditional vector-based [4], vectorless [6], and the proposed
semi-vector-based flow. The statistics of each design block are sum-
marized in Table 2. The type of design is marked under “Type”; The
instance number and module number of each design are marked
under “Instances number” and “Modules number”;

All design blocks had a 2000ns waveform simulated from the
Dhrystone and Whetstone benchmarks and the waveforms were
quantified to 1000 slots with slot length 𝜏 = 2𝑛𝑠 . However, the
ground truth of the worst peak power and dynamic IR-drop may
not covered by the known waveforms. To validate the accuracy
of the worst-case estimation, the known waveforms were parti-
tioned into two parts, as depicted in Fig. 9. The segments of the
waveform with a switching count exceeding 80% of the global max-
imum values were designated as the validation waveform, while
the remaining segments were designated as the test waveform.
The maximum peak power and dynamic IR-drop in the validation
waveform were designated as the golden value, approximating the
ground truth. Subsequently, the vector-based assessment and the
proposed semi-vector-based assessment were applied to the test
waveform. The validation waveform remained concealed during
both the vector-based and the proposed assessments. On the other
hand, the vectorless assessment did not require waveform input.
The toggle rate of primary input and sequential activity was set

to 0.2 and 0.05 according to the design experiences. The values of
peak power and dynamic IR-drop were solved by a cutting-edge
commercial power integrity tool.

For each design block, the number of correlation-independent
module clusters were compared in “Clusters number” in Table 2. The
clusters correlation matrices of design block 1∼8 are also compared
in Fig. 10(a) ∼ Fig. 10(h) correspondingly. The results demonstrate a
strong relationship between the number of clusters and the type of
design, with the number of clusters in SoC core blocks being signif-
icantly larger than that in the CPU core blocks and the interconnec-
tion controller blocks. Additionally, the clusters in SoC core blocks
Fig. 10(e) and Fig. 10(f) exhibit stronger independence compared to
the clusters in CPU core blocks Fig. 10(a) ∼ Fig. 10(c) as indicated
by the smaller average correlation coefficients in the off-diagonal
positions. It is reasonable to assume that the SoC cores possess more
functionally independent clusters, considering the multitude of in-
tegrated components. Generating a test case waveform covering all
combinations of these components being activated is challenging.
Therefore, the proposed semi-vector-based assessment estimated
a potential worst-case scenario by assuming those are worked to-
gether during waveform augmenting. The “Augmented corr-error”
in Table 2 measures the MTAC difference between the original wave-
form and the augmented waveform, calculated by the Mean Squared
Error (MSE) 2

𝑛2−𝑛
∑
𝑖 𝑗 (𝑐𝑜𝑖 𝑗 − 𝑐

𝑎
𝑖 𝑗
)2 between MTAC coefficients 𝑐𝑜 in

the original waveform and 𝑐𝑎 in the augmented waveform. The
augmented waveform of all design blocks exhibited a comparatively
small augmented error which is less than 0.01, manifesting minimal
disagreement with the MTAC in the original waveform.

The worst peak power and dynamic IR-drop results obtained
by the proposed semi-vector-based assessment are summarized in
Table 3 and compared to those of traditional vector-based and vec-
torless assessments, as well as the golden result. The results obtained
by three assessments are compared under the “Worst peak-power”
and “Worst dyn-IR-drop”. The “runtime” compares the overall time
consumption from loading the design database to dumping the
assessment results. The experimental results of all design blocks
indicate that the proposed semi-vector-based assessment flow yields
more reasonable results, which are closest to the golden value for
both power and IR-drop. Although the proposed assessment did not
entirely cover the worst result, it yielded the smallest error with the
relative error in peak power at 2.93% and the relative error in dy-
namic IR-drop at 7.62%. In comparison, the traditional vector-based
method underestimates both the peak power and dynamic IR-drop,
with relative errors of 8.98% and 19.05% respectively. On the other
hand, although the vectorless assessment results covered the golden
worst case for all design blocks, it made significantly pessimistic
estimations with relative errors of 99.12% and 50.61% respectively,
which could lead to substantial overdesign.

The estimation of IR-drop hotspot regions is also illustrated in
Fig. 11. Comparing to the golden result in Fig. 11(d), The vector-
based result in Fig. 11(a) failed to identify the IR-drop weak regions
highlighted by the purple boxes. In contrast, although the vectorless
result covered these weak regions, it exhibited an overly pessimistic
estimation by encompassing too many additional areas. On the
other hand, the proposed result in Fig. 11(c) accurately estimated
these weak regions. It is noteworthy that the proposed assessment
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Figure 10: The clusters correlation matrices (a) ∼ (h) corresponding to the design blocks 1 ∼ 8 in Table 2.

Table 3: The worst peak power and dynamic IR-drop results on the industrial multi-core CPU design blocks.

Worst peak-power (𝑚𝑊 ) Worst dyn-IR-drop (𝑚𝑉 ) Runtime (Minutes)
Golden V-based V-less Proposed Golden V-based V-less Proposed V-based V-less Proposed

1 1372 1308 2905 1352 157.8 131.9 208.9 143.4 128 52 136
2 3175 2984 4333 3254 191.8 160.6 165.8 189.6 201 93 242
3 4371 4113 7983 4468 203.0 193.0 261.8 210.6 258 107 283
4 1981 1704 3428 1928 151.5 100.6 247.6 147.1 111 81 124
5 2435 2199 4489 2449 167.2 158.3 274.7 173.3 436 172 488
6 455 356 1411 407 119.6 108.1 191.0 127.1 161 130 179
7 2536 2380 5020 2589 149.2 92.3 282.3 174.4 322 170 357
8 2433 2352 4809 2464 159.0 114.2 244.4 187.0 281 144 321

(a) (b)

(c) (d)

Figure 11: The dynamic IR-drop hot-spot map result of (a) the
vector-based assessment, (b) the vectorless assessment, (c) the
proposed assessment, and (d) the golden result.

also inevitably overestimated the dynamic IR-drop in some regions,
as the augmented waveform was generated based on the behavioral
correlation of instances, which may not exactly match the validation
waveform. The proposed method still outperformed the traditional
since it was significantly less pessimistic while ensuring that all
IR-drop defects were covered.

The probability density function (PDF) of instances IR-drop dis-
tribution from the three results are also compared with the golden
result in Fig. 12(a), which illustrates that the distribution from the
proposed result is most similar to the golden distribution. As a ref-
erence, the correlation-independent module clusters are shown in

(a) (b)

Figure 12: The PDF of instances dynamic IR-drop (a) and the
correlation-independent module clusters (b).

Fig. 12(b) where the different colors of instances represent their
belonging to different clusters identified by the algorithm 1. The
highlighted regions appeared in the intersection regions of clus-
ters. These clusters did not experience simultaneous high switching
in the test waveform but appeared in the validation waveform.
Therefore, the vector-based assessment optimistically estimated the
dynamic IR-drop. On the other hand, the proposed assessment iden-
tified these clusters and approximated a simultaneous switching
scenario by vector augmenting, thus covering all weak regions.

5 CONCLUSION
This paper proposes a semi-vector-based assessment method to esti-
mate the worst-case peak power and dynamic IR-drop. The module
toggle activity correlation (MTAC) of the waveform is quantified,
and functionally independent modules are identified through graph
clustering. The waveform is augmented by aligning the highest
switching slots of functionally independent modules. By apply-
ing dynamic power and IR-drop analysis to the augmented wave-
form, the potential worst-case peak power and dynamic IR-drop
are revealed. Experimental results demonstrate that the proposed
assessment bridges the gap between vector-based and vectorless
assessments and provides a better approximation of the real worst-
case.
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