NEUROSELECT: LEARNING TO SELECT CLAUSES IN SAT SOLVERS
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Boolean Satisfiability

= The Boolean satisfiability (SAT) problem involves finding a
satistying assignment for a Boolean formula or proving that
none exists.

= SAT has wide applications in circuit verification, test pattern
generation, automatic theorem proving, etc.

= SAT is the first problem proven NP-complete.

Learning for SAT

= End-to-end solvers like NeuroSAT [5]: can only handle toy
cases, lack of completeness.

= Learning-aided SAT solvers: use machine learning to improve a
SAT solver’s heuristics like branching heuristic [4], restart
policy | 3], etc.

Clause Deletion

Clause deletion in CDCL solvers removes less useful learned clauses
to manage memory and computational resources.
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Figure 1. The flow of conflict-driven clause learning (CDCL) algorithm.

Learning for Clause Deletion

How about evaluating the effectiveness of learned clauses using
ML?

= ML models are great at identifying patterns in static data, but an
SAT solver’s state changes frequently as it navigates to a new
search space.

= The value of a learned clause depends on its interaction with
other chosen clauses, complicating the decision-making process.

= Direct clause evaluation demands model inferences for each
learned clause during deletion phases, requiring more
computation resources than SAT solving itself.

Clause Evaluation to Policy Evaluation
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Figure 2. Two learning aided clause deletion mechanisms. (a) Evaluate learned
clauses directly; (b) Evaluate clause deletion policies.

Why Evaluating Clause Deletion Policies?

= Effectiveness of clause deletion depends on both characteristics
of each learned clause and the deletion policy.

= Clause deletion policy has a lifelong effect during SAT solving.

= Evaluating the deletion policy only requires one-time inference,
it can be efficient even on CPUEs.

Methodology

= Step 1: generate a complementary clause deletion policy. We
propose a new clause deletion metric considering variable

propagation frequency.
= Step 2: select the most suitable clause deletio

propose a classification network with local message passing and

global attention.
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Figure 3. Distribution of variable propagation frequency of a SAT instance from

SAT competition 2022. Some variables are propagated significantly more

frequently than others.
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Figure 4. The default learned clause scoring algorithm in Kissat vs. Our new
learned clause scoring algorithm considers variable propagation frequency.

c.frequency = Z(fv > fmax)-

vel

= f, indicates the frequency of variable v used to trigger

propagation since the last clause deletion.

" fmax represents the maximum propagation frequency among all

variables.

= o IS an adjustable parameter set to 4/5, according to our

empirical studies.

NeuroSelect Overview
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Figure 5. Overview of NeuroSelect.

= BEvery SAT instance is represented as a weighted bipartite graph.

= The weight is -1 when the variable is negated

 L1TL2 T3 J

Node Embeddings

INn the clause.

Hybrid Graph Transformer

= The message-passing comprehends the structural information

of the CNF formula.

= The linear attention captures long-term dependencies between

variables.

= [inear attention reduces traditional self-attention complexity

from quadratic to linear.

Linear Attention

Suppose the input node embedding of the linear attention layer is
Z € RN*4 The linear attention function [6] is defined as

Q=f0(z), Q== V=)
_ ¢ 1 N (T
K=fc(2),  K=per- D=dig (1+NQ(K 1))

where fq, fk, and fy are linear feed-forward layers to encode the
query, key, and value matrix. || - ||f denotes the Frobenius norm and
1 is an N-dimensional all-one column vector. The diag operation
changes the N-dimensional column vector into a N x N diagonal
matrix. Subsequently, we have the output of the global attention
layer in the format of

Z°" = LinearAttn (Z) = D™ {V +- %Q (RTV)} . (2)

Datasets

= Training data: SAT competition 2016-2021 instances.
= Testing data: SAT competition 2022 instances.

= An SAT instance is labeled as ‘1’ if it sees at least a 2% reduction
iIn propagations with the new deletion policy compared to the
default policy in Kissat; otherwise, it is labeled as ‘O’

= Any formula whose graph conversion exceeds 400,000 nodes is
excluded to adhere to GPU memory limitations.

Classification Capability of NeuroSelect

Table 1. Performance of different SAT classification models.

precison  recall F1 accuracy

NeuroSAT [5] 4727% 44.0/% 45.61% 56.94%
G4SATBench [2] 43.48% 33.90% 38.10% 54.86%
NeuroSelect w/o attention| 56.45% 58.33% 5/.38% 63.89%
NeuroSelect 66.00% 55.00% 60.50% 69.44%

NeuroSelect-Kissat Performance

Table 2. Runtime statistics of Kissat and NeuroSelect-Kissat on SAT competition
2022 instances.

solved median (s) average (s)

Kissat [1] 274  307.02 713.28

NeuroSelect-Kissat| 274 271.34 671.73
Runtime Analysis
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Inference time varies between 0.01 and 2.22 seconds on the CPU,
while runtime improvement can reach up to 4425 seconds.
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