
Fracturing-aware Curvilinear ILT via Circular E-beam Mask
Writer∗

Xinyun Zhang
Chinese University of Hong Kong

Su Zheng
Chinese University of Hong Kong

Guojin Chen
Chinese University of Hong Kong

Binwu Zhu
Chinese University of Hong Kong

Hong Xu
Chinese University of Hong Kong

Bei Yu
Chinese University of Hong Kong

Abstract
Inverse lithography technology (ILT) plays a crucial role in opti-

cal proximity correction, tending to generate curvilinear masks for
optimal process windows. Traditional curvilinear mask manufactur-
ing involves fracturing into rectangles, requiring expensive mask
write times. A novel E-beam mask writer that writes variable radius
circles per shot significantly reduces the shot count for curvilinear
masks. To exploit this mask writer’s benefits, we present two meth-
ods to generate circular fracturing-aware masks. The first one con-
verts pixel-based masks from existing ILT methods into circle-based
masks using predefined rules. The second one integrates circular
constraints into the ILT process, generating circle-based masks di-
rectly via optimization. Extensive experimental results validate both
approaches’ effectiveness.

1 Introduction
As technology nodes shrink, lithography, the process of trans-

ferring circuit designs onto wafers, experiences deviations between
printed shapes and designs due to optical effects. Resolution enhance-
ment techniques (RETs), such as optical proximity correction (OPC),
are employed to improve mask fidelity and printability. OPC, either
model-based or inverse lithography-based (ILT), modifies mask pat-
terns and inserts assist features to compensate for optical effects.
Model-based methods [1] suffer from a limited solution space and
poor performance, while ILT-based methods [2–6] optimize masks
through lithography simulation, offering pixel-level flexibility and
generating curvilinear masks with superior process window and
critical dimension uniformity [7]. ILT is now widely used for 193i
and EUV mask patterns across different nodes.

Despite the enhanced quality of curvilinearmasks achieved through
ILT [8–10], their manufacturing presents challenges. Traditional Vari-
able Shaped-Beam (VSB) machines utilize varying sizes of rectangu-
lar shapes, requiring Mask Data Preparation (MDP) to fracture these
shapes into non-overlapping rectangles or VSB shots for printabil-
ity. However, the Manhattanization-based fracturing of curvilinear

∗This work is partially supported by The Research Grants Council of Hong Kong SAR
(No. CUHK14208021).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3655926

(a) Rectangular Fracturing (b) Circular Fracturing

Figure 1: Fracturing pattern comparison. Circular fracturing
requires much fewer shots for curvilinear masks compared
with rectangular fracturing and is MRC-friendly.

shapes, especially small sub-resolution assist features (SRAFs), re-
sults in a substantial increase in the number of shots (Figure 1(a)).
This increase not only escalates mask manufacturing costs but also
affects mask yield, thereby impeding high volume wafer manufactur-
ing [7]. Additionally, the rectangular fracturedmask shapes are prone
to writing errors due to short-range e-beam blur in the 20-40 nm
range [7]. These factors limit the broader application of curvilinear
masks, despite their potential for superior mask quality.

To address the aforementioned issues, [7] introduces a new cir-
cular e-beam mask writer that writes a variable-radius circle for
each shot and allows overlapping writing, as shown in Figure 1(b).
This writer is more suitable for curvilinear mask manufacturing, as
it requires much fewer shots than rectangular-based ones. Besides,
the fractured curvilinear masks are also mask rule checking (MRC)-
friendly since we can effortlessly check the distances between the
circular shots with their positions and radii. Therefore, we are inter-
ested in developing ILT methods based on this writer to fully exploit
its advantages. With this in mind, we define a novel research prob-
lem, called circular fracturing-aware OPC (CFAOPC), which aims to
produce masks fractured into overlapped circles from a target pat-
tern. CFAOPC differs from traditional OPC in two main aspects. First,
while traditional OPC focuses solely on mask generation, CFAOPC
takes into account both mask generation and fracturing, resulting in
well-fractured masks represented by sets of shots, instead of pixel-
level masks. Second, CFAOPC does not assume rectangular fracturing
like most traditional OPC methods [11], but rather uses overlapped
circular fracturing.

We propose two ILT-based solutions for CFAOPC. The first rule-
based method integrates with existing state-of-the-art (SOTA) pixel-
based ILT methods [4, 10, 11], extracting the skeleton of each pixel-
level mask shape and filling it with evenly spaced circles. The second
is a two-stage optimization-based method, which generates rough
mask shapes and SRAFs in the first stage and optimizes sparse cir-
cular representations in the second stage using a novel circle-level
ILT optimization method that incorporates circular constraints into
the pixel-level ILT process. The radius and positions of the circular

https://doi.org/10.1145/3649329.3655926

representations will be optimized directly. We validate the effec-
tiveness of the two proposed methods on the ICCAD-13 contest
benchmark [12]. Experimental results demonstrate that both pro-
posed methods reduce the shot count compared to previous ILT
methods that use Manhattanization-based fracturing. Furthermore,
the optimization-based method outperforms the rule-based method
due to the proposed circle-level ILT optimization in terms of mask
quality.

To summarize, our contributions are four-fold:
• First, we introduce a new research problem, Circular Fracturing-
Aware OPC (CFAOPC), which aims to generate masks fractured
into overlapped circles for circular e-beam mask writers [7].
• Second, we present a rule-basedmethod for CFAOPC, integrating
with existing SOTA pixel-level ILT methods.
• Third, we propose an optimization-based method for CFAOPC
problem that incorporates circular constraints into the pixel-
level ILT process and directly optimizes masks using circular
representations.
• Fourth, we demonstrate that our methods significantly reduce
shot count, with the optimization-based method surpassing the
rule-based method in mask quality.

2 Preliminaries and Problem Formulation
2.1 Lithography Simulation

Lithography simulation consists of two parts: a model for how
light projects through the mask and a model for how the photoresist
reacts to the light. The mask has patterns𝑴 that block or allow light
to pass through and reach the optical projection system. The system
changes the input light intensity distribution into an aerial intensity
distribution on the wafer plane. The aerial intensity distribution is
often called an aerial image 𝑰 . The process of converting the binary
mask image 𝑴 to the continuous aerial image 𝑰 can be described by
Hopkins’ diffraction theory [13]:

𝑰 = 𝑯 (𝑴) =
𝐾∑︁
𝑘=1

𝜇𝑘 |𝒉𝑘 ⊗ 𝑴 |2, (1)

where𝒉𝑘 is the𝑘th optical kernel function, 𝜇𝑘 is its weight, ⊗ denotes
convolution, and 𝑯 represents the optical projection model.

A convolution operation in Equation (1) involves two matrices
with large sizes, e.g., 2048×2048, which can be very time-consuming.
Therefore, the convolution operation is usually implemented by 𝒉𝑘 ⊗
𝑴 = IFFT(FFT(𝒉𝑘) · FFT(𝑴)) to improve efficiency, where FFT
and IFFT represent the Fast Fourier Transform (FFT) and inverse
FFT operations, respectively.

The photoresist model transfers the aerial image 𝑰 to the printed/resist
image 𝒁 . It is commonly implemented by comparing the aerial inten-
sity to the photoresist intensity threshold, which can be expressed
as:

𝒁 (𝑥,𝑦) =
{

1, if 𝑰 (𝑥,𝑦) > 𝐼𝑡ℎ ,
0, otherwise, (2)

where 𝐼𝑡ℎ is the intensity threshold and (𝑥,𝑦) represents a coordinate
on the aerial or resist image.

2.2 Principles of ILT
The target of ILT algorithms is to optimize a mask M that can

generate a printed image Z as close to the target pattern T as possible,

which can be formulated as:

M∗ = argmin
M
∥Z − T∥2 . (3)

2.3 Evaluation Metrics
As for mask optimization, we consider domain-specific metrics

related to ILT as follows.
Squared L2 loss measures the difference between the nominal re-

sist image and the target image, defined as:

𝐿2 (𝒁𝑛𝑜𝑚, 𝑻) = ∥𝒁𝑛𝑜𝑚 − 𝑻 ∥22 . (4)

PVB evaluates the robustness of the mask against varying process
conditions. It is computed by measuring the L2 distance between
the printed images from the maximum and minimum process
corners, formulated as:

PVB(𝒁𝑚𝑎𝑥 ,𝒁𝑚𝑖𝑛) = ∥𝒁𝑚𝑎𝑥 − 𝒁𝑚𝑖𝑛 ∥22 . (5)

Edge placement error (EPE) estimates the geometric distortion
of the resist image. To compute the EPE, we sample multiple
points on every horizontal and vertical edge of the target shapes.
The EPE score is the number of points where the distance from
the target shape to the printed pattern is larger than the EPE
constraint.

Shot count (#Shot) [3] is the number of basic shapes, i.e., circles,
for constructing the mask patterns, which represents the mask
manufacturability.

2.4 Problem Formulation
Problem 1 (Circular fracturing-aware OPC). Given a target pattern
T, our goal is to obtain a maskM, which is perfectly fractured into
a set of overlapping circles with a radius within a proper range, to
minimize the squared L2 loss, PVB and the shot count.

3 Rule-based method
Since many efforts have been made to fully exploit the potential in

pixel-level ILT [2–4, 10, 14], the motivation of the rule-based method,
CircleRule, is to utilize circles to tessellate the curvilinear masks
generated by these delicate ILT methods. Besides, CircleRule also
serves as a baseline for comparison with our proposed optimization-
based method.

To fracture a mask into overlapped circles, the key insight of
CircleRule is first to split the mask shapes into several connected
regions, then find the skeleton of each region, and finally sample
points from the skeleton and tessellate circles at these positions. Let
M be a binarized mask, 𝐴 be the point set of the pixel coordinates
of the effective mask regions, and 𝐶 (𝑝, 𝑟) be the set of points in the
circle centered at point 𝑝 with a radius 𝑟 . Our target is to find a
new shape �̃�, which can be well fractured into a group of circles,
denoted as �̃� = ∪𝑖𝐶 (𝑝𝑖 , 𝑟𝑖). We further denote the minimum and
maximum radius for each shot as 𝑅min and 𝑅max, respectively. With
a given sample distance𝑚 (the distance between two consecutive
circles) and a cover rate threshold 𝐼 , the overall flow of the rule-based
method is shown in Algorithm 1.

DFS-based point sampling.. We sample points to span circles after
segmenting the mask shape into connected regions and finding the
skeleton for each region. The skeleton is a connected curve in the
pixel grid with at least one point in the neighbor positions (the
eight pixels around each position) for any point on the skeleton.

Algorithm 1 The Rule-based Method for CFAOPC
1: Input: Raw mask 𝐴, sample distance𝑚, maximum radius 𝑅max, mini-

mum radius 𝑅min, cover rate threshold 𝐼 .
2: Output: Circular fractured mask �̃�.
3: Initialize an empty stack 𝑡 ;
4: 𝑉 ← ∅, �̃�← ∅;
5: {𝐴1, · · · , 𝐴𝑛 } ← findConnectedRegions(𝐴) ;
6: for 𝑖 ∈ {1, · · · , 𝑛} do
7: 𝑆𝑖 ← findSkeleton(𝐴𝑖) ;
8: Randomly sample a point 𝑝𝑖 in 𝑆𝑖 ;
9: Push (𝑝𝑖 , 0) to 𝑡 ; ⊲ DFS-based point sampling
10: while 𝑡 is not empty do
11: (𝑢, 𝑐𝑛𝑡) ← Pop 𝑡 ;
12: if 𝑢 not in𝑉 then
13: 𝑉 ← 𝑉 ∪𝑢;
14: 𝑁 ← findNeighborPoints(𝑢) ;
15: for 𝑛 ∈ 𝑁 do
16: if 𝑛 ∉ 𝑉 then
17: Push (𝑛, 𝑐𝑛𝑡 + 1) to 𝑡 ;
18: if 𝑐𝑛𝑡 mod 𝑚 == 0 then
19: for 𝑟 ∈ {𝑅min, · · · , 𝑅max} do ⊲ Circle radius selection

20: cover rate←
|𝐶 (𝑢, 𝑟) ∩𝐴𝑖 |
|𝐶 (𝑢, 𝑟) | ;

21: if cover rate < 𝐼 then
22: �̃�← �̃� ∪𝐶 (𝑢, 𝑟) ;
23: break;

Therefore, we can construct the skeleton as a graph, where each
point represents a node and is connected to the nodes at the neighbor
pixels, as shown in Figure 2(a). Then, we perform a depth-first search-
based (DFS-based) point sampling algorithm to sample points as
circle centers, as shown from line 10 to line 18 in Algorithm 1. To
ensure the sampled points are evenly distributed on the skeleton, we
accompany a counter for each iteration and sample the points with
a fixed sample distance𝑚.

Circle radius selection.We decide the radius for each circle to
fit the mask shape with points sampled from our DFS-based algo-
rithm (see lines 19–23 in Algorithm 1). Specifically, we traverse all
possible radii from the minimum to the maximum until the cover
rate (defined in line 20 in Algorithm 1) drops to a threshold 𝐼 , con-
sidering the radius value constraints. The cover rate is 1 when the
radius 𝑟 is small, and all circles are enclosed by the mask. The cover
rate decreases when 𝑟 exceeds the mask boundaries, as shown in
Figure 2(b). Therefore, the hyper-parameter 𝐼 is a critical factor in the
area of the fractured shape. In our experiment, we find that setting 𝐼
to 0.9 is a good choice and adopt it in our experiments.

4 Optimization-based method
The optimization-based method, CircleOpt, consists of two stages.

The first one is a simple pixel-level initialization aiming at generating
the rough mask shapes and SRAFs. The second one is a circle-based
optimization that transforms the pixel-level mask into sparse circu-
lar representations and performs circle-level ILT for optimal mask
quality while maintaining the circular fracturing constraints. The
overall flow of CircleOpt is shown in Figure 3.

4.1 Pixel-level Initialization
We perform simple pixel-level ILT as an initialization for the

later circle-based ILT process. We adopt the simplest ILT baseline
MOSAIC [2] and perform only a few steps to roughly generate some

(a)

<latexit sha1_base64="oRAZ6yN4oyx48V0zjyrS/DZGTgA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahgpREinoMePFYwbSFNpTNdtMu3WzC7kYMob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxLOlLbtb6u0tr6xuVXeruzs7u0fVA+P2ipOJaEeiXksuwFWlDNBPc00p91EUhwFnHaCye3M7zxSqVgsHnSWUD/CI8FCRrA2kld/usjOB9Wa3bDnQKvEKUgNCrQG1a/+MCZpRIUmHCvVc+xE+zmWmhFOp5V+qmiCyQSPaM9QgSOq/Hx+7BSdGWWIwliaEhrN1d8TOY6UyqLAdEZYj9WyNxP/83qpDm/8nIkk1VSQxaIw5UjHaPY5GjJJieaZIZhIZm5FZIwlJtrkUzEhOMsvr5L2ZcO5ajTvmzXXLeIowwmcQh0cuAYX7qAFHhBg8Ayv8GYJ68V6tz4WrSWrmDmGP7A+fwDz+I4h</latexit>

(x, y)

<latexit sha1_base64="4xZFn7e1KOvAimAWuwsOmxAZ3xE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3rgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYjj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwTgjaE=</latexit>r1

<latexit sha1_base64="WMWLohdgF3fqKSFwt0lKg0JNVZk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qndVrd/XK41GHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAGZI2i</latexit>r2

<latexit sha1_base64="1YaasPpYL+UmRWmR4EuWanNa7DE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2lpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOl5l2/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6zWmrVKvZ7HUYQTOIVz8OAK6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fsHmM3g==</latexit>

S

(b)

Figure 2: Illustration of the key steps in CircleRule. (a) Con-
struction of the skeleton graph; (b) the spanning process of
the circle radius.
good shapes. The loss function and the binary function used in this
stage are detailed in the following paragraphs.

Loss function.We take the simplest form of ILT loss function,
consisting of a squared L2 loss and a PVB loss, which can be formu-
lated as:

𝐿 = 𝐿2 + 𝐿𝑝𝑣𝑏 . (6)
The detailed definition of the squared L2 loss and the PVB loss can
be found in Equation (4) and Equation (5), respectively.

Binary function.To smoothly generate SRAFs patterns, we adopt
a shifted sigmoid function as the binary function, same as [10].

4.2 Circle-based ILT
The key challenge in CFAOPC is to generate masks with the best

printability and manufacturability under circular constraints. To ad-
dress this, we propose a brand new circle-based ILT method, which
leverages the advantages of mask quality of ILT and satisfies the
circular fracturing constraints at the same time. Specifically, circle-
based ILT consists of three stages: sparse circular reparameterization,
differentiable circle-to-pixel transformation, and pixel-to-circle opti-
mization, as shown in Figure 3.

Sparse circular reparameterization.. We transform the pixel-level
mask into sparse circles for circle-based ILT optimization. Let M′
be the pixel-level mask and 𝐴′ be the point set for the mask shapes.
We fracture them into circles as 𝐴′ = ∪𝑖𝐶 (𝑝𝑖 , 𝑟𝑖) using Algorithm 1,
where 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖) represents a pixel. We add a learnable parameter
𝑞𝑖 ∈ R to each circle as the circle activation. Smaller 𝑞𝑖 lowers
the probability of the circle’s existence. We initialize 𝑞𝑖 to 1 for all
the circles. With this reparameterization, we can obtain the sparse
circular representation of a mask consisting of a set of four-element
tuples {(𝑥1, 𝑦1, 𝑟1, 𝑞1), · · · , (𝑥𝑛, 𝑦𝑛, 𝑟𝑛, 𝑞𝑛)}, where 𝑛 is the number
of circles. Note that the sparse circular representation can recover
a full mask by unioning all the circles with 𝑞𝑖 > 0.5, and this mask
definitely meets the circular constraints for CFAOPC since each
circle serves as one shot. Therefore, our target is to optimize these
4𝑛 parameters to achieve the best mask performance.

Differentiable circle-to-pixel transformation.. Since the lithog-
raphy simulation, as shown in Equation (1), only accepts pixel-level
maskM, we need to convert the sparse circular representation to a
dense mask so that we can perform simulation and adopt gradient-
based optimization to modify the mask. The key challenge is that
this transformation must be differentiable to allow the gradient flow
to reach the sparse circular representation. On the one hand, the
coordinates 𝑥𝑖 and 𝑦𝑖 and the radius 𝑟𝑖 must be integers since they
are all metrics on the pixel grid, so we can not directly optimize them
through a conventional approach. On the other hand, we need to
design a framework to let the update on the dense mask take effect
on the sparse circular representation. To address these issues, we

<latexit sha1_base64="kgp4AlQFjv/6bvp15F8EzRp6Tdg=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBItQQUoiRV0W3LisYB/QhjCZTtqhk0mcmagh9lPcuFDErV/izr9x2mahrQcOHM65l7lz/JhRqWz72yisrK6tbxQ3S1vbO7t7Znm/LaNEYNLCEYtE10eSMMpJS1HFSDcWBIU+Ix1/fDXNO/dESBrxW5XGxA3RkNOAYqS05Znl6qPnnKaaQvPOc048s2LX7BmsZeHkogI5mp751R9EOAkJV5ghKXuOHSs3Q0JRzMik1E8kiREeoyHpaclRSKSbzU6fWMfaGVhBJDS5smbu740MhVKmoa8nQ6RGcjGbmv9lvUQFl25GeZwowvH8oSBhloqsaQ/WgAqCFUu1QFhQfauFR0ggrHRbJV2Cs/jlZdE+qznntfpNvdJo5HUU4RCOoAoOXEADrqEJLcDwAM/wCm/Gk/FivBsf89GCke8cwB8Ynz+UEpJF</latexit>

(x1, y1, r1, q1)
<latexit sha1_base64="wI/2/mzC/fXxhq0mYaatKc31VxI=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBEqSElKUZcFNy4r2Ae0IUymk3boZBJnJmqI/RQ3LhRx65e482+ctllo64EDh3PuZe4cP2ZUKtv+NlZW19Y3Ngtbxe2d3b19s3TQllEiMGnhiEWi6yNJGOWkpahipBsLgkKfkY4/vprmnXsiJI34rUpj4oZoyGlAMVLa8sxS5dGrnaWaQvPOq516Ztmu2jNYy8LJRRlyND3zqz+IcBISrjBDUvYcO1ZuhoSimJFJsZ9IEiM8RkPS05KjkEg3m50+sU60M7CCSGhyZc3c3xsZCqVMQ19PhkiN5GI2Nf/LeokKLt2M8jhRhOP5Q0HCLBVZ0x6sARUEK5ZqgbCg+lYLj5BAWOm2iroEZ/HLy6Jdqzrn1fpNvdxo5HUU4AiOoQIOXEADrqEJLcDwAM/wCm/Gk/FivBsf89EVI985hD8wPn8Amj6SSQ==</latexit>

(x2, y2, r2, q2)

<latexit sha1_base64="l8RxxuUH4SAvwC2zXEpSrJ7fTTA=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBItQQUoiRV0W3LisYB/QhjCZTtqhk0mcmagh9lPcuFDErV/izr9x2mahrQcOHM65l7lz/JhRqWz72yisrK6tbxQ3S1vbO7t7Znm/LaNEYNLCEYtE10eSMMpJS1HFSDcWBIU+Ix1/fDXNO/dESBrxW5XGxA3RkNOAYqS05Znl6qPHT1NNoXnn8RPPrNg1ewZrWTi5qECOpmd+9QcRTkLCFWZIyp5jx8rNkFAUMzIp9RNJYoTHaEh6WnIUEulms9Mn1rF2BlYQCU2urJn7eyNDoZRp6OvJEKmRXMym5n9ZL1HBpZtRHieKcDx/KEiYpSJr2oM1oIJgxVItEBZU32rhERIIK91WSZfgLH55WbTPas55rX5TrzQaeR1FOIQjqIIDF9CAa2hCCzA8wDO8wpvxZLwY78bHfLRg5DsH8AfG5w8MrJM5</latexit>

(xn, yn, rn, qn)

<latexit sha1_base64="pnDg8Z093VXRE90cSKEbn4ZZtVA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqn55f1lrNIo4ynACp3AOHlxDA+6gCS1g8AjP8ApvjnJenHfnY9FacoqZY/gD5/MHsKuPNg==</latexit>· · ·

<latexit sha1_base64="jaIWx9LM3OGl1Bu0pRDQVP4fwiU=">AAACIXicbVDLSgMxFM34rPU16tJNsAgVpMxI0S4LblxWsA9oxyGTpm1okhmTjDgM/RU3/oobF4p0J/6MaTuLPrwQOI97ubkniBhV2nF+rLX1jc2t7dxOfndv/+DQPjpuqDCWmNRxyELZCpAijApS11Qz0ookQTxgpBkMbyd+85lIRUPxoJOIeBz1Be1RjLSRfLtSfHlMO5GknIx89xImC0wusKc5duHbBafkTAuuAjcDBZBVzbfHnW6IY06Exgwp1XadSHspkppiRkb5TqxIhPAQ9UnbQIE4UV46vXAEz43Shb1Qmic0nKrzEyniSiU8MJ0c6YFa9ibif1471r2Kl1IRxZoIPFvUixnUIZzEBbtUEqxZYgDCkpq/QjxAEmFtQs2bENzlk1dB46rkXpfK9+VCtZrFkQOn4AwUgQtuQBXcgRqoAwxewTv4BF/Wm/VhfVvjWeualc2cgIWyfv8A/mKjZw==</latexit>

(x0
1, y

0
1, r

0
1, q

0
1)

<latexit sha1_base64="dFBqQljKKx183extdjmC1tfiHzc=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WoICUpRbssuHFZwT6gjWEynbRDZ5I4MxFD6K+48VfcuFCkO/FnnLZZ9OGFgfO4lzv3eBGjUlnWj5Hb2Nza3snvFvb2Dw6PzOOTlgxjgUkThywUHQ9JwmhAmooqRjqRIIh7jLS90e3Ubz8TIWkYPKgkIg5Hg4D6FCOlJdeslV4e014kKCdjt3IFkyUmltjTArt0zaJVtmYF14GdgSLIquGak14/xDEngcIMSdm1rUg5KRKKYkbGhV4sSYTwCA1IV8MAcSKddHbhGF5opQ/9UOgXKDhTFydSxKVMuKc7OVJDuepNxf+8bqz8mpPSIIoVCfB8kR8zqEI4jQv2qSBYsUQDhAXVf4V4iATCSoda0CHYqyevg1albF+Xq/fVYr2exZEHZ+AclIANbkAd3IEGaAIMXsE7+ARfxpvxYXwbk3lrzshmTsFSGb9/BNmjaw==</latexit>

(x0
2, y

0
2, r

0
2, q

0
2)

<latexit sha1_base64="+3z01mskZMA5D8miu2TZzlfN+OQ=">AAACIXicbVDLSgMxFM34rPU16tJNsAgVpMxI0S4LblxWsA9oxyGTpm1okhmTjDgM/RU3/oobF4p0J/6MaTuLPrwQOI97ubkniBhV2nF+rLX1jc2t7dxOfndv/+DQPjpuqDCWmNRxyELZCpAijApS11Qz0ookQTxgpBkMbyd+85lIRUPxoJOIeBz1Be1RjLSRfLtSfHlMO5GknIx8cQmTBSYX2NMcu/DtglNypgVXgZuBAsiq5tvjTjfEMSdCY4aUartOpL0USU0xI6N8J1YkQniI+qRtoECcKC+dXjiC50bpwl4ozRMaTtX5iRRxpRIemE6O9EAtexPxP68d617FS6mIYk0Eni3qxQzqEE7igl0qCdYsMQBhSc1fIR4gibA2oeZNCO7yyaugcVVyr0vl+3KhWs3iyIFTcAaKwAU3oAruQA3UAQav4B18gi/rzfqwvq3xrHXNymZOwEJZv3+FSKRb</latexit>

(x0
n, y0

n, r0n, q0n)

<latexit sha1_base64="pnDg8Z093VXRE90cSKEbn4ZZtVA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqn55f1lrNIo4ynACp3AOHlxDA+6gCS1g8AjP8ApvjnJenHfnY9FacoqZY/gD5/MHsKuPNg==</latexit>· · ·

Litho
Model

Pixel-level
Init.

Circular
Repara.

Forward

Gradient Flow

STE

Loss
Function

<latexit sha1_base64="vwHu8jDXFcy6rQt0ZFIIe64Jqs4=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgQkpSirqsuHHhooJ9QBvKZDpph04mcWZSKCHf4caFIm79GHf+jZM2C209cC+Hc+5l7hwv4kxp2/62CmvrG5tbxe3Szu7e/kH58KitwlgS2iIhD2XXw4pyJmhLM81pN5IUBx6nHW9ym/mdKZWKheJRzyLqBngkmM8I1kZy7wdJLb0wPZp66aBcsav2HGiVODmpQI7moPzVH4YkDqjQhGOleo4daTfBUjPCaVrqx4pGmEzwiPYMFTigyk3mR6fozChD5IfSlNBorv7eSHCg1CzwzGSA9Vgte5n4n9eLtX/tJkxEsaaCLB7yY450iLIE0JBJSjSfGYKJZOZWRMZYYqJNTiUTgrP85VXSrlWdy2r9oV5p3ORxFOEETuEcHLiCBtxBE1pA4Ame4RXerKn1Yr1bH4vRgpXvHMMfWJ8/f+OR8A==</latexit>

L2, Lpvb

<latexit sha1_base64="k+jHMrv+SFmV//sgdnS6HFoJPJk=">AAAB7HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXExsIigpcEkiPsbSbJkr29Y3dPCEd+g42FIrb+IDv/jZvkCk18MPB4b4aZeWEiuDau++0U1tY3NreK26Wd3b39g/LhUVPHqWLos1jEqh1SjYJL9A03AtuJQhqFAlvh+Hbmt55QaR7LRzNJMIjoUPIBZ9RYyb/vZXraK1fcqjsHWSVeTiqQo9Erf3X7MUsjlIYJqnXHcxMTZFQZzgROS91UY0LZmA6xY6mkEeogmx87JWdW6ZNBrGxJQ+bq74mMRlpPotB2RtSM9LI3E//zOqkZXAcZl0lqULLFokEqiInJ7HPS5wqZERNLKFPc3krYiCrKjM2nZEPwll9eJc2LqndZrT3UKvWbPI4inMApnIMHV1CHO2iADww4PMMrvDnSeXHenY9Fa8HJZ47hD5zPH/PRjso=</latexit>

Ls

N × Iters.

Circle-to-pixel
Trans.

Figure 3: Overall flow of CircleOpt.

1 2 3

1

2

3

0 𝑥

𝑦

(a)

1 2 3

1

2

3

0 𝑥

𝑦

(b)

Figure 4: Visualization of the straight-through estimator. (a)
STE forward; (b) STE backward.
first let 𝑥𝑖 , 𝑦𝑖 , and 𝑟𝑖 be real numbers for ease of optimization, and
then we quantize them into integers through

𝑥 ′𝑖 = STE(𝑥𝑖), 𝑦′𝑖 = STE(𝑦𝑖), 𝑟 ′𝑖 = STE(𝑟𝑖), (7)

where STE(·) is a straight-through estimator (STE) [15] defined as

STE(𝑥) = Round(Clip(𝑥, 𝑋min, 𝑋max)), (8)

𝜕STE(𝑥)
𝜕𝑥

= 1{𝑋min≤𝑥≤𝑋max } (𝑥). (9)

In Equation (8) and Equation (9), 𝑋min and 𝑋max denote the lower
bound and upper bound value of 𝑥 , respectively. In our implementa-
tion, we set 𝑋min and 𝑋max to 0 and the height/width𝑊 of the mask
for 𝑥𝑖 and 𝑦𝑖 , respectively. For 𝑟𝑖 , 𝑋min and 𝑋max are set to 𝑅min and
𝑅max, respectively. The key insight of STE is to use the gradient of
the output to estimate the gradient of the input in the backward
stage, as shown in Figure 4. By adopting straight-through estimators,
we can eliminate the integer constraints for the coordinates and
radius.

Then, with the quantized coordinates 𝑥 ′
𝑖
and 𝑦′

𝑖
and the radius 𝑟 ′

𝑖
,

we propose a circular window function for each circle:

𝑓𝑥 ′
𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦) = 1

1 + 𝑒−𝛼 (−
√
(𝑥−𝑥 ′

𝑖
)2+(𝑦−𝑦′

𝑖
)2+𝑟 ′

𝑖
)
, (10)

where (𝑥,𝑦) are the variables and can be any position in a 2D dense
mask, and 𝛼 is a hyper-parameter for adjusting the steepness of
the window function. If a given point (𝑥,𝑦) is within the radius
of the circle 𝐶 ((𝑥 ′

𝑖
, 𝑦′
𝑖
), 𝑟 ′
𝑖
), the window activation will be close to

1. Otherwise, the window activation will be close to 0 if (𝑥,𝑦) is
beyond the radius of the circle𝐶 ((𝑥 ′

𝑖
, 𝑦′
𝑖
), 𝑟 ′
𝑖
). Denoting the learnable

dense mask transformed from the sparse circular representation as
M̄, we can define the transformation as:

M̄(𝑥,𝑦) = max
𝑖∈{1,· · · ,𝑛}

{𝑞𝑖 𝑓𝑥 ′
𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦)}. (11)

(a) Gradient 𝑤.𝑟 .𝑡 𝑥 (b) Gradient 𝑤.𝑟 .𝑡 𝑥

Figure 5: Schematic illustration of the updates of the circular
representations from the gradient of the dense mask M̄.

The insight behind Equation (11) is, for a given point (𝑥,𝑦) in the
dense mask M̄, the activation of this point is the maximum activation
of all the circles that enclose this point. In other words, a point in
M̄ will be considered part of the mask if there exists at least one
circle that covers this point. A visualization of a two-circle case is
shown in Figure 3. We only need to traverse all the sparse circle
tuples to recover the dense mask, which is lightweight in terms
of computation. More importantly, this circle-to-pixel transforma-
tion is totally differentiable, which enables us to update the sparse
circle representation via gradient on M̄. Let 𝑔(𝑥) = 𝑥 (1 − 𝑥) and
ℎ𝑥 ′

𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦) = (𝑔 ◦ 𝑓𝑥 ′

𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
) (𝑥,𝑦). According to the chain rule, the

gradient of one pixel in M̄ with respect to 𝑥𝑖 can be calculated as:

𝜕M̄(𝑥,𝑦)
𝜕𝑥𝑖

=


0, if 𝑖 ≠ argmax

𝑖∈{1,· · · ,𝑛}
{𝑞𝑖 𝑓𝑥 ′

𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦)}

𝛼𝑞𝑖ℎ𝑥 ′
𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦) (𝑥 − 𝑥𝑖)1[0,𝑊] (𝑥𝑖)√︃

(𝑥 − 𝑥 ′
𝑖
)2 + (𝑦 − 𝑦′

𝑖
)2

, o/w
(12)

The gradient 𝑤.𝑟 .𝑡 𝑦𝑖 can be obtained by simply replacing 𝑥𝑖 with
𝑦𝑖 in Equation (12). Similarly, the gradient 𝑤.𝑟 .𝑡 𝑟𝑖 and 𝑞𝑖 can be
calculated as:

𝜕M̄(𝑥,𝑦)
𝜕𝑟𝑖

=


0, if 𝑖 ≠ argmax

𝑖∈{1,· · · ,𝑛}
{𝑞𝑖 𝑓𝑥 ′

𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦)}

𝛼𝑞𝑖ℎ𝑥 ′
𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦)1[𝑅min,𝑅max] (𝑟𝑖), o/w

(13)

𝜕M̄(𝑥,𝑦)
𝜕𝑞𝑖

=


0, if 𝑖 ≠ argmax

𝑖∈{1,· · · ,𝑛}
{𝑞𝑖 𝑓𝑥 ′

𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦)}

𝑓𝑥 ′
𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦), o/w

(14)

With a closer look at Equation (12), we can find that only the points
near the boundary of the circle, i.e.,

√︃
(𝑥 − 𝑥 ′

𝑖
)2 + (𝑦 − 𝑦′

𝑖
)2 ≈ 𝑟 ′

𝑖
, will

affect the updates of the coordinates 𝑥 ′
𝑖
and𝑦′

𝑖
since ℎ𝑥 ′

𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦) are

almost zeros excepts for points near the circle boundary. Similarly,

Table 1: Comparison between CircleRule and SOTA pixel-
based OPC methods. We show the averaged results for each
metric on ICCAD 2013 benchmark.

Model 𝐿2 PVB EPE #Shot
Develset [4] 39992.9 46251.7 8.2 699.8

Develset+CircleRule 49231.1 43407.1 14.4 123.8
NeuralILT [11] 37878.9 51092.9 8.1 332.1

NeuralILT+CircleRule 41720.6 50420.7 11.9 149.9
MultiILT [10] 27171.0 39854.0 2.9 271.5

MultiILT+CircleRule 35790.0 40725.0 8.3 260.0

for 𝑟𝑖 , the updates are also determined by the points near the bound-
ary due to the existence of ℎ𝑥 ′

𝑖
,𝑦′

𝑖
,𝑟 ′
𝑖
(𝑥,𝑦) as shown in Equation (13).

Meanwhile, the changes on 𝑞𝑖 will be pushed mainly by points inside
the circle, as shown in Equation (13). Figure 5 provides an example
of how the gradient flow is passed to the sparse circular representa-
tions from the dense mask M̄. As shown in Figure 5(a), given a circle
𝐶 ((𝑥 ′

𝑖
, 𝑦′
𝑖
), 𝑟 ′
𝑖
), if the pixels near the right circle boundary have large

gradients (these pixels are likely to be part of mask), the gradient of
these pixels will be aggregated as shown in Equation (12) and push
𝑥 ′
𝑖
to the right. Figure 5(b) shows another example for 𝑟 ′

𝑖
. If the pixels

outside the circle have large gradients, the gradient of the radius 𝑟 ′
𝑖

will be positive, thus making the circle larger.

Pixel-to-circle optimization.. With the dense mask M̄ obtained
from the sparse circular representation and the differentiable circle-
to-pixel transformation, we can perform pixel-to-circle optimization
to update the circle parameters, as shown in Figure 3. The loss func-
tion is defined as:

𝐿 = 𝐿2 + 𝐿𝑝𝑣𝑏 + 𝛾𝐿𝑠 , (15)
where 𝐿2, 𝐿𝑝𝑣𝑏 , and 𝐿𝑠 represent the squared L2 loss, the PVB loss and
the sparsity regularizer, respectively. 𝛾 is a hyper-parameter tuning
the weight of the sparsity regularizer. The 𝐿2 loss and PVB loss are
calculated from the pixel-based mask M̄, through a conventional
pixel-based ILT process. The gradient flow from the squared L2 loss
to 𝑥𝑖 in the circular representation can be formulated as:

𝜕𝐿2
𝜕𝑥𝑖

=
∑︁

(𝑥,𝑦) ∈U

𝜕𝐿2
𝜕M̄(𝑥,𝑦)

𝜕M̄(𝑥,𝑦)
𝜕𝑥𝑖

. (16)

The gradient of the squared L2/PVB loss 𝑤.𝑟 .𝑡 𝑦𝑖 , 𝑟𝑖 and 𝑞𝑖 can be
formulated in a similar way. In Equation (16), U denotes a region
where the gradients are aggregated for a given circle. In our imple-
mentation, we limit this region to a square with a width marginally
larger than the diameter of the circle. This has two rationales behind
it. On one hand, as shown in the aforementioned analysis, pixels too
far from the circle center will not significantly affect the updates
of sparse circular representation. On the other hand, involving too
many pixels will lead to huge computational graphs requiring much
GPU memory footprint and time.

The sparsity regularizer 𝐿𝑠 is defined as:

𝐿𝑠 =

𝑛∑︁
𝑖=1
|𝑞𝑖 |, (17)

which is used to further reduce the number of circles (shots) in the
final mask. As we can see, Equation (17) is in essence a Lasso regu-
larizer on all the circle activations. Being a widely-used technique
for creating sparsity in tensors, leveraging this regularizer can effec-
tively increase the sparsity in (𝑞1, · · · , 𝑞𝑛) so as to reduce the shot

Target Pattern Mask Printed Image

Figure 6: Visualization of masks generated by CircleOpt.
count since circles with small 𝑞 values will not be considered in the
final mask.

5 Experiments
Implementation Details. We implement our proposed methods on
PyTorch. All the experiments are done on a single Nvidia GeForce
RTX 3090 GPU. The optimization step size is set to 0.1, and 𝛾 is set
to 3. The maximum and minimum circle radius are set to 76 and 12,
respectively. The steepness of the circular window function 𝛼 is set
to 8, and the sample distance is set to 32. The methods are tested on
the widely used ICCAD 2013 benchmark [12], which includes ten
layout tiles from industrial designs at the 32nm technology node.
The proposed algorithm is developed based on OpenILT [16], pro-
viding efficient GPU acceleration and comprehensive evaluation. As
described in Section 2.3, 𝐿2, PVB, and EPE, and #Shot are used to
evaluate the optimized masks.

Main Results. We implement CircleRule based on three state-of-
the-art methods [4, 10, 11]. On one hand, the comparison between
CircleRule and SOTA OPC methods is shown in Table 1. As we can
see, with circles as the lithography shots, the total shot count can
be significantly reduced, validating the manufacturability advantage
of the circular E-beam mask writer for curvilinear masks. Mean-
while, CircleRule suffers from significant performance loss in terms
of squared L2 loss and EPE. This is due to the fact that CircleRule
only tries to fit the original pixel-based masks, but the extra circu-
lar constraints will lead to imperfect fitting for arbitrarily shaped
curvilinear masks. Moreover, we can observe that CircleRule obtains
comparable and even better performance (for NeuralILT [11] and
Develset [4]) on PVB. We conjecture that circular shapes are more
robust against varying process conditions. On the other hand, the
comparison between CircleRule and CircleOpt is shown in Table 2.
CircleOpt outperforms CircleRule based on all the SOTA pixel-based
ILT methods in terms of mask performance. Especially for EPE and
squared L2 loss, CircleOpt surpasses the best CircleRule (based on
MultiILT [10]) with a margin of 50% and 9%, respectively. For shot
count, CircleRule based on Develset [4] achieves the minimal number
since the masks do not include any SRAFs. When compared with Cir-
cleRule based on MultiILT [10] (masks with SRAFs), CircleOpt also
requires 20% fewer shots while maintaining superior performance.
The mask visualization of CircleOpt is shown in Figure 6.

Ablation Study. To further validate the effectiveness of our pro-
posed methods, we conduct several ablation studies on the sample
distance and the circular sparsity loss.

Table 2: Mask Printability, Complexity Comparison for CircleRule and CircleOpt.

Bench Area(𝑛𝑚2) Develset [4]+CircleRule NeuralILT [11]+CircleRule MultiILT [10]+CircleRule CircleOpt
𝐿2 PVB EPE #Shot 𝐿2 PVB EPE #Shot 𝐿2 PVB EPE #Shot 𝐿2 PVB EPE #Shot

case1 215344 59632 51087 23 102 53005 57775 13 170 49293 46945 8 253 43358 46905 3 214
case2 169280 53240 42993 19 80 45662 53770 13 128 39583 38565 2 236 35496 37920 1 215
case3 213504 107342 70906 69 205 93116 92536 61 213 105217 64381 69 242 75206 66241 32 194
case4 82560 21512 25623 7 44 18912 28873 6 73 14209 23649 2 164 13205 23234 1 104
case5 281958 53242 52706 4 140 52714 53575 8 192 32398 51711 0 317 34938 53110 1 172
case6 286234 52837 48595 5 203 48805 52200 7 190 38767 48290 1 313 36797 44629 0 252
case7 229149 36973 43124 0 146 24560 47353 0 146 17391 38744 0 335 21036 41118 0 175
case8 128544 18209 22917 1 65 16730 27114 2 89 12516 19968 0 181 13906 19859 0 169
case9 317581 62119 59295 8 214 53743 70986 9 221 40871 58311 1 407 47844 54625 1 251
case10 102400 27205 16825 8 39 9959 20025 0 77 9034 16694 0 152 9107 16969 0 83

Average 49231.1 43407.1 14.4 123.8 41720.6 50420.7 11.9 149.9 35790.0 40725.0 8.3 260.0 33089.3 40451.5 3.9 182.9
†
𝐿2 and PVB unit: 𝑛𝑚2 .

28 32 36

180

220

260

300
MultiILT

CircleRule

CircleOpt

#S
ho

t

(a)

28 32 36

7.4

7.8

8.2

·104

CircleRule

CircleOpt

L2
+P

VB

(b)

28 32 36

4

8

12

CircleRule

CircleOpt

EP
E

(c)

Figure 7: Ablation study on sample distance: (a) The shot count;
(b) Performance on 𝐿2+PVB; (c) Performance on EPE.

Table 3: Ablation study on the circular sparsity regularizer.

Method 𝐿2 PVB EPE #Shot
CircleOpt w/o Sparsity 32595.1 40193.2 4.1 208.0

CircleOpt 33089.5 40451.7 3.9 182.9

Sample distance plays a vital role in the number of shot count in
CFAOPC. We test different sample distances, and the shot counts for
CircleRule and CircleOpt are shown in Figure 7(a). As we can see,
as the sample distance increases, the final shot count number de-
creases accordingly. When the sample distance is larger than 32, both
CircleRule and CircleOpt gain significant improvements in terms
of shot count number compared with the SOTA method, MultiILT
[10]. Meanwhile, we can also observe that the shot count number
of CircleOpt is less sensitive to sample distance compared with that
of CircleRule, benefitted from the optimization-based nature of Cir-
cleOpt. Moreover, we also test the mask quality with different sample
distances, as shown in Figure 7(b) and Figure 7(c). The larger the
sample distance is, the worse the mask quality will be since we will
have less room to adjust the mask shape under the circular-shaped
constraints. Moreover, similar to the shot count number, CircleOpt
is also more robust to the variation of sample distance in terms of
mask quality compared with CircleRule, which further validates the
superiority of CircleOpt.

We also verify the effectiveness of the sparsity regularizer, as
shown in Table 3. With the sparsity regularizer 𝐿𝑠 , CircleOpt can
obtain 12% improvements for the shot count number while only
suffering from very minor performance loss on 𝐿2 and PVB and even
obtaining some improvements on EPE. This illustrates the effective-
ness of our proposed sparsity regularizer coupled with CircleOpt.

6 Conclusion
Conventional manufacturing for curvilinear masks requires frac-

turing them into a set of rectangles, resulting in a large shot count

number and exceedingly high mask manufacturing costs. A promis-
ing alternative is the circular e-beammaskwriter [7], which produces
the main feature as circles thus significantly reducing the shot count
for curvilinear masks. To fully leverage its advantages, we explore a
novel research problem, circular fracturing-aware OPC (CFAOPC),
which aims to generate masks that are optimally fractured into over-
lapping circles with variable radii for a given target pattern. To
address this problem, we propose two methods. The first rule-based
method, CircleRule, is built on SOTA pixel-level ILT methods and
fractures their output into circles according to some predefined rules.
The second one, CircleOpt, is an optimization-based method that
integrates the circular constraints into the standard ILT flow and
generates the circle-based masks directly by gradient-based opti-
mization. Extensive experimental results validate the effectiveness
of both methods and show that CircleOpt outperforms CircleRule.

References
[1] J. Kuang, W.-K. Chow, and E. F. Y. Young, “A robust approach for process variation

aware mask optimization,” in Proc. DATE, 2015.
[2] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing solution with

process window aware inverse correction,” in Proc. DAC, 2014.
[3] B. Jiang, L. Liu, Y. Ma, B. Yu, and E. F. Y. Young, “Neural-ILT 2.0: Migrating ilt to

domain-specific and multitask-enabled neural network,” IEEE TCAD, 2022.
[4] G. Chen, Z. Yu, H. Liu, Y. Ma, and B. Yu, “DevelSet: Deep neural level set for instant

mask optimization,” in Proc. ICCAD, 2021.
[5] H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Y. Young, “GAN-OPC: Mask opti-

mization with lithography-guided generative adversarial nets,” IEEE TCAD, 2020.
[6] G. Chen,W. Chen, Y. Ma, H. Yang, and B. Yu, “DAMO: Deep agile mask optimization

for full chip scale,” in Proc. ICCAD, 2020.
[7] A. Fujimura, D. Kim, T. Komagata, Y. Nakagawa, V. Tolani, and T. Cecil, “Best

depth of focus on 22-nm logic wafers with less shot count,” in Photomask and
Next-Generation Lithography Mask Technology XVII, K. Hosono, Ed., vol. 7748,
2010.

[8] L. Pang, “Inverse lithography technology: 30 years from concept to practical,
full-chip reality,” Journal of Micro/Nanopatterning, Materials, and Metrology, 2021.

[9] Z. Yu, G. Chen, Y. Ma, and B. Yu, “A gpu-enabled level set method for mask
optimization,” in Proc. DATE, 2021.

[10] S. Sun, F. Yang, B. Yu, L. Shang, and X. Zeng, “Efficient ilt via multi-level lithography
simulation,” in Proc. DAC, 2023.

[11] B. Jiang, L. Liu, Y. Ma, B. Yu, and E. F. Young, “Neural-ILT 2.0: Migrating ilt to
domain-specific and multitask-enabled neural network,” IEEE TCAD, 2021.

[12] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in mask optimization
and benchmark suite,” in Proc. ICCAD, 2013.

[13] H. H. Hopkins, “The concept of partial coherence in optics,” in Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 208, no.
1093, 1951.

[14] Q. Wang, B. Jiang, M. D. F. Wong, and E. F. Y. Young, “A2-ILT: GPU accelerated ilt
with spatial attention mechanism,” in Proc. DAC, 2022.

[15] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

[16] S. Zheng, Y. Ma, B. Zhu, G. Chen, W. Zhao, S. Yin, Z. Yu, and B. Yu, “Openilt: An
open-source platform for inverse lithography technique research,” https://github.
com/OpenOPC/OpenILT/, 2023.

https://github.com/OpenOPC/OpenILT/
https://github.com/OpenOPC/OpenILT/

