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Abstract
Layout pattern generation via deep generative models is a promis-

ing methodology for building practical large-scale pattern libraries.
However, although improving optical proximity correction (OPC)
is a major target of existing pattern generation methods, they are
not explicitly trained for OPC and integrated into OPC methods. In
this paper, we propose EMOGen to enable the co-evolution of layout
pattern generation and learning-based OPCmethods. With the novel
co-evolution methodology, we achieve up to 39% enhancement in
OPC and 34% improvement in pattern legalization.

1 Introduction
Large-scale layout pattern libraries are important for the evo-

lution of various design for manufacturing (DFM) research fields,
such as optical proximity correction (OPC), lithography simulation,
lithography hotspot detection, etc. Since lithography simulation is
a basic step in OPC while hotspot detection relies on OPC results,
OPC actually becomes a major target of layout pattern generation.
However, OPC is not explicitly considered in existing pattern gener-
ation methods, which are typically trained to mimic known patterns
with variation and evaluated by the diversity of results.

Existing pattern generation methods can be classified into two
categories, rule-based [1] and learning-based [2]. Rule-based meth-
ods employ techniques like slicing and rotation to generate new
patterns based on basic units. Nevertheless, the results generated by
such simple methods usually have low diversity and quantity. On
the contrary, learning-based methods can create more diverse and
numerous layout patterns. Pixel-based methods [3] treat the problem
as creating binary images. Sequence-based learning [4] represents a
layout pattern as a series of polygons and produces new polygons
via sequence generation. To ensure the legality of the generated pat-
terns, DiffPattern [5] generates the topology with a diffusion model
and legalizes the geometry via nonlinear optimization.

Although existing methods can generate diverse and reliable pat-
terns, the results are not guided to improve the performance on
specific tasks. For instance, although OPC is a major target of pat-
tern generation, existing methods do not integrate OPC-related ob-
jectives. In terms of OPC, many recent works focus on DNN-based
inverse lithography technique (ILT) [6–12], which relies on advanced
network architectures to do mask optimization. The model architec-
tures for DNN-based ILT evolve from fully convolutional networks
(FCNs) [7] to Fourier neural operator (FNO) [11], which brings much
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Figure 1: Motivation of the EMOGen framework. The pattern
generation model outputs more diverse results with the help
of the DNN-based ILT model. Meanwhile, the DNN-based ILT
model is enhanced by the generated patterns.

improvement on the performance. However, even though efforts
have been made to build large-scale datasets [13], there is less re-
search on how to collect or generate diverse and hard samples for
DNN-based ILT. We treasure hard samples because they can help us
find the weaknesses of the ILT models and improve the performance
in extreme cases. This inspires us to enhance the performance of
DNN-based ILT via layout pattern generation.

To provide efficient and effective mask optimization, we focus on
DNN-based ILT, which requires less runtime than traditional meth-
ods. We choose learning-based pattern generation because it offers
better diversity. An intuitive idea for enhancing mask optimization is
to collect a large quantity of data from the pattern generation model
and use them to train the ILT model. However, since the pattern
generation and ILT models have no information about each other, it
is difficult to ensure that the generated patterns can improve the ILT
performance. To overcome this challenge, we propose EMOGen to
enable the co-evolution of pattern generation and ILT models, which
can enhance mask optimization via layout pattern generation. As
shown in Figure 1, we construct the interaction between the pattern
generation and ILT models so that the pattern generation model can
find the weaknesses of the ILT model. As a result, the ILT model
can evolve by training on hard samples and the pattern generation
model can evolve by finding new weaknesses.

The major contribution of EMOGen can be summarized as follows.
• Wepropose EMOGen to enable the co-evolution of layout pattern
generation and mask optimization. To our best knowledge, this
is the first paper that directly utilizes layout pattern generation
to improve DNN-based ILT methods, exploiting the potential of
DNN-based pattern generation.

• We design the ILT-aware training and legalization schemes for
DNN-based pattern generation, making it possible to discover
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Figure 2: Illustration of squish pattern. A layout tile is con-
verted to a topology matrix and two geometry vectors.

the weaknesses of the DNN-based ILT model while maintaining
the existing diversity and legality advantages.

• Extensive experiments are conducted to verify the effectiveness
of the proposed method, achieving up to 39% enhancement in
DNN-based ILT and 34% improvement in pattern legalization.

2 Preliminaries
Squish Pattern. Typically, the layout patterns consist of multiple
rectilinear polygons. Training DNN models on such information-
sparse data incurs unnecessary computational overhead and leads to
potential overfitting. To solve these problems, we adopt the squish
pattern to achieve a lossless and efficient representation of the layout
patterns. The squish pattern representation decomposes a layout
tile into a topology matrix 𝑻 and two geometry vectors 𝚫𝑥 ,𝚫𝑦 . As
illustrated by Figure 2, to construct the topology matrix, we divide
the layout into grids according to the scan lines defined by the edges
of polygons. The topologymatrix has entries of ones inside a polygon
and zeros in empty space. The geometry vectors store the length
of the gap between each pair of neighboring scan lines. Given an
𝑁 × 𝑁 layout tile, the geometry vectors should satisfy,

𝚫𝑥,𝑖 > 0,𝚫𝑦,𝑗 > 0,∑︁
𝑖

𝚫𝑥,𝑖 = 𝑁,
∑︁
𝑗

𝚫𝑦,𝑗 = 𝑁, (1)

where 𝚫𝑥,𝑖 and 𝚫𝑦,𝑗 are the elements in the two geometry vectors.

Layout Pattern Generation. Recent DNN-based methods usually
formulate layout pattern generation as an image-to-image transla-
tion problem. Methods based on autoencoder [2, 3] map the topology
matrices to a latent space and generate new patterns by perturbing
the latent features, which can be formulated by,

𝑻 ′ = 𝒇𝑑𝑒𝑐 (𝒇𝑒𝑛𝑐 (𝑻 ) + 𝜖N(0, 𝑰 )) , (2)

where 𝜖 is the perturbation magnitude. The functions 𝒇𝑒𝑛𝑐 and 𝒇𝑑𝑒𝑐
represent the encoder and decoder in the autoencoder model, re-
spectively. To avoid illegal patterns, the method based on diffusion
model [5] optimizes the geometry vectors to satisfy the design rules.
Specifically, it limits the minimum distance between polygons, the
minimum width of a shape, and the range of a polygon’s area. These
rules can be formulated as constraints on the geometry vectors.

ILT for Mask Optimization. The transfer of patterns from the
mask to the wafer can be modeled by lithography simulation, which
consists of optical projection and photoresist models. In optical
projection, the spatial information of the mask patterns 𝑴 is trans-
formed to the aerial intensity distribution 𝑰 on the wafer plane. This

process can be modeled by Hopkins’ diffraction theory [14]:

𝑰 = 𝑯 (𝑴) =
𝐾∑︁
𝑘=1

𝜇𝑘 |𝒉𝑘 ⊗ 𝑴 |2, (3)

where 𝒉𝑘 is the 𝑘th optical kernel function, 𝜇𝑘 is the 𝑘th weight, and
⊗ denotes the convolution operation.

After optical projection, a photoresist model transfers the aerial
image 𝑰 to the printed image 𝒁 . To enable gradient descent in ILT
algorithms, researchers commonly design the photoresist model as
𝒁 (𝑥,𝑦) = 𝝈𝑍 (𝑰 (𝑥,𝑦)) = Sigmoid (𝛼 (𝑰 (𝑥,𝑦) − 𝐼𝑡ℎ)), where 𝐼𝑡ℎ is the
intensity threshold and 𝛼 is the steepness factor.

ILT [15–18] solves the mask patterns such that after the lithog-
raphy process, the printed patterns on the silicon wafer are close
to the design target. An ILT algorithm usually optimizes a param-
eter matrix 𝑷 that can be transformed to the mask image 𝑴 with
𝑴 (𝑥,𝑦) = 𝝈𝑀 (𝑷 (𝑥,𝑦)) = Sigmoid (𝛽 (𝑷 (𝑥,𝑦) − 𝛾)), where 𝛽 is the
steepness factor and 𝛾 is a constant offset. ILT algorithms typically
consider three process corners, maximum, nominal, and minimum.
Three series of optical kernels 𝑯max, 𝑯nom, and 𝑯min, are employed
to generate the printed images, 𝒁max, 𝒁nom, and 𝒁min, respectively.

L2 loss is usually adopted to measure the difference between the
nominal printed image 𝒁nom and the target image 𝒁𝑇 , defined as:

L2(𝒁nom,𝒁𝑇 ) = ∥𝒁nom − 𝒁𝑇 ∥2 . (4)

To enhance the robustness against varying process conditions, ILT
algorithms are required to reduce the process variation band (PVB):

PVB(𝒁max,𝒁min) = ∥𝒁max − 𝒁min∥2 . (5)

Given the loss function, we can optimize 𝑷 via gradient descent and
get the optimized mask 𝑴∗. In addition to L2 and PVB, we adopt
edge placement error (EPE) to estimate the distortion of the printed
image. To estimate EPE, we sample probe points equidistantly on
the edges of target patterns, and count the points where the distance
between the target and printed patterns is larger than a threshold.

Recently, researchers have proposed variousDNN-based ILTmeth-
ods [6–12], which can significantly boost the speed and performance
of ILT with end-to-end inference. In such methods, the input and
output are the target image and optimized mask, respectively.

3 Method
In this section, we first formulate the co-evolution of layout pat-

tern generation and mask optimization. Next, we demonstrate how
to achieve co-evolution by designing the loss function and training
process, as well as the legalization of the generated patterns. Finally,
we discuss the network architectures used in this paper.

3.1 Mathematical Formulation
Given target images 𝒁𝑇 , the model 𝒇𝑀 (·), and its parameters 𝜽𝑀 ,

the mask optimization problem is formulated as:

𝑴∗ = 𝒇𝑀 (𝒁𝑇 |𝜽𝑀 ), (6)

where 𝑴∗ represents the optimized masks given by the model.
Existing pattern generation models usually decouple the gen-

eration of topology matrices and geometry vectors. However, to
find hard samples for mask optimization, we cannot ignore the in-
teraction between them. Therefore, we integrate the generation of
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Figure 3: Overview of EMOGen training. We decouple an iteration into two steps. First, the pattern generation model is trained
to deteriorate the ILT model. Second, the ILT model is optimized to achieve better performance on the generated patterns.

topology matrix and geometry vectors into one model. Finally, we
can formulate the pattern generation problem as,

𝑻 ′,𝚫′
𝑥 ,𝚫

′
𝑦 = 𝒇𝑃 (𝑻 ,𝚫𝑥 ,𝚫𝑦 |𝜽𝑃 ), (7)

where 𝒇𝑃 (·) denotes the pattern generation model with the parame-
ters 𝜽𝑃 . 𝑻 ′,𝚫′

𝑥 ,𝚫
′
𝑦 represent the generated topology and geometry.

In the co-evolution problem, the pattern generation and ILT mod-
els can be regarded as two players competing with each other. In
terms of the pattern generation model, it makes efforts to generate
hard samples that deteriorate the ILT performance. On the contrary,
the target of the ILT model is to overcome the challenges from the
generated patterns. In other words, the pattern generation model is
expected to maximize the ILT loss while the ILT model is required to
minimize it. We formulate this competition as the following equation,

min
𝜽𝑀

max
𝜽𝑃

𝐿𝐼𝐿𝑇 (𝒇𝑀 (𝑿 |𝜽𝑀 ),𝑿 ) 𝑠 .𝑡 . 𝑿 = 𝒓
(
𝒇𝑃 (𝑻 ,𝚫𝑥 ,𝚫𝑦 |𝜽𝑃 )

)
, (8)

where 𝐿𝐼𝐿𝑇 is the loss function of ILT. The 𝒓 (·) function converts
the output of pattern generation to the input of the ILT model.

Although Equation (8) is enough for enhancing ILT, we need to
model design rules in pattern generation to ensure the legality of
the generated results. The first rule is about the minimum space
between shapes, formulated by,∑︁
𝑘∈𝒌𝑥

Δ′
𝑥,𝑘

≥ Spacemin,
∑︁
𝑘∈𝒌𝑦

Δ′
𝑦,𝑘

≥ Spacemin,∀𝒌𝑥 , 𝒌𝑦 ∈ 𝑺min, (9)

where Smin is a set containing the continuous horizontal or verti-
cal segments in the empty space. Spacemin is the minimum space
between shapes. Similarly, we have the constraint on the minimum
width of the shapes, represented by,∑︁
𝑙∈𝒍𝑥

Δ′
𝑥,𝑙

≥ Widthmin,
∑︁
𝑙∈𝒍𝑦

Δ′
𝑦,𝑙

≥ Widthmin,∀𝒍𝑥 , 𝒍𝑦 ∈ 𝑾min, (10)

whereWmin includes the continuous segments on the polygon edges
and Widthmin is the minimum width. Finally, the area of a polygon
is limited to a proper range, formulated by,∑︁

(𝑖, 𝑗 ) ∈𝒑
Δ′
𝑥,𝑖Δ

′
𝑦,𝑗 ∈ [Areamin,Areamax] ,∀ polygon 𝒑, (11)

where [Areamin,Areamax] specifies the legal range of the areas. In
terms of pattern generation, we require the results to not only dete-
riorate the performance of ILT but also satisfy these constraints.

The legalization process can be generalized to universal design
rules because most rules are the combination of width, spacing, area,
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Figure 4: Illustration of the bell-shaped function for relaxing
the conversion from squish patterns to images. (a) is the image
converted from the squish pattern in Figure 2, (b) shows the
3D views of the image, formed by the bell-shape functions.

and enclosure checking [19]. Given the squish patterns, we can easily
represent distances with the addition or subtraction among geom-
etry vector elements, as in Equation (9) and Equation (10). It helps
us to model the legalization of width, spacing, and enclosure rules.
With the multiplication between geometry vector elements, we can
further model area rules, like Equation (11). We solve the legalization
by converting the rules to penalty terms, which enables us to im-
plement the logical operations between different rules. For example,
the logical AND of two rules can be accomplished by the addition of
their penalty terms. The logical OR of two rules can be implemented
by the multiplication of them. Therefore, the combination of width,
spacing, area, and enclosure rules can also be modeled and solved in
our legalization process.

3.2 Co-evolution of Pattern Generation and
Mask Optimization

To solve Equation (8), we need to overcome several challenges.
(1) The way to feed the generated patterns to the ILT model. The

output of pattern generation includes the topology matrix and
geometry vectors, while the input of ILT is an image containing
the target patterns. The conversion between these two repre-
sentations is not differentiable, which prohibits us from back-
propagating the gradients from ILT to pattern generation.

(2) A training scheme that can solve the min-max optimization
problem. Since the training of a neural network is typically a
minimization problem, we need to convert Equation (8) to the
minimization of loss functions in order to train the two models.
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Figure 5: Illustration of the pattern generation model.

Table 1: Pattern Generation Model Architecture

Encoding Decoding
Layer Output Size Layer Output Size
Input 1 × 32 × 32 Linear×2 128

Conv×2 64 × 16 × 16 Conv×2 256 × 4 × 4
Conv×2 128 × 8 × 8 Conv×2 128 × 8 × 8
Conv×2 256 × 4 × 4 Conv×2 64 × 16 × 16
Linear×2 128 Conv×2 1 × 32 × 32

(3) The way to satisfy the constraints in Equation (9)-(11). To ensure
the validity of the generated patterns, we need a method to le-
galize them. Although [5] has proposed a legalization method, it
is not applicable in our setting because we require the generated
patterns to deteriorate the performance of the ILT model.

Combining Pattern Generation and ILT Models. As shown in
Figure 3, we combine the networks for pattern generation and ILT by
using the generated patterns as the inputs of the ILTmodel. Typically,
to convert squish patterns to images, we look at each entry in the
topology matrix 𝑇𝑖, 𝑗 and the elements (Δ𝑥,𝑖 ,Δ𝑦,𝑗 ) in the geometry
vectors. If 𝑇𝑖, 𝑗 == 1, we put a Δ𝑥,𝑖 × Δ𝑦,𝑗 rectangle on the image,
whose bottom-left and top-right corners are (𝑙𝑖, 𝑗 , 𝑏𝑖, 𝑗 ) and (𝑟𝑖, 𝑗 , 𝑡𝑖, 𝑗 ),
respectively. The points 𝑙𝑖, 𝑗 , 𝑏𝑖, 𝑗 , 𝑟𝑖, 𝑗 , and 𝑡𝑖, 𝑗 can be computed by,

𝑙𝑖, 𝑗 =

𝑖−1∑︁
𝑘=0

Δ𝑥,𝑘 , 𝑏𝑖, 𝑗 =

𝑗−1∑︁
𝑘=0

Δ𝑦,𝑘 , 𝑟𝑖, 𝑗 = 𝑙𝑖, 𝑗 + Δ𝑥,𝑖 , 𝑡𝑖, 𝑗 = 𝑏𝑖, 𝑗 + Δ𝑦,𝑗 .

(12)
However, this conversion is not differentiable for 𝚫𝑥 and 𝚫𝑦 so
we need to relax the problem. Thus, we design the 𝒓 (·) function
to convert the output of pattern generation to the input of the ILT
model. In the 𝒓 (·) function, if𝑇𝑖, 𝑗 == 1, we put a bell-shaped function
rather than a rectangle. The bell-shaped function can be defined as,

Ω𝑖, 𝑗 (𝑥,𝑦) =
1(

1+𝑒𝜅 (𝑙𝑖,𝑗−𝑥 )
)(
1+𝑒𝜅 (𝑥−𝑟𝑖,𝑗 )

)(
1+𝑒𝜅 (𝑏𝑖,𝑗−𝑦)

)(
1+𝑒𝜅 (𝑦−𝑡𝑖,𝑗 )

) ,
(13)

where𝜅 is the steepness factor. Figure 4 shows an example of relaxing
the conversion via differentiable bell-shaped functions.

Training Method for the Min-max Problem. To make Equa-
tion (8) implementable, we decouple the problem into the training
of two loss functions like GAN [20]. The pattern generation loss is,

𝐿𝐺𝑒𝑛 = 𝛼KL(𝒑𝑻 ′ ∥𝒑𝑻 ) + 𝛽KL(𝒑Δ′ ∥𝒑Δ) − 𝛾𝐿𝐼𝐿𝑇 , (14)

where KL(𝒑𝑻 ′ ∥𝒑𝑻 ) computes the KL divergence between the dis-
tribution of the original and generated topology matrices. It is em-
ployed to preserve the similarity between the new patterns and the
given data. Similarly, KL(𝒑Δ′ ∥𝒑Δ) retains the similarity between
the original and generated geometry vectors. The term −𝐿𝐼𝐿𝑇 aims
to guide the model to deteriorate the ILT performance using the
generated patterns. 𝛼 , 𝛽 , and 𝛾 are the weights of the three terms.

For the ILT model, the loss function is defined as,

𝐿𝐼𝐿𝑇 = L2(𝒁nom,𝒁𝑇 ) + PVB(𝒁max,𝒁min) . (15)

At each iteration, we first train the pattern generation model with
𝐿𝐺𝑒𝑛 and then train the ILT model with 𝐿𝐼𝐿𝑇 . Via Equation (14), we
progress towards max𝜽𝑃 𝐿𝐼𝐿𝑇 (𝒇𝑀 (𝑿 |𝜽𝑀 ),𝑿 ) in Equation (8). Next,
Equation (15) guides ILT to achieve the minimization in Equation (8).

Algorithm 1 Training Process of the Models

Input: Pattern generation model 𝒇𝑃 (·|𝜽𝑃 ), ILT model 𝒇𝑀 (·|𝜽𝑀 ).
1: //Pretraining phase;
2: Train the pattern generation model to recover original patterns;
3: Train the ILT model on the original target images;
4: //Co-evolution phase;
5: for epoch ∈ [1, 2, ..., #epochs] do
6: for iter ∈ [1, 2, ..., #iterations] do
7: //Training pattern generation model;
8: Freeze the weights 𝜽𝑀 , make the weights 𝜽𝑃 trainable;
9: Compute 𝐿𝐺𝑒𝑛 by Equation (14);
10: Update the parameters of 𝒇𝑃 by 𝜽𝑃 = 𝜽𝑃 − 𝜕𝐿𝐺𝑒𝑛

𝜕𝜽𝑃
;

11: //Training ILT model;
12: Freeze the weights 𝜽𝑃 , make the weights 𝜽𝑀 trainable;
13: Compute 𝐿𝐼𝐿𝑇 by Equation (15);
14: Update the parameters of 𝒇𝑀 by 𝜽𝑀 = 𝜽𝑀 − 𝜕𝐿𝐼𝐿𝑇

𝜕𝜽𝑀
;

15: end for
16: end for

Algorithm 1 summarizes the training process, which includes the
pretraining and co-evolution phases. In the pretraining phase (lines
2–3), the pattern generation model and the ILT model are trained
separately to achieve a moderate performance on their own tasks.
In the pretraining of the pattern generation model, we adopt the
following loss function inspired by variational autoencoder [3, 21],

𝐿𝑅𝑒𝑐 =KL(N(𝝁,𝝈2)∥N(0, 𝑰 ))+

𝜂

(
∥𝑻 ′ − 𝑻 ∥2 + ∥𝚫′

𝑥 − 𝚫𝑥 ∥2 + ∥𝚫′
𝑦 − 𝚫𝑦 ∥2

)
,

(16)

where KL(N(𝝁,𝝈2)∥N(0, 𝑰 )) is the KL divergence that minimizes
the distance between a standard Gaussian distribution and the distri-
bution given by the latent features. ∥𝑻 ′ −𝑻 ∥2 + ∥𝚫′

𝑥 −𝚫𝑥 ∥2 + ∥𝚫′
𝑦 −

𝚫𝑦 ∥2 guides the model to recover the input patterns. It is weight is
𝜂. For the pretraining of ILT, we use 𝐿𝐼𝐿𝑇 as the loss function.

Lines 5–16 in Algorithm 1 present the co-evolution phase, where
we alternatively optimize the pattern generation model with 𝐿𝐺𝑒𝑛
and the ILT model with 𝐿𝐼𝐿𝑇 . As illustrated by Figure 3, we have
two steps at each training iteration. In the first step, we evaluate the
ILT performance on the generated patterns and optimize the pattern
generation model to deteriorate the ILT results while keeping the
similarity between the new and original patterns. In the second step,
we generate patterns to optimize the ILT performance on these new
data. Note that before training a model, we freeze the weights of
the other one. This two-step training scheme creates a competition
between the two models, achieving the co-evolution of pattern gen-
eration and mask optimization. In this way, we can enhance mask
optimization via pattern generation in a differentiable manner.



Table 2: Comparison Between ILT Models With and Without Co-evolution

Method GAN-OPC NeuralILT DAMO CFNO Average Ratio
Setting Finetune Co-evolve Finetune Co-evolve Finetune Co-evolve Finetune Co-evolve Finetune Co-evolve Finetune Co-evolve
L2 50,388 38,288 50,804 45,313 53,448 33,757 46,280 45,863 50,230 40,805 1.00 0.81
PVB 69,549 53,987 61,464 55,082 65,447 54,703 62,514 61,811 64,743 56,395 1.00 0.87
EPE 7.1 4.0 7.5 6.4 10.2 3.7 5.9 4.9 7.7 4.7 1.00 0.61
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Figure 6: Comparison between ILT models with and without co-evolution on the normalized L2, PVB, and EPE. The ILT models
are (a) GAN-OPC; (b) NeuralILT; (c) DAMO; (d) CFNO.

Legalization of the Generated Patterns. The pattern generation
model can not only serve as a critic of the ILT model, but also be
used as a standalone layout pattern generator. To ensure the validity
of the generated patterns, we legalize the geometry vectors using the
penalty function method. The constraints in Equation (9)-(11) can be
classified into three categories, (1) 𝑓 (𝒙) ≥ 𝑎; (2) 𝑔(𝒙) ≤ 𝑏; (3) ℎ(𝒙) =
𝑐 . Their penalty terms are designed as, (1) 𝜆𝑓 ∥max(𝑎− 𝑓 (𝒙), 0)∥2; (2)
𝜆𝑔 ∥max(𝑔(𝒙) − 𝑏, 0)∥2; (3) 𝜆ℎ ∥ℎ(𝒙) − 𝑐 ∥2. Finally, the optimization
objective is defined as,

𝐿𝑙𝑒𝑔𝑎𝑙 =𝛼 KL(𝒑𝑻 ′ ∥𝒑𝑻 ) + 𝛽 KL(𝒑Δ′ ∥𝒑Δ) − 𝛾 𝐿𝐼𝐿𝑇 +∑︁
𝑓

𝜆𝑓 ∥max(𝑎 − 𝑓 (𝒙), 0)∥2 +
∑︁
𝑔

𝜆𝑔 ∥max(𝑔(𝒙) − 𝑏, 0)∥2+∑︁
ℎ

𝜆ℎ ∥ℎ(𝒙) − 𝑐 ∥2 .

(17)
We solve Equation (17) via gradient descent. Other methods like
augmented Lagrangian method is also applicable, but we find that
the penalty function method generalizes better.

3.3 Neural Network Architecture
In this paper, we design the pattern generation network based on

variational autoencoder [21], following [3]. Unlike the previous work
that preserves the original geometry vectors, our model optimizes
the topology matrix and geometry vectors together to better achieve
the goal of enhancing ILT. Figure 5 presents the architecture of the
pattern generation model. The topology matrix of the original layout
is input to the upper encoding branch while the geometry vectors
are input to the lower encoding branch. After obtaining the features
from the two branches, we concatenate them and get a uniform
latent representation via fully connected layers. Next, we generate
the new topology and geometry information via the two decoding
branches and convert the results to the new layout image.

Table 1 shows the encoding and decoding branches for the topol-
ogy matrix. The branches for the geometry vectors have the same
configuration as the linear layers in Table 1. Since our major target is
to enhance ILT with pattern generation, we use an input/output size
of 32 × 32, which can generate 1024 × 1024𝑛𝑚2 layout tiles to meet

the demand of ILT. Due to the small input/output size, we design
such a relatively simple model architecture to avoid overfitting.

Since most DNN-based ILT methods are image-to-image trans-
lation models, we can adopt various state-of-the-art (SOTA) mod-
els [6–8, 11] to verify the effectiveness of EMOGen.

4 Experiments
We implement all DNN models with PyTorch 1.10 [22] and test

them on RTX Titan GPU. The ILT models are implemented based
on the OpenILT framework [23]. We pretrain the pattern generation
and ILT models for 32 epochs using a batch size of 8 and the AdamW
optimizer [24] with a learning rate of 10−3. For finetuning, we train
the models for 8 epochs with a learning rate of 10−5.

Following SOTA ILT works AdaOPC [25] and LithoBench [13], we
obtain data by cropping the metal 1 layer of the gcd layout generated
by OpenROAD [26]. Each tile has a size of 1024 × 1024𝑛𝑚2 and the
cropping stride is 256. For the training of pattern generation, the
tiles are converted to 32 × 32 squish patterns. For the ILT model,
each tile is padded to 2048 × 2048 and then scaled to 512 × 512. The
numbers of training and testing data are 7,592 and 844, respectively.

To show that EMOGen can enhance the performance of mask op-
timization, we compare the ILT models under two training schemes.
In the finetuning scheme, we train the ILT model without the help of
pattern generation. The co-evolution scheme refers to the proposed
method. To make a fair comparison, the hyper-parameters under the
two training schemes are kept the same. We test the following ILT
models in this experiment.
GAN-OPC [6] It follows the design of generative adversarial net-

work (GAN) [20]. In addition to the GAN loss functions, it uses
the L2(𝒁nom,𝒁𝑇 ) as an additional objective.

Neural-ILT [7] A UNet [27] is utilized in Neural-ILT to predict the
optimized mask, minimizing L2(𝒁nom,𝒁𝑇 ) + PVB(𝒁max,𝒁min).

DAMO [8] It improves the GAN for ILT with the backbone based
on UNet++ [28] and a multiscale discriminator.

CFNO [11] Combining the basic principles of Vision Transformer
(ViT) [29] and Fourier Neural Operator (FNO) [30], the CFNO
model is designed for efficient and effective ILT.
Table 2 presents the ILT results under the finetuning and co-

evolution schemes. EMOGen achieves huge improvement in L2,
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Figure 7: Examples from the trained pattern generation and ILT models. (a) The pattern generation model generates new
patterns after legalization. (b) The ILT model takes target images as input and outputs the optimized masks.

Table 3: Comparison on the Legalization ofGenerated Patterns

Metric 𝜇𝑉 L2 PVB EPE
No Legalization [2] 0.094 51777 57149 22.0

Design Rules Only [5] 0.070 50782 57335 21.4
Design Rules + ILT (ours) 0.062 64800 65394 44.1

PVB, and EPE on each model. On average, L2 and PVB are reduced
by 19% and 13%, respectively. In terms of EPE, EMOGen makes 39%
improvement. Figure 6 visualizes the improvement by showing the
normalized L2, PVB, and EPE. The enhancement brought by pattern
generation is significant, especially for the DAMO model. According
to the results in Table 2, although CFNO is the best model under
finetuning, EMOGen helps DAMO to surpass it after co-evolution.

In addition to ILT, we also compare different legalization schemes
for pattern generation. We test three schemes, (1) no legalization [2],
(2) design rules only [5], (3) design rules + ILT (ours). The metrics
include the average violations and ILT performance deterioration.
The average violations 𝜇𝑉 refers to the average number of constraint
violations among the generated patterns. In terms of ILT perfor-
mance deterioration, we expect the generated patterns to make the
L2, PVB, and EPE worse. In this experiment, we use the pretrained
NeuralILT model for ILT.

As presented in Table 3, our method has the lowest average viola-
tions and highest ILT performance deterioration. It shows that the
ILT-aware legalization in EMOGen can not only reduce the number
of design constraint violations by 34%, but also deteriorate the ILT
performance by up to 100%. Figure 7 presents some examples from
our pattern generation and ILT flows. The pattern generation model
generates new patterns after legalization. The ILT model takes target
images as input and outputs the optimized masks.

5 Conclusion
We propose EMOGen to enable the co-evolution of pattern genera-

tion and mask optimization. The novel ILT-aware pattern generation
method achieves up to 39% enhancement in mask optimization. Our
legalization step brings up to 34% improvement in design constraint
violations. We hope EMOGen can provide a new methodology for
enhancing DNN-based mask optimization.
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