

SHAPING THE NEXT GENERATION OF ELECTRONICS

រេរូរ

R

<u>ન</u>્દુર્ગ

JUNE 23-27, 2024

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

A

JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

EMOGen: Enhancing Mask Optimization via Pattern Generation

â

Su Zheng¹, Yuzhe Ma², Bei Yu¹, Martin Wong³

¹Chinese University of Hong Kong
 ²Hong Kong University of Science and Technology (GZ)
 ³Hong Kong Baptist University

Outline

1 Introduction

- 2 Preliminaries
- 3 Method

Introduction

Motivation

DNN-based Layout Pattern Generation

Target Image \mathbf{Z}_T DNN ILT Model $\mathbf{F}(\mathbf{Z}_T)$ Optimized Mask \mathbf{M}^*

Contributions

- EMOGen: **co-evolution** of layout generation and mask optimization
 - Use layout generation to improve DNN-based ILT methods

6 / 24

- ILT-aware training and legalization schemes
 - Discover the weaknesses of the DNN-based ILT model
- Extensive experiments verify the effectiveness of EMOGen
 - 39% enhancement in DNN-based ILT
 - 34% improvement in pattern legalization

Preliminaries

Squish Pattern

- Efficient representation of the layout patterns
 - A topology matrix + two geometry vectors

Autoencoder-based approaches

$$T' = f_{dec} \left(f_{enc}(T) + \epsilon \mathcal{N}(0, I) \right).$$
(1)

- Map the topology matrices to a latent space
- Generate new patterns by perturbing latent features

Mask Optimization

• ILT for Mask Optimization

- Lithography simulation: $I = H(M) = \sum_{k=1}^{K} \mu_k |h_k \otimes M|^2$.
- Objectives: $L2(\mathbf{Z}_{nom}, \mathbf{Z}_T) = \|\mathbf{Z}_{nom} \mathbf{Z}_T\|^2$, $PVB(\mathbf{Z}_{max}, \mathbf{Z}_{min}) = \|\mathbf{Z}_{max} - \mathbf{Z}_{min}\|^2$.

Method

Mathematical Formulation

Mask optimization problem

$$\boldsymbol{M}^* = \boldsymbol{f}_M(\boldsymbol{Z}_T | \boldsymbol{\theta}_M). \tag{2}$$

- **Z**_T is the target image.
- *M*^{*} represents the optimized masks given by the ILT model.

Mathematical Formulation

• Pattern generation problem

$$T', \Delta'_x, \Delta'_y = f_P(T, \Delta_x, \Delta_y | \theta_P).$$
 (3)

*f*_P(·) denotes the pattern generation model with the parameters *θ*_P. *T*', Δ'_x, Δ'_y represent the generated topology and geometry.

- Co-optimization problem \rightarrow two players competing with each other $\min_{\boldsymbol{\theta}_M} \max_{\boldsymbol{\theta}_P} L_{ILT} \left(f_M(\boldsymbol{X}|\boldsymbol{\theta}_M), \boldsymbol{X} \right) \ s.t. \ \boldsymbol{X} = \boldsymbol{r} \left(f_P(\boldsymbol{T}, \boldsymbol{\Delta}_x, \boldsymbol{\Delta}_y|\boldsymbol{\theta}_P) \right).$ (4)
 - *L*_{*ILT*} is the loss function of ILT.
 - $r(\cdot)$ converts the generated pattern to ILT input.

Mathematical Formulation

• Legalization of the generated patterns

$$\sum_{k \in k_x} \Delta'_{x,k} \ge \operatorname{Space}_{\min}, \sum_{k \in k_y} \Delta'_{y,k} \ge \operatorname{Space}_{\min}, \forall k_x, k_y \in S_{\min},$$
(5)

$$\sum_{l \in l_x} \Delta'_{x,l} \ge \text{Width}_{\min}, \sum_{l \in l_y} \Delta'_{y,l} \ge \text{Width}_{\min}, \forall l_x, l_y \in W_{\min},$$
(6)

$$\sum_{(i,j)\in p} \Delta'_{x,i} \Delta'_{y,j} \in [\operatorname{Area}_{\min}, \operatorname{Area}_{\max}], \forall \text{ polygon } p.$$
(7)

Pattern Generation Model

ILT Models

- **GAN-OPC**¹ It follows the design of generative adversarial network (GAN).
- **Neural-ILT**² A UNet is utilized in Neural-ILT to predict the optimized mask.
- **DAMO**³ It improves the GAN for ILT with the backbone based on UNet++ and a multiscale discriminator.
- **CFNO**⁴ Combining the basic principles of Vision Transformer (ViT) and Fourier Neural Operator (FNO).

¹Haoyu Yang, Shuhe Li, et al. (2018). "GAN-OPC: Mask optimization with lithography-guided generative adversarial nets". In: *Proc. DAC*.

²Bentian Jiang et al. (2020). "Neural-ILT: Migrating ILT to neural networks for mask printability and complexity co-optimization". In: *Proc. ICCAD*.

³Guojin Chen et al. (2020). "DAMO: Deep agile mask optimization for full chip scale". In: *Proc. ICCAD*.

⁴Haoyu Yang and Haoxing Ren (2023). "Enabling Scalable AI Computational Lithography with Physics-Inspired Models". In: *Proc. ASPDAC*, pp. 715–720.

Combining Pattern Generation and ILT Models

• Make it differentiable

Overview of EMOGen Training

Experiments

Comparison Between ILT Models With and Without Co-evolution

• Better ILT performance.

Method	GAN-OPC		NeuralILT		DAMO		CFNO		Ratio	
Setting	Finetune	Co-evolve	Finetune	Co-evolve	Finetune	Co-evolve	Finetune	Co-evolve	Finetune	Co-evolve
L2	50,388	38,288	50,804	45,313	53,448	33,757	46,280	45,863	1.00	0.81
PVB	69,549	53,987	61,464	55,082	65,447	54,703	62,514	61,811	1.00	0.87
EPE	7.1	4.0	7.5	6.4	10.2	3.7	5.9	4.9	1.00	0.61

Comparison on the Legalization of Generated Patterns

- Better pattern generation: effectively deteriorate the ILT performance.
- Better pattern legalization: the generated results have a smaller average number of design rule violations.

Metric	μ_V	L2	PVB	EPE
No Legalization ⁵	0.094	51777	57149	22.0
Design Rules Only ⁶	0.070	50782	57335	21.4
Design Rules + ILT (ours)	0.062	64800	65394	44.1

⁶Zixiao Wang et al. (2023). "DiffPattern: Layout Pattern Generation via Discrete Diffusion". In: *Proc. DAC*.

⁵Haoyu Yang, Piyush Pathak, et al. (2019). "DeePattern: Layout pattern generation with transforming convolutional auto-encoder". In: *Proc. DAC*.

Examples from the Trained Pattern Generation and ILT Models

JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

R

સિંગ

Thanks!

