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Abstract—Optical proximity correction (OPC) is a technique
to improve the accuracy of pattern transfer from the mask to the
wafer in optical lithography. Model-based OPC (MB-OPC) uses
mathematical models to simulate the image formation process
and adjust the mask layout accordingly. In this paper, we extend
the open-source computational lithography library OpenILT
to support MB-OPC. The extension provides a flexible and
modular framework for implementing OPC algorithms with
GPU acceleration for large-scale layouts. We demonstrate the
performance and scalability of the library on different mask
patterns. The experimental results show that our method can
achieve more than 5 times speedup over the CPU-based MB-
OPC method, while maintaining the same correction accuracy
and quality. Our MB-OPC extension can provide a powerful
baseline for future research on OPC.

Index Terms—Optical Proximity Correction, Computational
Lithography, GPU Acceleration

I. INTRODUCTION

Lithography is a key technology for the fabrication of
integrated circuits and nanophotonic devices. However, as the
feature sizes of these devices approach the diffraction limit
of light, lithography faces significant challenges in achieving
high resolution and pattern fidelity. Optical proximity cor-
rection (OPC) [1]–[9] is a technique to compensate for the
optical and process distortions that occur during the pattern
transfer from the mask to the wafer. It modifies the mask
layout by adding or subtracting small features, such as serifs
or subresolution assist features, to improve the printability
and accuracy of the desired pattern.

Among the various OPC methods, model-based OPC (MB-
OPC) [10], [11] is a widely used one in the industry, as
it can handle complex and arbitrary mask patterns. MB-
OPC relies on mathematical models to simulate the image
formation process and optimize the mask layout accordingly.
The models include the optical projection model, which
describes the light propagation and interference in the optical
system, and the resist model, which describes the chemi-
cal and physical reactions in the photoresist layer. Fig. 1
summarizes the model-based OPC flow, which includes the
segmentation of a layout, lithography simulation of the mask,
and movement of the segments. The accuracy and efficiency
of MB-OPC depend largely on the quality and complexity of
the lithography simulation and movement strategy.

However, developing and calibrating accurate models for
MB-OPC is not a trivial task, as it requires extensive ex-
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Fig. 1 Overview of a typical MB-OPC flow.

perimental data and computational resources. Moreover, the
models may need to be updated frequently to adapt to the
changes in the lithography process and equipment. Therefore,
there is a need for a flexible and modular framework for im-
plementing and testing different OPC models and algorithms.

MB-OPC is computationally intensive and requires a large
amount of CPU resources and runtime, especially for large-
scale layouts with trillions of shapes. However, the MB-
OPC for large-scale layout is not extensively explored in
the literature, and most of the existing methods are based
on serial or parallel CPU implementations. In this paper, we
propose a novel method to significantly accelerate large-scale
MB-OPC via GPU acceleration. By dividing the large-scale
layout into smaller sub-regions that can fit into the GPU
memory, our method leverages the massive parallelism and
high memory bandwidth of GPUs to perform the MB-OPC.

OpenILT [12] aims to facilitate computational lithography
research. With effective acceleration, convenient interfaces,
and comprehensive evaluation, OpenILT can make computa-
tional lithography research easier. However, OpenILT mainly
focuses on inverse lithography technique (ILT) [13]–[23]
and does not support model-based OPC, which limits its
compatibility and capability in related research and appli-
cations. Furthermore, OpenILT cannot deal with large-scale
lithography simulation and thus it cannot be applied to large-
scale OPC problems. Thus, extending OpenILT to support
large-scale lithography simulation and MB-OPC can make
contributions to the field of computational lithography.

In this paper, we present an MB-OPC extension for
OpenILT that can handle large-scale layouts. The major
contributions of our work are summarized as follows.

• Our MB-OPC extension to OpenILT enables a conve-
nient and modular approach to the implementation of
OPC techniques.

• By partitioning a layout into patches, we enable the
lithography simulation and OPC of large-scale layout
in OpenILT.
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Fig. 2 Overview of the proposed model-based OPC flow.

• We leverage GPU resources to accelerate the OPC com-
putation, achieving significant speedup over the CPU-
based MB-OPC method, while maintaining the same
correction accuracy and quality.

• We present the efficiency and scalability of the library
on large-scale mask patterns. Our MB-OPC extension
can serve as a robust platform for future OPC research.

II. PRELIMINARIES

Fig. 1 shows a typical MB-OPC flow. Given a layout
consisting of multiple polygons, we divide each polygons
into segments and make them movable. The segments to
be optimized are transformed into the mask image. The
lithography model simulates the process that transfers the
mask image to the printed image. According to the simulation
result, we move the segments to improve the quality of the
printed patterns. Finally, the optimized mask is obtained after
specific iterations of optimization.

A. Lithography Simulation Model
The lithography simulation process includes the optical

projection model, which describes the light propagation and
interference in the optical system, and the resist model, which
describes the chemical and physical reactions in the photore-
sist layer. We apply the Hopkins diffraction model [24] to
estimate how the projection behaves. We compute the aerial
image I by applying a series of optical kernels H to the
mask M . In this paper, the computation is given by,

I(x, y) =

Nh∑
k=1

wk |M(x, y)⊗ hk(x, y)|2 , (1)

where “⊗” is the convolution operation. Nh = 24 is the num-
ber of optical kernels in our implementation. The notation hk

represents the k-th optical kernel in H . The weight of this
kernel is given by wk.

Next, the resist model is applied to the aerial image I . The
printed image Z is computed by the following function:

Z(x, y) = σZ(I(x, y)) =
1

1 + exp (−θZ(I(x, y)− Ith))
,

(2)

where θZ controls the steepness of the sigmoid function.
The intensity threshold Ith indicates the exposure level.
For evaluation, both M and Z should be binarized with a
threshold of 0.5.

B. Evaluation Metrics

Square L2 Error. We use the square L2 loss ||Znom−Zt||22
to estimate the error of the printed image, where Zt is the
target image and Znom is the printed image that represents
the image printed via nominal lithography process condition.
Edge placement error (EPE). EPE evaluates the contour
difference between the target design Zt and the image
Znom. For MB-OPC, we count the EPEs according to the
distance between each segment in the target image and its
corresponding contour in the printed image. If the distance
is larger than a threshold, we regard it as an EPE.
Process Variation Band (PVB). Different lithography con-
ditions can produce different printed images. Thus, we need
to compare the distance of printed images between varying
conditions to show the robustness of the optimized mask.
After simulating the printed images under the maximum and
minimum lithography conditions, we get Zmax and Zmin,
and the PVB is calculated by ||Zmax −Zmin||22.

C. GPU Acceleration for Lithography Simulation

A convolution operation in eq. (1) involves two matrices
that have large sizes (e.g. 2048× 2048), which can be very
time-consuming. Thus, the convolution operation is usually
implemented by fast Fourier transformation (FFT) to improve
efficiency, which can be formulated as:

hk ⊗M = IFFT(FFT(hk)⊙ FFT(M)), (3)

where FFT and IFFT represent the FFT and inverse FFT
operations, respectively. The notation ⊙ represents pointwise
multiplication. Computing the optical projection with eq. (1)
can significantly reduce the time complexity, since using
FFT and IFFT for N × N images requires O(N2 logN),
whereas directly computing the convolution costs O(N4).
Furthermore, the computation can be further accelerated by
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Fig. 3 Illustration of steps (a) segmentation, (b) partition.

removing the high-frequency components from the optical
kernels and employing GPU acceleration.

Based on PyTorch [25] and OpenILT, we can implement
the reference lithography simulation model as a PyTorch
module, which can be used like a DNN layer. The GPU-
based fast Fourier transform (FFT) can boost the speed
of lithography simulation. Similar acceleration schemes are
adopted in state-of-the-art works like [26]–[29].

III. METHOD

A. Overview

Fig. 2 shows the overview of our MB-OPC flow, which
consists of the following steps.

• Segmentation. This step divides each polygon in a given
layout into a set of segments, which can represent the
whole mask. The patterns in the layout can be corrected
by moving the segments. The purpose of segmentation
is to create the variables for mask optimization.

• Partition. Since the lithography simulator in OpenILT
can only support the simulation of patches that are
smaller than 2 × 2µm2, we need to enable the lithog-
raphy simulation of a large-scale layout by partitioning
into smaller patches and combine the results to form
the printed image. The patches are typically square or
rectangular, and their size and shape depend on the
resolution and memory of the GPU. It can parallelize
the simulation process and speed up the computation.

• Simulation. This step uses the lithography model to
simulate the image formation process on the wafer.
The GPU-based simulation process parallelly predict the
printed image of each patch, which can be combined and
compared with the target layout.

• Combination. This step combines the simulated patches
into the whole printed image, and calculates the error
metrics such as edge placement error (EPE). The error
metrics measure the deviation of the printed image from
the target layout, and they can be used to guide the
correction process. The purpose of the combination step
is to evaluate the overall performance of the mask and
identify the areas that need improvement.

• Movement. This step moves the segments to improve
the quality of the printed image, by minimizing the error
metrics. The movement is carried out iteratively until
a satisfactory solution is found. In each iteration, the
partition, simulation, and combination steps should also

be done. The purpose of movement is to correct the
mask pattern and achieve the best possible match with
the target layout.

B. Segmentation

The segmentation process takes two parameters as input:
the corner length and the uniform length. These parameters
determine the sizes of the segments that represent the mask
pattern.

As shown in Fig. 3(a), the corner length parameter decides
the length of segments around corners of polygons. This pa-
rameter is usually smaller than the uniform length parameter,
because corners are more sensitive to image errors and need
more correction. The uniform length parameter decides the
length of other segments that are not around corners. This
parameter is usually larger than the corner length parameter,
because these segments are less sensitive to image errors and
need less correction.

The process starts from the corners of the polygons, and
creates segments with the corner length parameter along the
edges. Then, the process fills the gaps between the corner
segments with segments with the uniform length parameter.
The process repeats for all the polygons in the layout, until
the whole mask pattern is represented by segments. After
that, we can correct the mask by moving the segments
according to the simulation result.

C. Partition

To simulate a large-scale layout with the lithography
simulator in OpenILT, which has a limit of 2×2µm2 patches,
we have to split the layout into smaller patches, simulate each
patch, and then merge the simulated images to get the final
printed image. The partition process takes the whole mask
image as input, and divides it into smaller patches with some
overlaps, as done in [30]. The patches are usually square or
rectangular, and their size and shape depend on the resolution
and memory of the GPU. The patches should be large enough
to capture the optical effects of the mask pattern, but small
enough to fit into the GPU memory and avoid unnecessary
computation. The patches should also have some overlaps
with each other, to ensure the continuity and accuracy of the
simulated image.

Fig. 3(b) illustrates the partition process. The process starts
from the top-left corner of the mask image, and creates a
patch with the specified size and overlap. Next, the process



TABLE I MB-OPC Results on Different Testcases

Layout Size Tiles EPE L2 PVB Runtime@GPU Runtime@CPU

gcd 30× 30µm2 1 24657 595317 149969 150 s 801 s
aes 250× 250µm2 144 2633481 62804952 16102282 18,612 s >24 hours

dynamicnode 246× 246µm2 144 2326174 58335791 14815929 19,494 s >24 hours

moves to the right by one patch width minus the overlap, and
creates another patch. The process repeats until it reaches
the right edge of the mask image. After that, the process
moves down by one patch height minus the overlap, and
repeats the same procedure for the next row of patches. The
process repeats this until it covers the whole mask image
with patches.

D. Simulation

The simulation process uses the lithography model to
calculate the printed image intensity for each patch. To
accelerate the simulation, we group the patches by batches
and simulate them on GPU, performing fast and efficient
calculations for large amounts of data.

The simulation process can use different batch sizes to
balance the trade-off between speed and resource require-
ments. The batch size is the number of patches that are
simulated together on the GPU. A larger batch size can
increase the GPU utilization and reduce the data transfer time
and computation latency, but it can also increase the memory
requirement. A smaller batch size can decrease the memory
requirement, but it can also decrease the GPU utilization
and increase the data transfer time and computation latency.
The optimal batch size depends on the patch size, the GPU
memory, and the settings of the lithography model.

E. Combination

The combination process takes the simulated patches as
input, and combines them into the printed image of the
whole mask. It uses a stitching method to merge the sim-
ulated patches into the printed image. The stitching method
aligns the patches according to their original positions in the
mask image, and averages the overlapping regions to avoid
discontinuities or artifacts. The stitched printed image shows
the predicted shape and intensity of the features on the wafer,
and the error metrics can be calculated to show the deviation
of the printed image from the target layout.

After stitching, the combination process also calculates the
error metrics for the printed image, such as edge placement
error (EPE). The error metrics can be calculated for each
segment, and they can be used to guide the correction
process. Finally, the combination process outputs the printed
image and the error metrics for the whole mask image, which
can guide the movement of the segments.

F. Movement

The movement process takes the printed image and the
error metrics as input, and moves the segments to improve
the quality of the printed image. It uses an optimization
method to minimize the error metrics, such as edge placement

error (EPE). Specifically, we move the segments which have
EPEs. If the segment has an inner EPE, which means that
the corresponding contour is inside the target pattern, we
move the segment outwards by a configurable step size.
On the contrary, if the segment has an outer EPE, which
means that the corresponding contour is outside the target
pattern, we move the segment inwards by the step size.
The movement process iterates until a satisfactory solution
is found, or a predefined termination criterion is met. Note
that each iteration also involves the partition, simulation, and
combination steps.

IV. EXPERIMENTS

A. Experimental Settings

In this experiment, we apply the proposed model-based
optical proximity correction (MB-OPC) method to three
designs: gcd, aes, and dynamicnodes. These designs are
obtained from the OpenROAD tool [31], which is an open-
source, autonomous, RTL-to-GDSII flow for rapid integrated
circuit implementation. The tested technology node is 45
nm, which is a challenging lithography scenario that re-
quires accurate and robust OPC techniques. Before applying
MB-OPC, we crop the metal layer of every design into
30× 30µm2 tiles to enable parallel processing on GPU. The
hardware platform for our experiments is equipped with an
NVIDIA RTX 2060 12G GPU, an Intel i7-10710u CPU, and
64G DDR4 memory.

B. MB-OPC Results on Tested Designs

The MB-OPC results on the testcases gcd, aes, and
dynamicnodes are presented in TABLE I. Our MB-OPC
extension can finish within 6 hours on every design, achieving
a speedup of 5.3× when compared to the CPU version.

The GPU-based lithography simulation makes a major
contribution to the significant speedup. The GPU acceler-
ation for lithography simulation is faster than CPU because
GPU has a massively parallel architecture that can handle
thousands of threads simultaneously, while CPU has a limited
number of cores that can process a few threads at a time. GPU
can also perform fast matrix operations and floating-point cal-
culations, which are essential for MB-OPC. Moreover, GPU
can leverage the power of CUDA and PyTorch, which en-
ables GPU-accelerated computational lithography and mask
data preparation. Therefore, GPU acceleration is a powerful
technique that can significantly improve the efficiency and
quality of MB-OPC for complex and challenging lithography
scenarios. Our extension can serve as a baseline for efficient
GPU-accelerated MB-OPC.
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Fig. 4 Results under different configurations. Note that when we vary a hyper-parameter, others are set to the default values.
The subfigures compare different (a) optimization steps; (b) decay steps; (c) moving distances; (d) batch sizes.
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Fig. 5 Runtime analysis of the MB-OPC flow.

C. Impacts of Different Hyper-parameters

By default, the MB-OPC process takes 12 steps with a
moving distance of 8 nm. The moving distance is decayed
to 4 nm after the 4th iteration. The GPU simulation uses a
batch size of 16. In this section, we investigate the impacts
of these hyper-parameters by testing the performance under
different configurations on the gcd testcase.

Fig. 4 presents the comparison of EPEs or runtimes under
different configurations. Fig. 4(a) shows the relationship
between the number of optimization steps and the EPE
result. The figure shows that the EPE result decreases as
the number of optimization steps increases, meaning that
the mask becomes more optimized. However, after 12 opti-
mization steps, the EPE result does not change significantly,
suggesting that further optimization has no benefit. Therefore,
an optimization step of 12 is proper for this layout and others
that have similar complexity.

Fig. 4(b) shows the relationship between the number of
decay steps and the EPE result. It indicates that the result
worsens as the number of decay steps increases, meaning that
the optimization algorithm becomes less effective. However,
a decay step of 2 or 4 seems to achieve a good result,
suggesting that a small decay step is beneficial for the MB-
OPC performance. On the other hand, if we set the decay step
to 0, which means that the moving distance is reduced before
optimization starts, the result is unsatisfactory, implying that
the moving distance is too small for the optimization.

Fig. 4(c) demonstrates the relationship between the moving
distance and the EPE result. The figure shows that the
performance is optimal when the moving distance is 6 or
8, meaning that the solution can explore the search space
efficiently. However, if the moving distance is too small or too

large, the performance deteriorates, implying that the solution
either gets stuck in a local optimum or moves too far away
from the optimal region.

Fig. 4(d) shows the relationship between the batch size
and the runtime for our MB-OPC method. It indicates that
the runtime decreases as the batch size increases, meaning
that we can process more data in less time. However, after
the batch size reaches 16, the runtime does not change
significantly, suggesting that further increasing the batch size
has little benefit for the runtime. Therefore, a batch size of
16 or slightly higher is optimal for this testcase.

D. Runtime Analysis

Fig. 5 shows a pie chart that illustrates the percentage of
runtime spent on different components of an optimization
algorithm for a photonic device design problem. The pie
chart has four slices: segmentation, partition, lithography
simulation, and movement. The largest slices are partition
and lithography simulation, which take up 35.5% and 59.1%
of the runtime, respectively. On the contrary, segmentation
and movement only consume less than 6% of the runtime.
This experiment indicates that most of the runtime is spent on
partition and lithography simulation (including combination),
which together account for 94.6% of the runtime. Segmen-
tation and movement only take a very small portion of the
runtime, which suggests that they are not the bottleneck of
the optimization algorithm. In future work, faster partition
and lithography simulation can be promising directions that
can significantly boost the speed of MB-OPC. An example
of the MB-OPC result is shown in Fig. 6.

V. CONCLUSION AND FUTURE WORK

This paper presents an MB-OPC extension of OpenILT, an
open-source library for computational lithography, to enable
model-based optical proximity correction. It breaks the layout
size limitation of the lithography simulation in OpenILT and
offers a flexible and modular platform for developing OPC
algorithms for large-scale mask layouts. It also leverages
GPU computing to accelerate the OPC process. Experiments
show that our method can achieve a significant speedup of
more than 5 times. Our MB-OPC extension can serve as a
robust baseline for future OPC research and facilitate the
future development of this field.
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Fig. 6 An MB-OPC example, where (a) is the optimized mask and (b) is the simulation result.

In future works, researcher can easily enhance MB-OPC
performance by improve our flow. Some possible research
directions for MB-OPC are shown as follows.

• Developing data-driven approaches that use machine
learning techniques to predict the fragment displace-
ments or generate the simulated images, which could
reduce the computational cost and improve the accuracy
of MB-OPC.

• Proposing novel methods to enable more efficient par-
tition, simulation, and optimization. For example, the
movement of each segment can consider a wider envi-
ronment around it.

• Integrating mask rule checking and correction algo-
rithms that can legalize the optimized patterns according
to the mask rules, which could ensure the manufactura-
bility and quality of the final layout.
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