

Model-based OPC Extension in OpenILT

Su Zheng¹, Gang Xiao², Ge Yan², Meng Dong², Yao Li², Hong Chen², Yuzhe Ma³, Bei Yu¹, Martin Wong⁴

¹Chinese University of Hong Kong
 ²Shenzhen GWX Technology Co., Ltd.
 ³Hong Kong University of Science and Technology (Guangzhou)
 ⁴Hong Kong Baptist University

Model-based OPC

Experiments

Introduction

Moore's Law to Extreme Scaling

• Billions of transistors on a chip → ... Trillions of polygons

/25

ISEDA20 International Symposium of EDA

Semiconductor Manufacturing: Lithography

ISEDA20 International Symposium of EDA

When feature is small: what you see \neq what you want $y_{\text{Symposium of EDA}}$

672<u>5</u>

Previous Work

Classic OPC

- Model/Rule-based OPC [Cobb+,SPIE'02][Kuang+,DATE'15] [Awad+,DAC'16] [Su+,ICCAD'16]
 - Fragmentation of shape edges;
 Move fragments for better printability.
- Inverse Lithography [Pang+,SPIE'05] [Gao+,DAC'14] [Poonawala+,TIP'07] [Ma+,ICCAD'17]
 - Efficient model that maps mask to aerial image;
 - 2 Continuously update mask through descending the gradient of contour error.

Machine Learning OPC [Matsunawa+,JM3'16] [Choi+,SPIE'16] [Xu+,ISPD'16] [Shim+,APCCAS'16]

- Edge fragmentation;
- Peature extraction;
- 8 Model training.

github.com/OpenOPC/OpenILT/

∃ README.md

OpenILT: An Open-source Platform for Inverse Lithography Technology Research

OpenILT is a open-source platform for inverse lithography technology (ILT) research. It has a comprehensive and flexible ecosystem of libraries that enable the efficient development and evaluation of ILT algorithm. OpenILT decouples the ILT flow into different components, lithography simulation, initialization, optimization, and evaluation. ILT researchers can implement and evaluate their ideas quickly by replacing a component with the novel method. Moreover, the platform is implemented with *pytorch*, which enables easy GPU acceleration and deep-learning integration.

- Lithography simulation
- Initialization
- Solver
- Evaluation

- Lack of Large-scale Lithography simulation
- No Support of Model-based OPC

Model-based OPC

3725

• Segmentation: polygon to segments

- Corner length
- Uniform length

Model-based OPC Steps

Model-based OPC Steps

• Partition+Simulation+Combination:

- GPU acceleration lithography simulation
- Partition the layout to fit the size of lithography simulator
- Support large-scale lithography simulation in OpenILT

Model-based OPC Steps

• Movement:

- EPE-driven optimization
- Outside edge displacement → move inwards
- Inside edge diplacement \rightarrow move outwards

Experiments

MB-OPC Results on Different Testcases

• GPU acceleration gains significant speed up

Layout	Size	Tiles	EPE	L2	PVB	Runtime@GPU	Runtime@CPU
gcd	$30 \times 30 \mu m^2$	1	24657	595317	149969	150 s	801 s
aes	$250 \times 250 \mu m^2$	144	2633481	62804952	16102282	18,612 s	>24 hours
dynamicnode	$246 \times 246 \mu m^2$	144	2326174	58335791	14815929	19,494 s	>24 hours

Results under different configurations

- Optimization steps
- Step size decay
- Movement step size

Runtime analysis

.1/25

22725

Conclusion

- Open-source model-based OPC built on OpenILT
- GPU acceleration gains significant speed up
- Set up a robust baseline for future OPC research

THANK YOU!

