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ABSTRACT

Design space exploration (DSE) for microarchitecture parameters is
an essential stage in microprocessor design to explore the trade-offs
among performance, power, and area (PPA). Prior work either em-
ploys excessive expert efforts to guide microarchitecture parameter
tuning or demands high computing resources to prepare datasets
and train black-box prediction models for DSE.

In this work, we aim to circumvent the domain knowledge re-
quirements through automated bottleneck analysis and propose
ArchExplorer, which reveals microarchitecture bottlenecks to guide
DSE with much fewer simulations. ArchExplorer consists of a new
graph formulation of microexecution, an optimal critical path con-
struction algorithm, and hardware resource reassignment strategies.
Specifically, the critical path is constructed from the microexecution
to uncover the performance-critical microarchitecture bottlenecks,
which facilitates ArchExplorer to reclaim the hardware budgets
of performance-insensitive structures that consume unnecessary
power and area. These budgets are then reassigned to the microar-
chitecture bottlenecks for performance boost while maintaining the
power and area constraints under the total budget envelope. Exper-
iments show that ArchExplorer can find better PPA Pareto-optimal
designs, achieving an average of 6.80% higher Pareto hypervolume
using at most 74.63% fewer simulations compared to the state-of-
the-art approaches.
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1 INTRODUCTION

The microprocessor design cycle at the concept phase (logic level
details are unavailable) requires abundant performance-power-area
(PPA) trade-off evaluations. Architects rely on practical algorithms
to explore optimal architecture parameters, achieving sweet PPA
balance within a limited time budget. For example, five of Tenstor-
rent’s competitive RISC-V microprocessor implementations are fast
prototyped based on one design within a year to face diverse PPA
design targets [5].

Microarchitecture exploration is a design space exploration (DSE)
problem aiming to find performance-power-area Pareto-optimal
microprocessor parameters. Architects are often confronted with
billions or trillions of parameter combinations. And one combina-
tion takes a high runtime to acquire the PPA results via detailed
simulations. The problem is not new, and the industry and academia
have proposed many solutions.

In industry, microarchitecture parameters are determined upon
extensive simulation results analysis and the expertise of architects.
However, the fact that architects’ domain knowledge can fall into a
personal bias is a concern. The question remains whether the solu-
tion given by architects is optimal or how many benefits we can
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gain based on a sub-optimal solution. In academia, researchers
adopt mechanistic models or black-box methodologies. Mecha-
nistic models investigate the relations between PPA values and
microarchitecture parameters by unfolding the microexecutions.
Interpretable equations are constructed for a single component
[26, 27, 48, 55] or the entire microprocessor [19, 31, 43]. Microar-
chitecture exploration is conducted by sweeping the design space
or fast evaluation with the mechanistic model. Nevertheless, the
model requires immense domain knowledge to build and verify.
More commonly-applied solutions use black-box methodologies
[7,8,10, 12, 15, 16, 28, 32, 34, 35, 37, 60]. The methods train a black-
box model with machine-learning techniques via a large data set.
Researchers prefer them since better results are often achieved
[8, 12, 28, 35, 37]. However, black-box methods are not a silver bul-
let. They require high computing resources to construct the data
set for training [12, 28]. Another criticism of the black-box method
is that blindly (purely driven by the algorithm rather than tightly
coupled with expertise) exploring microarchitectures seems naive
since architects already know the characteristics of most designs.

Goal and Approach: We aim to solve the problem by evading
the limitations of current mainstream methodologies. Specifically,
we circumvent the massive domain knowledge access required
by building mechanistic models and mitigate the high computing
demands of black-box methods. The key to achieving the goal is DSE
via automated bottleneck analysis, where the bottlenecks are the
factors that hinder the program execution progress. We reduce the
demand for expert knowledge via automated bottleneck detection
and elimination. Meanwhile, our method asks for fewer computing
demands compared to black-box methodologies.

Rationales: Assume a perfect machine has unlimited hardware
resources. The factors constraining the perfect machine’s perfor-
mance are only the program’s true data dependencies (viz., read-
after-write dependencies). While in a real machine, architecture
parameters like the instruction queue entries set the resource con-
straints. Due to the constraints, contentions for limited resources
exist in the microexecution. And the contention produces two dis-
tinct types of resources: 1) deficient and exhausted and 2) abundant
and idle. Hence, a real machine leads to unbalanced usage of re-
sources. The usage dependencies of deficient resources are another
factor that blocks instructions from progressing. A balanced mi-
croarchitecture can simultaneously maximize the utilization of each
hardware resource. In other words, the microarchitecture makes the
best use of every resource. We refer to a bottleneck as insufficient
hardware resource, which is exhausted by instructions and results
in high program runtime. Accurate and efficient identification of
types of hardware resources is the first principle to find a balanced
microarchitecture.

Findings and Design Principles: Jouppi decoupled the micropro-
cessor performance into benchmark and machine parallelism [29].
Our observation is that the relations between resource constraints
and machine parallelism are similar to the cask effect !. Namely,

The cask effect is a terminology from the Peter principle [49]. It states that in a
hierarchy, every employee tends to rise to its level of incompetence. We adopt the
term to broadly summarize the insight of our approach.
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Figure 1: A visualization of the design space for 458.sjeng.
Each microarchitecture is reduced to two dimensions
through t-SNE [57] to facilitate the visualization of PPA
distributions.

the most insufficient resource largely determines machine paral-
lelism. For example, assigning more to such resources can achieve
23.05% performance improvement, and the PPA trade-off becomes
27.42% better. To identify the type of resource, two requirements
should be satisfied. The utilization status of each resource in the
microexecution should be captured. And whether the overlapping
events matter for the execution time should be considered. The
latter requirements call for a global view of the entire microexecu-
tion, which the critical path can represent [22]. We summarize two
design principles for DSE via bottleneck analysis. First, the depen-
dencies contributing to execution time should be captured as much as
possible. Approximating the resource utilization more accurately
benefits the DSE. Second, concurrent events should be distinguishable.
The distinguishability is essential in accurately estimating bottle-
neck contributions to the execution time. Accordingly, we propose
a new graph model formulation based on critical path analysis
[24, 36, 44, 45, 56] to implement the two design principles.

Contributions:

1) The design principles and a new graph model formulation to
characterize the microexecution.

2) The induced graph model and an optimal critical path con-
struction algorithm based on dynamic programming to investigate
overlapped events.

3) Evaluations show that our DSE method ArchExplorer can
find better Pareto PPA microarchitectures with an average of 6.80%
higher Pareto hypervolume using at most 74.63% fewer simulations
compared to state-of-the-art approaches.

Paper Organization: The rest of this paper is organized as follows.
Section 2 introduces the background and motivation. Section 3
states lessons and design principles. Section 4 provides the Arch-
Explorer approach. Section 5 and Section 6 are for experiments.
Section 7 presents some discussions. Section 8 supplements addi-
tional related works and Section 9 concludes the paper.

2 BACKGROUND & MOTIVATION
2.1 Challenges in Microarchitecture DSE

The two challenges of the problem are the extremely large and
non-smooth design space and high simulation overheads to get the
performance values.

The design space is complicated due to the non-linear relations
between parameters and performance and power values [10, 30].
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Table 1: A baseline microarchitecture specification

‘ Components ‘ Hardware Resources ‘

Pipeline width 4
Fetch buffer size in bytes | 64
Fetch queue size in p-ops | 32
local/global/choice predictor
of the tournament: 2048/8192/8192
RAS: 16, BTB: 4096
50/32/24/24
Int RF: 50, Floating-point RF: 50
IntALU: 3, IntMultDiv: 1, FpALU: 2
FpMultDiv: 1, RdWrPort: 1

Branch predictor unit

ROB/IQ/LQ/SQ
Physical register

Functional unit

L11$ 2-way, 32 KB, 2 cycles
L1D$ 2-way, 32 KB, 2 cycles
IPC/Power/Area 0.9418/0.2027 W/5.6609 mm?

PPA Variations Comparison of Comparative Simulations
Perf Power Area Perf?

Power x Area

HEEE Baseline 1 ROBx2 1 IntRFx2 1 FpRFx2
— 1Qx2 1 LQx2 — SQx2 COIntALUX2
C O IntMultDivx2 [CIFpALUx2 E@FpMultDivx2 3 IS sizex2
3 I$ assoc.x2 I D$ sizex2 @ DS$ assoc.x2

Figure 2: Each bar represents the microarchitecture’s metric
in %. The bar, e.g., “ROB x2”, indicates the microarchitec-
ture is the same as the baseline except that it doubles ROB.
Perf?/(Power x Area) denotes the PPA trade-off.

To visualize the design space intuitively, we use GEM5’s [9, 39]
out-of-order RISC-V model [33]. Each sampled design is extensively
evaluated with the SPEC CPU2006 benchmark suite [25], and power
and area values are reported from McPAT [38]. Figure 1 reveals the
design space w.r.t. PPA values for 458.sjeng. Figure 1(a) and Fig-
ure 1(b) show many extrema in the space, and the changes between
these extrema are non-smooth, indicating that the performance
and power design space is complicated. The area design space, as
referred to in Figure 1(c), is relatively flat since linear relations exist
between parameters and area.

Obtaining the performance value for a design requires high-
fidelity simulation with representative benchmarks, which can re-
sult in high runtime costs even with a fast simulator [11].

2.2 Bottleneck Analysis Matters in DSE

Although the design space is complicated, improving machine paral-
lelism by removing microarchitecture bottlenecks can significantly
enhance the PPA trade-off, as demonstrated by an example of com-
parative simulations. Table 1 lists a baseline microarchitecture, and
we evaluate it with SPEC CPU2017 Simpoints [47]. The average
performance and power values of all workloads are reported. Com-
parative simulations are conducted for each new microarchitecture
by doubling individual parameters, as shown in Figure 2. Firstly,
doubling parameters like the number of floating-point arithmetic
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IntRF: 144 —> 128
SQ: 32— 44

FpRF: 160 — 144
D$: 32K — 64K
SQ: 28— 32

ROB: 160 — 144
SQ: 24 —> 28

Figure 3: Search by following a series of small changes step-
wise. PPA denotes Perf?/(Power X Area).

logic units (FpALU) worsens power and area without improving
performance, indicating redundant resources waste the design bud-
get. Secondly, doubling the number of physical integer registers
(IntRF) improves performance by 23.05% and enhances the PPA
trade-off by 27.42%. We investigate the simulation trace to find out
the root cause. We find that most instructions are stalled in the
rename stage due to insufficient physical integer registers. For in-
stance, this bottleneck results in 25.71% of instructions in 657.xz_s
and 18.94% for 625.x264_s getting stalled during renaming.

We apply a straightforward heuristic to find a balanced microar-
chitecture: assigning necessary hardware resources and reducing re-
dundant ones. We adjust resources based on the degree of necessity,
which is the ratio of delayed instructions due to the resource’s in-
sufficiency. If the necessity is top-ranked, we increase the resource,
and if it is zero, we decrease it. Figure 3 shows a stepwise search by
reusing the design space (Table 4), where we analyze the simulation
trace manually to calculate the necessity for each resource. With
only six simulations, we improve performance by 2.59%, reduce
power and area by 2.66% and 16.64%, respectively, and enhance the
PPA trade-off by 29.72%.

2.3 Critical Path Analysis

Unlike performance counters analysis [6, 18, 59] and pipeline stall
analysis (interval analysis) [17, 19], the critical path analysis can
answer which events we should blame for the cycle loss regarding
the entire microexecution.

The critical path analysis is a methodology based on the dy-
namic event-dependence graph (DEG). Since its first appearance
[22], it has been widely applied [24, 36, 44, 45, 56]. A DEG is a
directed acyclic graph, as shown in Figure 4, with vertices denoting
the pipeline stages and edges representing the dependencies. Edge
weights indicate delayed cycles. The longest path from the fetch of
the first instruction to the commit of the last instruction is the criti-
cal path (108 cycles, highlighted in red in Figure 4). Critical events
can be obtained from the critical path, which are dependencies con-
tributing to the critical path’s length. For instance, a D-cache miss
is a critical event contributing 100 cycles to the microexecution.

Although the critical path provides a global view, it is limited
to clarify which resource is deficient or abundant. Firstly, in the
former DEG formulation, the dependence and weights assignment are
static without adhering to actual microexecution. This is a significant
concern since microexecution contains dynamic behaviors, such as
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Instruction sequence

I1:1d a_O, 40(s2) Il 2 3 14 15 16 17 18
12: sl 5, 32 1 Tncorder Bigh 1}
13: csrli a5, 28

14: cadd a5, a0
15: sd s5, 0(a5)

16: Iwu a4, 52(s2) <
17: 1d a5, 40(s2) B
18: cslli a4, 4 3

&
(E) Feteh : o7 Trae daa e
@ Dispatch 100, iﬂ.elgf ..... e 2 &

e

@ Execute
@ Memory
© Commit

The critical path: 1 +3 +1+100+ 1+ 1+ 1= 108

Figure 4: An overview of the dynamic event-dependence
graph.

instruction scheduling and resource usage dependencies. Previous
DEG formulations statically assign edges and weights following
predetermined rules without considering runtime information, lead-
ing to deviations between critical path length and actual runtime.
Secondly, the critical path cannot accurately characterize the bot-
tlenecks’ contributions to the overall runtime, even if the modeled
critical path length is strictly identical to the simulation runtime. This
is because the previous DEG formulation cannot distinguish over-
lapped events in microexecution, resulting in the double-counting
of bottleneck contributions.

3 LESSONS LEARNED & DESIGN PRINCIPLES

We scrutinize the previous DEG formulation and illustrate its lim-
itations in detail. We summarize the lessons learned and provide
our design principles.

Firstly, the previous DEG formulation [22, 24, 36, 56] statically
assigns weights and edges without following the actual microexecu-
tion, leading to inaccurate critical path length estimation. As shown
in Figure 5(a), we demonstrate the point with 444.namd. The first
error is using a static penalty to represent variant durations. For
example, a branch misprediction penalty depends on the number
of in-flight instructions in the wrong execution path. In Figure 5(a),
the penalty of the first branch misprediction is 3 instead of 5 cycles.
The error is rooted in a fundamental limitation of the former for-
mulation, i.e., the lack of events’ timing in the DEG construction.
The second error comes from false dependence. In Figure 5(a), the
DEG formulation inserts an edge between the commit of I1 and the
fetch of I9 to denote ROB dependence, contrary to the fact that no
delay exists since I1 has freed the ROB entry before I9 consumes
it. Although the incorrect insertion of ROB dependence is not in-
cluded in the critical path (hidden by parallel events), the length
of the critical path is shorter than the actual simulation time due
to the lack of correct pipeline dependence delay. The ignorance
of events timing information in the formulation leads to a 25.71%
underestimation of the critical path.

Secondly, bottlenecks’ contributions are incorrectly estimated
due to the inability to distinguish concurrent events. Figure 5(b)
demonstrates the third error with 456. hmmer. Consecutive execu-
tion stages are connected (E(I1) — E(I10)) to denote read/write
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port contention. The contention contributes nine cycles to the exe-
cution time according to the critical path. However, the contribution
is four cycles in the actual microexecution. The formulation overes-
timates the read/write port’s insufficiency by 125%. The redundant
five cycles are hidden by parallel events, e.g., I3 and I4 get their
read/write ports simultaneously.

Embedding the events’ timing information and finding a way
to distinguish concurrent events is crucial for making the DEG
formulation practical. This approach enables the critical path to
accurately identify whether a resource is deficient or abundant.
Therefore, we provide two design principles for DSE via bottleneck
analysis 1) The dependencies contributing to execution time should
be captured as much as possible. Capturing more resource usage
improves the utilization approximation. 2) Concurrent events should
be distinguishable. The distinguishability unveils whether we mat-
ter a concurrent event for bottleneck contributions to the overall
execution time.

4 THE ARCHEXPLORER APPROACH

Following the design principles summarized in Section 3, we pro-
pose ArchExplorer, with an overview shown in Figure 6.
ArchExplorer involves three stages. Given the design space, the
initial microarchitecture parameters are sampled or chosen with
prior knowledge. In stage 1, we introduce a new DEG formulation
(Section 4.1). The new formulation removes previous limitations.
Based on the new DEG, we propose the induced DEG and apply
critical path construction in stage 2 (Section 4.2). In stage 3 (Sec-
tion 4.3), we generate a bottleneck analysis report by computing the
resource contribution to the microexecution runtime. We reassign
resources according to the report, producing a new design. The
promising solutions are explored until the early-stopping criterion
is met, and the Pareto frontier is obtained from the explored set.

4.1 New DEG Formulation of Microexecution

We propose a new DEG representation of microexecution to mit-
igate the limitations of the previous formulation. The backbone
looks similar to the original proposal [22]. Vertices denote pipeline
stages, and edges represent dependencies. However, a fundamental
limitation of the former formulation is the lack of events’ timing
information, causing inaccurate modeling of events like speculative
scheduling, resource contention, etc. Lacking the timing informa-
tion also makes the concurrent events difficult to discriminate. We
explicitly embed the events’ timing information into the formula-
tion and propose new rules to assign edges and weights dynamically.
First, we give an overview of the new DEG formulation. Next, we
illustrate how the new DEG is dynamically constructed. Last, we
manifest how we distinguish between overlapped events.

Figure 7 is an outline of the new DEG formulation. Instead of
aligning instructions with pipeline stages, as shown in Figure 4, we
align instructions w.r.t. the time. Each vertex is accessed with two-
dimensional coordinates (x,y). The X-axis denotes the timeline,
and the Y-axis represents the instruction sequence. The instruction-
level parallelism is shown by fixing the X coordinate. And the
lifetime of an instruction is reported by fixing the Y coordinate. For
edge weights, instead of using static numbers to denote, dynamic
time intervals between two vertices are used in the new DEG. In
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444 namd

I1: bgeu a4, a6, -108
12: addi a5, ft0, 48
13:1d al, 112(s7)

14: c_mv a4, a2

15: beq a2, a5, 214
16: beq s10, ft0, 2784
17: addiw a5, a2, -48
18: addi a5, a5, 255
19:c_lia4,9

110: bgeu a4, a5, 246
— Critical path

Statically assign

% incorrect weight O

x Statically assign ! The critical path: 26 clock cycles vs. True simulation: 35 clock cycles
false dependence - :

(a) Previous DEG formulation statically assigns edges and weights without fol-

lowing the actual microexecution.
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456.hmmer

11: ¢_sdsp ft0, 56(sp)
12: ¢_sdsp ft0, 64(sp)
13: ¢_sdsp ft0, 72(sp)
14: ¢_sdsp ft0, 80(sp)
15: ¢_sdsp ft0, 88(sp) )
16: c_sdsp ft0, 96(sp) 4

17: ¢_sdsp 0, 104(sp) X 2 BSAE=
18: ¢_sdsp ft0, 112(sp) 1

19: ¢_sdsp ft0, 120(sp)
110: c_sdsp ft0, 128(sp)|

Indistinguishable

% concurrent events
assign false

dependence

(b) Previous DEG formulation cannot distinguish overlapped events.

Figure 5: (a) and (b) uses Calipers [24], the representative DEG formulation, to demonstrate three kinds of error sources, with
critical paths highlighted in red. (a) illustrates errors including incorrect weights and false dependence due to static assignment
without following actual microexecutions. (b) manifests false dependence owing to indistinguishable concurrent events.

| Initial design generation |7

1

| Simulation & Exploration set update |

Benchmark

Design Space

Calculate Pareto frontier Y
""""" Perf, <Data
Pareto :
1. New DEG Formulation of Microexecution |
: I
. ° | 2. Induced DEG & Critical Path Construction |
: T
3. Bottleneck-removal-driven DSE |—

Figure 6: An overview of the ArchExplorer approach.

the following context, we use P(I;) to represent the instruction I;’s
pipeline stage P 2.

We categorize four kinds of dependencies. See Table 2. The
pipeline dependencies are horizontal edges. Misprediction, hard-
ware resource, and true data dependencies are “skewed” edges,
i.e., they denote interactions between instructions.

o Pipeline dependence: It characterizes the microarchitec-
ture pipeline implementations. More vertices are added to
model architecture parameters. For example, to study the
I-cache and fetch buffer size, we incorporate F1 and F2, rep-
resenting when the front-end sends requests and receives
replies from the I-cache. The duration of F1(I;) — F2(I;)
equals the I-cache access latency, while F describes the mo-
ment instructions are copied to the fetch target queue. Mis-
aligned accesses are modeled by F2(I;) — F(I;). To aid vi-
sualization, we merge F2 and F to formulate F2/F when the
events occur simultaneously. This merging is also employed
for other vertices.

e Misprediction dependence: It is used to model branch or
memory address dependence mispredictions [13].

e Hardware resource dependence: The previous formula-
tion uses the “producer-consumer” model [22] to build usage

2P could be F1, F2, DC, etc., as shown in Figure 7. For example, DC(I3) denotes the
decode stage of instruction I5.
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dependence on resources such as physical registers, ROB, etc.
For example, C(I;) — I(I;) can represent ROB dependence,
as a new ROB entry is produced at the commit stage of I;
and consumed at the issue stage of I;. In contrast, we unify
dependencies as rename to rename edges R(I;) — R(I;).
This is because the new DEG aligns instructions strictly with
time, so a “producer-consumer” edge is always assigned zero
delays since newly-released resources can be used imme-
diately. A zero delay edge prevents the critical path from
capturing critical resource usage dependence. Mainstream
microarchitectures often use one stage (e.g., rename) to check
whether required resources are available before dispatching
the instruction. If a requisite resource is exhausted, a stall
is incurred, otherwise, the instruction is pushed to the is-
sue queue and waits to schedule. The rename to rename
edge precisely reflects the resource usage dependence, and
the time interval between these two rename stages equals
the resource’s duty cycles (the resource is busy during the
interval).

e True data dependence: It characterizes the read-after-write
dependence within the issue window.

Another significant difference from the previous formulation
is that we construct the new DEG dynamically. That is, the new
DEG is built adhering to the actual microexecution. With the time
coordinate, we know whether a misprediction event occurs and how
many penalties are produced. For example, if a conditional branch
instruction I; is mispredicted, microarchitecture starts squashing
and refilling the pipeline with instructions in the correct execution
path. Denote the first refilled instruction as I;. We assign the edge
P(I;) — F1(I}) once we find the time of F1(I;) is larger than P(I;)
from the new DEG. The interval between P(I;) and F1(I;) is the
actual squash latency due to the misprediction.

However, acquiring the pipeline stages’ timing information is
inadequate to identify the correct edges and weights for resource
usage dependencies (such as issue queues and ROB). Although
time is useful for identifying stalls, it is not sufficient to determine
these edges. Which resources are preemptively occupied by which
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111w a5, -20(s0)
512. addiw a4, a5, 0
:I3: addi a5, ft0, 31
:Ly: bge a5, a4, 80

:I5: 1w a5, -36(s0)

I: addi a5, 25,1 !
:I7: addiw a5,a5,0
Is: beq a5, ft0, 20

:Io: 1w a5, -36(s0)

Critical Path Length: 43 cycles

—_—
X-axis Timeline

D I$ Access Latency: 6 cyclesD Pipeline Latency: 20 cyclesD DS Access Latency: 8 cyclesD True Data Dependence Latency: 3 cyclesD Squash Latency due to Branch Miss Prediction: 6 cycles

® Request to I$ @ Response from I$ @ Fetch Decode

@Merge F2&F Merge Dispatch&Issue ® Start Vertex

® Rename

@ Terminate Vertex — Critical path

Dispatch @ Issue @ Memory @ Complete @ Commit

Figure 7: An overview of the new DEG formulation of microexecution. The critical path is highlighted in red. The cause of each
edge in the critical path is attributed to a particular resource (shaded with colors for visualization purposes).

Table 2: The dependence specification

Edge

Type ‘ Description

F1(i) — F2(i)

Send a request to I$, and get a response for instruction i.

F2()  F()

I$ puts the instruction i in the fetch buffer, and the fetch stage performs pre-decode or predictions.

F() - DC()

The fetch stage send instruction i to the decoder.

DC() = RG)

The decode stage send p-ops of instruction i to the rename.

Pipeline dependence R(i) — DP(i)

The rename stage send instruction i to dispatch.

DP(i) — 1)

Schedule instruction i to issue.

1(i) — P(i)
1(i) — M(i) — P(i)

Execute instruction i with suitable functional units like ALUs or read/write ports.

P(i) — C(i)

Commit instruction i after it is finished execution.

Misprediction dependence P(i) > F1(i+ 1)

Instruction i encounters a branch/memory address dependence misprediction.

Insufficient resources delays instruction j, and j requires those resources that instruction i releases.

R(i) — R()) The edge insertion is according to the scoreboard.
Hardware resource dependence The resources include ROB, IQ, LQ, SQ, as well as ph}fsmal integer and ﬂoatmg—pomt r_eglsFers.
1) - 1)) Insufficient resources delays instruction j, and j requires those resources that instruction i releases.
J The resources are functional units, e.g., integer/floating-point ALUs, dividers, etc.
The true data d d .
True data dependence 1(i) — I(j) € true data dependence

The delayed cycles are either due to D$ access or the execution of functional units.

]1«1““.“@)—‘@.—‘@

Y-axis Instruction Sequence
Ng
@

©
@ X-axis Timeline

Figure 8: The new DEG formulation is applied w.r.t. the code
snippet as shown in Figure 5(b). And it identifies the true
read/write ports usage dependencies, i.e., I(I;) — I(I4),I(I4) —
I(Is), I(Is) i I(Ig), and I(Ig) i I(Ig).

instructions? To address this issue, we record the correspondence

between assigned resources and instructions with a scoreboard.

The scoreboard uses resource entry as the granularity and indexes
each entry with a unique ID number. We demonstrate how we
detect and assign the correct edge with the scoreboard. Consider
a microarchitecture that uses the rename stage to check whether
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required resources are available for each instruction, and the rename
stage takes two cycles to finish. If all required resources are idle,
the instruction can be dispatched immediately. We record which
resource is responsible for the stall and assign a rename-to-rename
edge by comparing the ID number. Specifically, the resource ID
number of the dependent instruction should match that of the
stalled instruction according to the scoreboard. If an instruction is
stalled due to multiple insufficient resources, the rename-to-rename
edges are built in turn.

With the new DEG formulation, Figure 8 elucidates how we
distinguish between concurrent events w.r.t. the same code snippet
listed in Figure 5(b). Since I(I;) and I(I) are aligned along the X-
axis, no function unit contention exists 3. Compared to Figure 5(b),
the critical path highlighted in red in Figure 8 removes duplicated
read/write port dependencies.

31(I3) and I(Ly), I(Is) and I(Is), I(I;) and I(Ig), etc, are also aligned with time,
meaning they are concurrent events.
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4.2 Induced DEG & Critical Path Construction

The critical path is a serialization representation of parallel events.
It highlights which overlapping events matter for the overall mi-
croexecution.

To facilitate the critical path construction, we introduce the in-
duced DEG - a connected DEG (Section 4.1) consisting of horizontal,
“skewed”, and virtual edges. Horizontal edges are pipeline depen-
dencies. “Skewed” edges (non-horizontal) signify non-pipeline de-
pendencies, which could be resource dependencies. The virtual
edges are added to make the new DEG connected. Unlike the prior
DEG [22], our new DEG formulation removes consecutively con-
nected fetch edges, commit edges, etc. This is because these edges
are rooted in instruction execution sequences rather than resource
dependencies, as they can hinder critical path construction. How-
ever, their removal may result in a disconnected graph (no path
from F1(I;) to the last instruction’s commit) if instructions do not
have non-pipeline dependencies in highly parallel workloads. Thus,
we introduce virtual edges in the induced DEG.

Formally, assume two “skewed” edges are annotated with s; —
ej and s — e; (j < k), where s;, e}, s, e; are vertices in the new
DEG formulation, i.e., a stage of I;, I, Iy, and Ij, respectively. i, j,
k, and [ are different instruction sequence numbers. Virtual edges
could be s; — si (or ej — si) as long as either of the following
two rules is met 4.

Rule 1 (Connect via time): s; is connected to s, if the time of s;
is the closest to s;.

Rule 2 (Connect via instruction sequence): s; is connected to
sg if the instruction sequence k is the closest to i.

If multiple stages satisfy at least one of these rules, we connect
them to s to generate more virtual edges. Virtual edges are not
true dependencies but make the DEG connected. The connection
of “skewed” edges allows for the exposure of consecutive resource
utilization status. We connect “skewed” edges with the closest time
and instruction sequence for two reasons. First, since the induced
DEG is highly connected due to virtual edges, we can investigate
many combinations of resource usage dependencies to formulate
the critical path. Second, the closest connections allow us to directly
eliminate many sub-optimal solutions, as connections that are not
the closest are obviously sub-optimal according to the first design
principle. The induced DEG facilitates the critical path densely
composed of resource usage dependencies.

A walking example is provided in Figure 9 to demonstrate the
idea more clearly. The new DEG is applied to model 11 instructions
in a microexecution (Figure 9(a)), with “skewed” edges colored in
orange. R(I;) — R(Ijp) and R(I3) — R(Ij1) denote dependencies
of integer physical registers. D/I(Iz) — I(I3), D/I(Is) — I(Is), and
I(I;) — I(Ig) are D-cache misses. I(I3) — I(I4) and I(I;) — I(Ig)
are true data dependencies due to register as. P(I;) — F1(I) repre-
sents a branch misprediction. Although Ig and I;¢ have a true data
dependence due to register as, there is no stall in actual microex-
ecution because Iy and Ijo are not in the same issue window (I
is not dispatched at the time of D/I(Iy)). F1(I;) is not reachable to
C(Iy1). Figure 9(b) illustrates the corresponding induced DEG with
virtual edges colored in blue. Specifically, we use R(I;) — R(I3)

“We use s; — s as an example. The rules are the same for e; — s.
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Algorithm 1 Critical Path Construction

Require: G: The induced DEG with the edge cost;
1: node = topological_sort(G);

2: Initialize edge cost vector d with all zero;
3: Initialize the path vector p with all zero;
4: for n « node do
5 if Ng(n) # 0 then > NG (n) are predecessors of n.
6: d[n] =arg max d[ov]+ cost; assign p[n]| with v;
ve NG (n)
7: else
8: d[n] =0; p[n] =n;
9: end if
10: end for

11: return reverse(p);

and R(I;) — D/I(I2) as two examples to elucidate rules 1 and 2. In
Figure 9(a), a virtual edge R(I;) — R(I3) is created as R(I3)’s time is
the closest to R(I;) among all “skewed” edges, and I3 and I; are dif-
ferent instructions (rule 1). Similarly, a virtual edge R(I;) — D/I(I3)
is created since the instruction sequence of D/I(I,) is the closest to
that of R(I;) among all “skewed” edges (rule 2).

Although the induced DEG connects the graph, it cannot answer
which concurrent event should be blamed for the microexecution.
We propose a dynamic programming-based critical path construc-
tion algorithm to decide accordingly. To capture more resource
usage dependencies and not miss “important” edges, we define
costs to edges as follows: (1) All horizontal edges have zero cost.
(2) All virtual edges have zero cost. (3) All true data dependencies
have zero cost. (4) All “skewed” edges, except true data dependen-
cies, have costs equal to the interval between two vertices. We set
horizontal edges with zero cost to capture the true resource usage
dependence rather than pipeline stalls. Using the induced DEG
with edge costs, we apply the longest path search with linear time
complexity in Algorithm 1.

In Algorithm 1, line 6 uses dynamic programming to record the
temporary longest path to n. The critical path can be obtained by
reversing p at line 11. For the example in Figure 9(b), the critical
path is F1(I;) — F2/F(l;) — DC(I;) — R(I3) — R(I39) — C(I11).
From the critical path, we discover that the top bottleneck is the
insufficiency of physical integer registers, and the branch mispre-
diction cannot hide it. The length of the critical path is precisely
the same as the simulation time.

4.3 Bottleneck-removal-driven DSE

We conduct the bottleneck-removal-driven DSE by reassigning re-
sources via eliminating bottlenecks gradually. Scarce resources
are increased to mitigate performance bottlenecks, while over-
provisioned resources are reduced to balance power and area. Iden-
tifying deficient or abundant resources is achieved by computing
their contribution to the overall runtime through the constructed
critical path. The higher the contribution, the scarcer the resources
and the greater the necessity to assign more of them. Conversely,
redundant resource leads to zero contribution and can be appropri-
ately reduced.

The main idea of computing the resource contribution is to at-
tribute the cause of each edge in the critical path to a particular
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Figure 9: (a) An example code snippet and its corresponding new DEG formulation. (b) The overview of induced DEG with edge

cost extracted from DEG.

resource. This attribution is straightforward, as we define the mean-
ing of “skewed” edges in Table 2. We do not attribute virtual edges
to resources. Figure 7 illustrates some attribution highlighted with
diverse colors, where each edge is a non-overlapping segment in
the microexecution. We introduce the resource contribution in two
cases and describe our resource assignment strategies.

Formally, for a critical path p with length L and containing N
(non-overlapping) edges, a resource b’s contribution c(b) is com-
puted according to Equation 1,

N
e(b) = Y liLlp(i) = b]/L, (1)
i=1

where 1(-) is the indicator function, which outputs 1 if its argument
is true and 0 otherwise. [; is the delay (not edge cost as referred to
in Section 4.2) of the i-th edge p(i), attributed to the resource b. We
determine the type of resource according to c¢(b), i.e., whether the
resource is top-ranked deficient or abundant. For multiple workload
evaluations, as shown in Equation 2, we do a weighted average for
the contributions of each resource.

|B| |B|

&by =y wi-cib), Y wi=1,
i=1 i=1

where |B| is the number of workloads, and ¢;(b) is computed from
Equation 1. The symbol ¢(b) is the average resource contribution,
where w; is the i-th weighted coefficient for a specific workload that
encodes the designer’s preference. Each resource’s contribution is
summarized in an output report. We use ¢(b) to guide the DSE
procedure. The reassigned parameter values are decided based on
the design space specification. Specifically, we select the next larger
candidate value from the specification if we need to increase the

@
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value, and we decrease it to the next smaller candidate value if such
resources do not have a contribution.

Unlike resources such as ROB entries, branch predictors and
caches are special. Assigning more resources may not decrease their
contributions, as benchmarks contain hard-to-predict branches or
specific data access patterns that are fundamental to the prediction
algorithm. Increasing the branch target buffer (BTB), return address
stack (RAS), etc., may not improve the branch predictor. Similarly,
larger capacities and associativities may not remove caches’ con-
tributions on complex access patterns. We argue that performance
cannot be effectively enhanced by only reassigning more resources
to them. The solution to the problem requires a suitable branch
prediction algorithm or a better cache replacement policy. We stop
reassigning more resources to branch predictors and caches in the
DSE if the PPA improvement is limited.

Figure 10 provides an overview of a search path conducted by
ArchExplorer. In the second step, the report indicates that the mi-
croarchitecture lacks sufficient store queues (SQs), which contribute
38% to the execution time. Thus, in the third step, more SQs are
assigned, resulting in an 8% alleviation of the bottleneck. In the
fourth step, increasing SQs further mitigates the bottleneck, while
decreasing redundant resources saves the area overhead. The DSE
uncovers the reasons for PPA improvements stepwise, highlighting
potential optimization opportunities for the load-store unit, with
assigning more SQs being one optimization. Architects can gain
valuable insights into acquiring good solutions gradually. Black-box
methods cannot offer the same merit.

ArchExplorer reassigns resources until the maximum search bud-
get or no further PPA trade-off improvement. It restarts to explore
with a new microarchitecture. Explored designs are recorded in an
exploration set for Pareto frontier computation (Figure 6).
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Figure 10: An overview of a search path.

5 EXPERIMENTAL SETUP & EVALUATION
METRICS

5.1 Simulation Environment

We use GEMS5 [9, 39], as the timing-accurate simulator and McPAT
[38] as the power and area modeling tool. We modify GEM5 to
generate dynamic timing information and implement ArchExplorer
with C++ and Python. SPEC CPU2006 [2, 25] (SPEC06) and SPEC
CPU2017 [3] (SPEC17) are utilized in benchmark evaluations, as
listed in Table 3. We use Simpoints [47] of each workload to evaluate.
Each Simpoint includes a hundred million instructions, warming
up using ten million instructions. Since identifying the resource
utilization status does not require the entire workload, we use the
first hundred thousand instructions of each Simpoint to calculate
the critical path with ArchExploer. After the DSE, the explored
Pareto solutions are re-evaluated with the full Simpoints.

We implement ArchRanker [12], AdaBoost [37], and BOOM-
Explorer [8] as baselines. ArchRanker [12] leverages a black-box
model for ranking. AdaBoost [37] also adopts machine-learning
techniques [20, 52, 54]. BOOM-Explorer [8] uses Bayesian optimiza-
tion [14] with active-learning [61]. The baselines represent recent
solutions using advanced machine-learning techniques. We also
compare with Calipers [24] since it uses the previous DEG formula-
tion to enhance fast DSE. Although some baselines, like ArchRanker
[12] and BOOM-Explorer [8], target different out-of-order (OoO)
processors, their methods are transferable.

The design space of an OoO RISC-V processor similar to Alpha
21264 [33] is listed in Table 4. The values of the third column are
“start number:end number:stride”. A two-level cache hierarchy with
a 16GB DRAM main memory is applied. The first level cache is for
optimization, while the L2 cache is 8-way associative with 2MB. Di-
verse components like branch prediction units, functional units, and
L1 cache structures, etc., are included. The design space size is more
than 8.9 x 104 For ArchExplorer, we stop the optimization until
we find that the PPA trade-off curve starts to plateau. We generate
the initial design randomly. Baseline microarchitectures suggested
by architects can also be leveraged in the initialization stage to
achieve better results. All weighted coefficients w; in Equation 2
are 1/|B| since we target average cases and assume no preference
for workloads used in experiments.
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Table 3: Workloads used for evaluation

Benchmark suite ‘ # of Workloads ‘ Example Workloads ‘

SPEC06 ‘ 12 ‘ bzip2, namd, dealll, h264ref, soplex, povray, ... ‘

SPEC17 ‘ 14 ‘ perlbench_s, gec_s, cactuBSSN_s, nab _s, ... ‘

Table 4: Microarchitecture design space specification

‘ Components ‘Description ‘Hardware Resource‘ # ‘

L . fetch/decode/rename/dispatch/

Pipeline width issue/writeback commit \I:/idth 1:8:1 8
Fetch buffer fetch buffer size in bytes 16, 32, 64 3
Fetch queue | fetch queue size in p-ops 8:48:4 11

Local predictor l;;jif;;‘i’;:‘g}flze of the 512,1024,2048 | 3

GIobal/Chome global predictor size of the 2048, 4096, 8192 5

predictor Tournament BP
RAS return address stack size 16:40:2 13
BTB branch target buffer size 1024, 2048, 4096 3
ROB reorder buffer entries 32:256:16 15
Int RF number of physical 40:304:8 18
integer registers
number of physical
Fp RF floating-point 40:304:8 18
registers
10 number of?nstruction 16:30:8 9
queue entries
LQ number of load queue entries 20:48:4 8
SQ number of store queue entries 20:48:4 8
IntALU number of integer ALUs 3:6:1 4
IntMultDiv numb‘erA of integer multipliers 12 9
and dividers
FpALU number of floating-point ALUs 1,2 2
. number of floating-point
FpMultDiv multipliers and di%/igers 12 2
1$ size the size of I$ in KB 16, 32, 64 3
1$ assoc. associative sets of I$ 2,4 2
D$ size the size of D$ in KB 16, 32, 64 3
D$ assoc. associative sets of D$ 2,4 2
Total size 8.9649 x 101

@ Dominated Data
O Pareto solutions
!.: Pareto hypervolume

High Perf.

Vo Low Power

Figure 11: The visualization of Pareto hypervolume in Perf-
Power space. Pareto hypervolume is the area bounded by
P(Y) = {y1,y2, y3,y4} and the reference point vy.

5.2 Evaluation Metrics

Since we target multiple objectives involving higher performance,
power efficiency, and area efficiency, we use Pareto hypervolume as
the evaluation metric to compare different DSE algorithms fairly.
Pareto hypervolume is a widely applied metric to measure how
good the explored Pareto frontier is [53]. Denote a Pareto frontier
as P(Y) = {y1,y2,...yn} C Y, with y; representing PPA values
of i-th design, and Y is the objective space. A reference point vy is
set and dominated by P (YY), i.e., Vy; € P(Y), the PPA values are
all better than vy, and we denote y; > vg. Pareto hypervolume is
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defined as

PV (P(Y)) = /Y 1y > oo][1 - 1ly. # y]ldy,

y.€P(Y)

where the integral sums the space bounded from vy to P (Y) [53], as
shown in Figure 11. We also include the number of simulations spent
as another evaluation metric. The higher the Pareto hypervolume
and the fewer the simulations, the better the DSE algorithm. We
measure the PPA trade-off as Perf?/ (Power x Area).

®)

6 RESULTS
6.1 Comparison w. DSE Methodologies

Figure 12 visualizes the Pareto hypervolume curves in terms of
simulations for each algorithm. The average PPA values among
workloads are used in Pareto hypervolume computing. The Pareto
hypervolume is non-decreasing since more Pareto designs are ex-
plored as simulations continue. It is worth noting that ArchExplorer
achieves higher Pareto hypervolume very early, and dominates
other methods at different simulation budgets. Two cases are se-
lected for comparison to study the improved benefits. First, how
many simulations > are needed when achieving a target Pareto
hypervolume? Second, how much Pareto hypervolume can be at-
tained when all methods use the same simulation budgets? We
choose y = 15.80 and x = 3000 for SPEC06 and y = 15.60 and
x = 2400 for SPEC17 as two cases, as shown in Figure 12. We chose
these two cases for SPEC06 and SPEC17 because, at this moment,
the performance curves tend to converge. The corresponding re-
sults are shown in Table 5. In SPEC06, compared to ArchRanker
[12], AdaBoost [37], and BOOM-Explorer [8], ArchExplorer users
14.47% more, 24.56% fewer, and 74.12% fewer simulations when
y = 15.80, respectively. For x = 3000, the gained Pareto hypervol-
ume of ArchExplorer surpasses BOOM-Explorer [8], AdaBoost [37],
and ArchRanker [12] by 1.58%, 4.20%, and 3.32%, respectively. In
SPEC17, ArchExplorer can save 74.63% of simulation budgets at
most and achieve 6.80% higher Pareto hypervolume. Particularly,
the relatively modest increases in Pareto hypervolume translate
into significant performance improvements. For example, when
the simulation budget equals 480 in SPEC17, the Pareto hypervol-
ume of ArchExplorer is improved with an average of 5.40% than
all AdaBoost [37]. However, the performance of Pareto designs is
higher up to 16.20%. The results demonstrate that ArchExplorer can
achieve comparable solution qualities by removing large simulation
budgets. ArchRanker [12] compares pairs of designs to determine
which is better and conducts the constrained DSE with a binary
search. Due to the complicated design space introduced in Sec-
tion 2.1, the trained ranking model is hard to give accurate rankings
when confronting a large design space and complex workloads.
To figure out how ArchExplorer performs better than black-box
methods, we plot the Pareto frontiers of all methods with 3600
simulations in SPEC06, as shown in Figure 13 6. In IPC-1/Power
space, the Pareto frontiers of each method are relatively close. How-
ever, in IPC-1/Area and Area/Power space, ArchExplorer’s Pareto

SCompared to Calipers, the induced DEG has an average of 39.59% more vertices and
51.72% fewer edges with SPEC17 Simpoints. In our experiments, the longest path
evaluation in ArchExplorer incurs 2.24% of the simulation runtime, which can be
negligible.

%Due to the page limit, the Pareto frontiers in SPEC17 are not shown.
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Figure 12: The visualization of Pareto hypervolume curves
in terms of the number of simulations.
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Figure 13: The visualization of Pareto frontiers and the dis-
tributions of PPA trade-offs for all methods.

frontier dominates other methods in several regions, particularly
close to the origin of Area/Power space. The visualization sug-
gests that ArchExplorer outperforms other methods not by explor-
ing a greater number of higher-performance microarchitectures
but by higher power and area efficiency designs. Figure 13 also
shows the PPA trade-off distributions of Pareto designs for each
method. ArchExplorer’s Pareto designs achieve an average of 2.26
in the trade-off, surpassing BOOM-Explorer [8], AdaBoost [37], and
ArchRanker [12] by 15.81%, 7.47%, and 18.63%, respectively. These
results demonstrate that we can achieve a better PPA trade-off by
assigning and removing indispensable hardware resources based
on their performance contribution.

Why can ArchExplorer surpass baselines? ArchExplorer can
surpass DSE methods with black-box models because previous
methods [8, 12, 37] rely on AdaBoost.RT [37], Gaussian process
[8], etc., to learn relationships between microarchitecture features
and PPA values. These models can be trained before or during
DSE, but they are purely algorithm-driven and do not consider
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Table 5: Comparison under two cases.

Method SPEC CPU2006 SPEC CPU2017
ethods - - - -
Pareto hypervolume at y = 15.80 | # of Simulations at x = 3000 | Pareto hypervolume at y = 15.60 | # of Simulations at x = 2400
# of Simulations | Ratio Pareto hypervolume | Ratio | # of Simulations | Ratio Pareto hypervolume | Ratio
ArchRanker [12] 2736 1 15.9185 1 1296 1 16.4542 1
AdaBoost [37] 3132 1.1447 15.6785 0.9849 2208 0.7037 15.9359 0.9685
BOOM-Explorer [8] 2064 0.7544 16.0854 0.0105 1120 0.8642 16.7416 1.0175
ArchExplorer 708 0.2588 16.3473 1.0269 560 0.4321 17.0198 1.0344
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Figure 14: Comparisons between the Pareto designs in performance and power.

microarchitecture analysis in depth. As a result, more simulations
are required in the DSE. In contrast, ArchExplorer applies domain
knowledge in DSE directly by identifying bottlenecks and adjusting
hardware resources to eliminate them, resulting in a better PPA
balance immediately. In summary, ArchExplorer’s explainable DSE
process can provide insights for architects that may not be available
through an AI model.

6.2 Comparison w. Best Balanced Designs

To study how high-performance design balances PPA well, we rank
the designs explored by each method with Perf?/(Power X Area)
and select the ones with the highest performance for comparison.
Figure 14 lists the results for SPEC06 and SPEC17. Table 6 lists
key parameters of each Pareto design ’. For SPEC06, on average,
ArchExplorer’s best balanced design achieves 1.53%, 16.65%, and
19.81% higher performance than ArchRanker [12], AdaBoost [37],
and BOOM-Explorer [8]. It also saves power by 2.15% compared to
AdaBoost’s [37]. ArchExplorer improves the area by an average of
11.79%. Namely, ArchExplorer’s Pareto design is better than other
methods by an average of 56.05% and, at most, 64.29% in the PPA
trade-off. In SPEC17, ArchExplorer’s solution achieves an average
of 9.46% higher performance. While the solution sacrifices 5.54%
more power compared to baselines, it attains a 20.07% smaller area
and 49.53% higher PPA trade-off. Although the designs in Table 6
look similar, big differences in the PPA trade-off are observed. The
results illustrate that better solutions are achieved by balancing
resources. For example, the ROB should not be allocated many

"Due to the page limit, we do not list Pareto designs for SPEC17.
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entries compared to ArchRanker [12]. Otherwise, it can degrade
the overall performance by long squashing due to misprediction
events. Redundant resources like floating-point physical registers
can worsen power dissipation compared to AdaBoost [37].

6.3 Comparison w. Calipers

Calipers [24] represents the latest critical path analysis method
to enable fast DSE. By scanning the design space, Calipers [24]
assists in exploring high-performance microarchitectures. We use a
different experimental setup to demonstrate the superiority in iden-
tifying the type of resources with the new DEG formulation over
Calipers [24]. Calipers [24] only targets performance and neglects
the consideration for power and area optimization. And it does
not provide how to search except for applying the previous DEG
formulation in performance modeling with microexecution. On the
other hand, Calipers [24] can model more accurately with infor-
mation like branch prediction results and cache access penalties
from the simulation. Hence, we extract very similar 1296 designs
from Table 4 and use Calipers [24] to sweep the design space and
retrieve the highest-performance solution. The reasons are twofold.
First, it helps Calipers to obtain what it considers the global optimal
solution for a fair comparison. Second, very similar designs can
expose modeling differences between two DEG formulations in
deep. We apply ArchExplorer to the same sub-design space and
compare the solutions in performance and power. Different from
Calipers [24], ArchExplorer does not scan the entire design space.

Results are shown in Figure 15. The solution found by Arch-
Explorer outperforms Caliper’s [24] by 2.11% in performance on
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Table 6: Key parameters of Pareto designs

Components ‘ Method
P | AdaBoost [37] | ArchRanker [12] [ BOOM-Explorer [8] | ArchExplorer |
Pipeline width 8 8 8 8
ROB/IQ 176/56 192/72 112/44 176/72
Int/Fp RF 192/208 256/96 240/192 240/80
LQ/SQ 44/48 48/44 24/40 48/48
IntALU
IntMultDiv 5/1 4/2 4/2 4/2
FpALU )
FpMultDiv 2/1 2/1 2/2 1/1
1$ 4-way 64K 2-way 64K 2-way 64K 4-way 64K
D$ 4-way 64K 2-way 64K 2-way 32K 4-way 64K

SPEC CPU2006 results SPEC CPU2017 results

[ Calipers [24] 3 ArchExplorer

SN - ;
RaS SHSE

Figure 15: Comparisons w. Calipers [24].

average in SPEC06. And ArchExplorer’s solution achieves 4.36%
lower power and 2.38% lower area. In SPEC17, we receive a 1.88%
higher performance compared to Calipers [24]. The previous DEG
formulation incorrectly modeled the microexecution, leading to sub-
optimal solutions. Calipers cannot identify which microarchitecture
achieves higher performance with a very small ROB resource differ-
ence. Conversely, ArchExplorer adopts the new DEG formulation
and attains better results by identifying the deficient resources more
accurately. Notably, compared to Calipers [24] which traverses the
entire design space using thousands of simulations, the improved
performance benefits are gained by only using 48 simulations in
ArchExplorer for SPEC06 and SPEC17, respectively. In summary,
due to the more accurate and practical new DEG formulation, Arch-
Explorer performs better than Calipers [24].

7 DISCUSSIONS

The new DEG formulation can set up many research opportunities
for microarchitecture research.

Combine with machine learning (ML): The new DEG formu-
lation provides richer features for recent powerful deep learning
models such as graph neural networks [51, 58]. Performance mod-
eling is possible by combining features extracted from vertices and
edges. Combining ML techniques and the new DEG formulation
can also improve the DSE procedure.

Instruction scheduling: The instruction-level parallelism can be
modeled by projecting “skewed” edges to the Y-axis. The projection
length equals the degree of parallelism. The information helps
design new criticality-driven instruction scheduling algorithms for
new emerging workloads.
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Multi-core formulation: Commodity microprocessors continue
to scale in a number of cores (96 cores in AMD EPYC Genoa [41],
64 Intel Raptor Cove in Emerald Rapids [4]), given the technol-
ogy scaling. Hence, the DEG formulation for multi-core deserves
exploitation. It is beneficial to find bottlenecks for a multi-core
system.

8 ADDITIONAL RELATED WORK

Critical Path Analysis. Fields et al. are the first to propose the
critical path analysis with DEG to unveil bottlenecks in microexecu-
tion [22]. This approach has been broadly used [21, 23, 24, 36, 42, 44,
45, 50, 56]. Behnam et al. adopt it to remove bottlenecks in unipro-
cessors [50]. Nowatzki et al. extend Fields’ model and propose the
transformable dependence graph (TDG) [44]. The TDG is further
leveraged in modeling heterogeneous accelerators [45]. However,
assigning dependencies and weights without adhering to actual
microexecution in TDG leads to inaccurate resource contention
modeling, as also mentioned in their work [45]. Lee et al. [36] and
Calipers [24] enable fast DSE for microarchitecture parameters
also based on Fields’ model. Compared to the prior works [24, 36],
ArchExplorer points out the source of error for previous DEG for-
mulations and proposes the design principles and implementations
accordingly. The new DEG formulation eliminates the limitations
of Fields’ model.

Microarchitecture Design Space Exploration. Many works
[8,10, 12, 15, 24, 28, 31, 32, 35-37, 40, 46] proposed solutions to DSE
for microarchitecture parameters. They either leverage massive ac-
cess to expert knowledge [19, 30, 31] or require high computing
resources to train a black-box model [8, 12, 37] to conduct the DSE.
Compared to Karkhanis and Smith [31], ArchExplorer circumvents
the experts’ efforts by adopting an automated bottleneck analy-
sis. Compared to prior black-box methodologies [8, 12, 28, 35, 37],
ArchExplorer conducts DSE by uncovering the bottlenecks rather
than relying on black-box models.

9 CONCLUSION

In this paper, we discuss the problem of DSE for microarchitecture
parameters. To alleviate massive domain knowledge requirements
for mechanistic models and to reduce high computing demands
for black-box methods, we propose ArchExplorer, an automated
bottleneck analysis-driven DSE approach implementing two design
principles. We propose a new DEG formulation. An optimal critical
path construction algorithm is also proposed to capture hardware
resource utilization status. Several resource reassignment strate-
gies are leveraged to remove bottlenecks and trade-off PPA values.
ArchExplorer achieves an average of 6.80% Pareto hypervolume
improvement and reduces more than 74.63% simulation overheads
compared to previous state-of-the-art solutions.
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A ARTIFACT APPENDIX
A.1 Abstract

The artifact contains ArchExplorer’s codes and its setup and run-
ning descriptions. We provide instructions and click-to-run scripts
for reproducing the main results in our paper. Specifically, we repro-
duce the results of Figure 2, Figure 3, Figure 12, Figure 13, Figure 14,
and Figure 15.

A.2 Artifact check-list (meta-information)

e Code base: The code base of the artifact involves the entire
implementation of ArchExplorer. For example, the artifact
contains the new DEG modeling, critical path construction,
bottleneck-removal-driven DSE, and automated simulator
parallel compilation and simulations.

e Run-time environment: We provided a Docker run-time
environment for users, which removes large burdens in set-
ting up the environment.

e Output: The outputs of the artifact are figures in PDF format
to reproduce the main results in our paper.

e Compilation, simulation & modeling: The artifact in-
cludes the automated compilation of GEM5 simulators [9, 39]
and the incorporation of power and area modeling using Mc-
PAT [38].

e Benchmarking scripts: We provide click-to-run bench-
marking scripts to evaluate ArchExplorer’s performance.
Regarding users’ different time budgets to run the artifact,
we provide three modes to reproduce results. The script
exp_full_mode. sh can reproduce the “full” results in our
paper (we term this reproduction as the full mode), but
it costs high runtime and machine resources. The script
exp_partial_mode.sh demonstrates experimental results
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with partial benchmarks in a relatively more efficient way
compared to the full mode. So, we denote it as the partial
mode. The script exp_demo_mode. sh is also provided for
users to fast experience the functions provided by our arti-
facts (demo mode). We leverage RISC-V bare model bench-
marks [1] in the demo mode.

e Documents: We provide detailed README . md documents to
guide the Docker environment setup, evaluation steps, and
results demonstrations.

e How much disk space required (approximately)?: The
disk space should be larger than 2 TB.

¢ How much time is needed to prepare workflow (approx-
imately)?: It takes several minutes to prepare the workflow
if users have SPEC benchmarks [2, 3] and corresponding Sim-
point checkpoints [47]. The preparation includes the SPEC
benchmarks set up and configurations of some benchmarks.
Due to the SPEC license restrictions, we are unable to pub-
licly distribute the SPEC benchmarks. For SPEC CPU2017,
users are also required to prepare Simpoints checkpoints.
The necessary directory trees for both benchmarks are listed
in the README . md file, along with detailed instructions on
how to map users’ provided benchmarks to the pulled Docker
environment that we have prepared. In the Docker environ-
ment, certain benchmarks need to be reconfigured to support
the simulations. Otherwise, the simulation would get stuck
and restrict to reproduction of results. The methods to re-
configure these benchmarks are also listed in README . md.
However, we provide scripts that allow the reproduction
of results without reconfiguration of certain benchmarks,
i.e., partial mode. As a result, the expected outcomes and
results may differ between the partial mode and full mode.
However, the generated figures using the partial mode do
not affect the conclusions claimed in our paper. Furthermore,
results could be different if distinct Simpoints checkpoints
are leveraged in the experiments. The Simpoints checkpoints
settings are also mentioned in README . md.

e How much time is needed to complete experiments
(approximately)?: For high-end Linux machines, such as 80
cores of Intel(R) Xeon(R) CPU E7-4820 v3 @ 1.90GHz with 1
TB of main memory, the full mode takes approximately 15
days. The partial mode costs about 9 days. The demo mode
consumes around 5 hours, but it only reproduces Figure 2
and Figure 3.

A.3 Description

A.3.1 How to access. The artifact is archived in Zenodo 8.

A.3.2 Hardware dependencies. The artifact requires a high-end
Linux machine with at least 2 TB of disk space. The main mem-
ory should be at least 64 GB to support parallel compilation and
simulations.

For reference, we list our system configurations here:
OS: Ubuntu 18.04
CPU: Intel Xeon Platinum 8163 CPU @ 2.50GHz (96 cores)
DRAM: 400 GB
9.6 TB

8https://doi.org/10.5281/zenodo.8353864
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A.3.3  Software dependencies. The software dependencies are re-
solved by our provided Docker environment. Users are required to
support Docker commands in the machines if using our provided
Docker environment.

A.4 Installation

The installation requires two steps, as listed below.

A.4.1 SPEC CPU benchmarks installation. This step may take some
time since it is necessary to prepare for the workflow. Due to the
SPEC CPU benchmarks license, we cannot release benchmarks to
the public. Users need to prepare SPEC CPU benchmarks and in-
stall them in a manner w.r.t. our accepted directories trees. More
detailed information about Simpoints settings and accepted direc-
tories trees are instructed in the README .md file. Assume the SPEC
CPU benchmarks have been installed in /path/to/benchmarks.

A.4.2 Code installation. Download and decompress the artifact,
and pull and install the Docker image.

$ unzip arch-explorer.zip

$ cd arch-explorer-main

$ docker run -it -d \

--name micro23 \

--hostname micro23 \

--network=host \

-v $(pwd):/root/workspace/arch-explorer \

-v /path/to/benchmarks: \
/root/workspace/benchmarks \

-w /root/workspace \

docker.io/troore/arch-explorer:2.0

$ docker exec -it micro23 /bin/bash

Since users have already set the directories mapping strategy by
executing the Docker “run” command, codes should be placed in
/root/workspace/arch-explorer, and SPEC CPU benchmarks
should be placed in /root/workspace/benchmarks when users
enter the Docker environment using the “exec” command.

A.5 Experiment workflow

A.5.1 Basic Setup. After users enter the Docker image using the
exec command, execute the following commands to build config-
urable infrastructures that ArchExplorer depends on.

$ cd /path/to/arch-explorer
$ ./tools/settings.sh
$ export PYTHONPATH="pwd"

A.5.2  Run experiments with three modes. There are three possible
factors that will probably prevent users from reproducing our paper
results:

e benchmark availability

e hard-coded workload absolute paths

e long runtime

We assume that SPEC CPU benchmarks are available for users.

However, if it is not true, we provide a demo mode for users to
successfully run through some of our experiments. Under the demo
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mode, we use open-source RISC-V bare model benchmarks [1]
rather than SPEC CPU benchmarks.

Moreover, some SPEC benchmarks MUST contain hard-coded
workloads absolute paths, e.g., 464.h264ref from SPEC CPU2006
benchmark. These hard-coded absolute paths would prevent users
from reproducing results in a push-button way. Human efforts are
required to configure the hard-coded absolute paths before results
related to these benchmarks are expected.

Last, the whole process for reproducing all results in our paper
will take approximately 15 days on our testing systems (for high-
end Linux server machines, e.g., 96 cores of Intel Xeon Platinum
8163 CPU @ 2.50GHz with 400 GB main memory).

Therefore, if users have SPEC CPU benchmarks, and do not
want to manually resolve the hard-coded absolute paths, or cannot
accept the long runtime, we set the partial mode in which only the
benchmarks without hard-coded absolute paths will be run.

We also provide the full mode which can reproduce the experi-
mental results with all utilized benchmarks as in our paper.

Which mode to choose depends on your time budget.

A.5.3 Commands for three modes. In the Docker environment,
enter the artifacts directory.

$ cd arch-explorer/artifacts/

The steps for running experiments with three modes are shown
below.

$ ./exp_demo_mode.sh # demo mode: about 5 \
# hours, but only reproduce \
# Figure 2 and Figure 3.
$ ./exp_partial_mode.sh # partial mode: about
# 9 days, and can reproduce all figures.
$ ./exp_full_mode.sh # full mode: about \
# 15 days, and can reproduce all figures.

A.6 Evaluation and expected results

Results are figures in PDF format. The demo and partial mode have
some distinctions from the figures in the paper due to the different
workloads utilized in the experiments. However, the generated
figures do not affect the conclusions claimed in our paper. Results
are stored in respective sub-directories in artifacts, and the paths
of these results are demonstrated in the README . md file.

A.7 Notes

A.7.1  Benchmark reconfiguration for full mode. Before running in
full mode, users are required to reconfigure SPEC CPU benchmarks.
Otherwise, those benchmarks would fail in simulations and prevent
the entire DSE process from continuing to run. These benchmarks
are 464.h264ref, 600.perlbench_s, 623.xalancbmk_s, 625.x264_s, and
638.imagick_s, where 464.h264ref is from SPEC CPU2006 bench-
marks, and others are from SPEC CPU2017 benchmarks.

For the detailed steps of the reconfiguration, please refer it to in
the README . md.

A.7.2  About README .md. The README.md documents of the arti-
fact provide additional information on the illustration of code orga-
nizations and detailed steps regarding running experiments.
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