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Abstract—Lithography is fundamental to integrated circuit fabrication,
necessitating large computation overhead. The advancement of machine
learning (ML)-based lithography models alleviates the trade-offs between
manufacturing process expense and capability. However, all previous
methods regard the lithography system as an image-to-image black
box mapping, utilizing network parameters to learn by rote mappings
from massive mask-to-aerial or mask-to-resist image pairs, resulting
in poor generalization capability. In this paper, we propose a new
ML-based paradigm disassembling the rigorous lithographic model into
non-parametric mask operations and learned optical kernels containing
determinant source, pupil, and lithography information. By optimizing
complex-valued neural fields to perform optical kernel regression from
coordinates, our method can accurately restore lithography system using
a small-scale training dataset with fewer parameters, demonstrating
superior generalization capability as well. Experiments show that our
framework can use 31% of parameters while achieving 69× smaller mean
squared error with 1.3× higher throughput than the state-of-the-art.

I. INTRODUCTION

In modern chip manufacturing, lithography simulation is one of
the most critical technologies which affects many other fabrication
processes. Traditional rigorous lithography methods model optical
lithography numerically by multifold integrals of the mutual intensity
of all contributing source points through the projection system from
the illuminator [1], which is computationally expensive and challeng-
ing, even when equipped with approximation algorithms. Given a
mask, lithography simulation generates an aerial image that is defined
as the intensity distribution at the wafer plane, as depicted in Fig. 1.
An estimate of the binary resist image can be obtained by applying
an exposure-dose-dependent intensity threshold on an aerial image.

Considering the significance and challenges of lithography simula-
tion, enormous advances in computing power and machine learning
(ML) algorithms stimulate the growth of exploiting data-driven meth-
ods for lithography modeling. Generally, ML-based methods apply
groups of transformations and learnable parameters to fit a mask-
to-aerial [2] or mask-to-resist [3]–[5] mapping. LithoGAN [3] is a
lithography framework using conditional generative adversarial nets
(cGAN) to predict the resist pattern of a cropped clip. LithoGAN
introduces an extra branch of convolution neural networks (CNN) to
perform center coordinates regression for better accuracy, limiting it is
only applicable to a single contact. DAMO [4] exploits the UNet++
as the deep convolutional generative adversarial networks generator
to engage the deep lithography simulator in a high-resolution manner,
which can be further extended to processing full-chip scale. Yang et
al. proposes a dual-band optics-inspired neural network (DOINN) [5]
lithography model with Fourier Neural Operator (FNO) to properly
leverage both high-frequency and global low-frequency components
of mask-resist pairs. The state-of-the-art (SOTA) aerial image model,
TEMPO [2], applies cGAN as a thick mask effect modeling frame-
work capable of predicting 3D aerial images at different heights.

This work is supported by The Research Grants Council of Hong
Kong SAR (CUHK14208021) and National Key R&D Program of China
(2020YFA0711900, 2020YFA0711903).

<latexit sha1_base64="KMnp/Orl5bgqQbqNU/31iUV0qis=">AAAB6HicbVDLSsNAFL2pr1pfVZdugkVwVdJaknZXcONGaME+oA1lMp20YyeTMDMRSugXuHGhiFs/yZ1/4zQNxdeBC4dz7uXee7yIUaks69PIbWxube/kdwt7+weHR8Xjk64MY4FJB4csFH0PScIoJx1FFSP9SBAUeIz0vNn10u89ECFpyO/UPCJugCac+hQjpaX27ahYsspWCvMvqWSkBBlao+LHcBziOCBcYYakHFSsSLkJEopiRhaFYSxJhPAMTchAU44CIt0kPXRhXmhlbPqh0MWVmarfJxIUSDkPPN0ZIDWVv72l+J83iJVfdxPKo1gRjleL/JiZKjSXX5tjKghWbK4JwoLqW008RQJhpbMppCE0HMd2rtYv6xAadr1q2WulWy1X7HKtbZWatSyOPJzBOVxCBRxowg20oAMYCDzCM7wY98aT8Wq8rVpzRjZzCj9gvH8Bv/2NDA==</latexit>

M

<latexit sha1_base64="40ZW3jrSSyADTni1oIjeY7S6xyw=">AAAB6HicbVDLSsNAFL2pr1pfVZdugkVwVdJaknZXcKO7FuwD2lAm00k7djIJMxOhhH6BGxeKuPWT3Pk3TtNQfB24cDjnXu69x4sYlcqyPo3cxubW9k5+t7C3f3B4VDw+6cowFph0cMhC0feQJIxy0lFUMdKPBEGBx0jPm10v/d4DEZKG/E7NI+IGaMKpTzFSWmrfjoolq2ylMP+SSkZKkKE1Kn4MxyGOA8IVZkjKQcWKlJsgoShmZFEYxpJECM/QhAw05Sgg0k3SQxfmhVbGph8KXVyZqfp9IkGBlPPA050BUlP521uK/3mDWPl1N6E8ihXheLXIj5mpQnP5tTmmgmDF5pogLKi+1cRTJBBWOptCGkLDcWznav2yDqFh16uWvVa61XLFLtfaVqlZy+LIwxmcwyVUwIEm3EALOoCBwCM8w4txbzwZr8bbqjVnZDOn8APG+xe57Y0I</latexit>

I

<latexit sha1_base64="sRFzcQl8ACTF+5oT9h3ACrFPYBU=">AAAB6HicbVDLSsNAFJ3UV62vqks3wSK4KmktSbsruHHZgn1gG8pketOOnUzCzEQooV/gxoUibv0kd/6N0zQUXwcuHM65l3vv8SJGpbKsTyO3sbm1vZPfLeztHxweFY9PujKMBYEOCVko+h6WwCiHjqKKQT8SgAOPQc+bXS/93gMISUN+q+YRuAGecOpTgpWW2nejYskqWynMv6SSkRLK0BoVP4bjkMQBcEUYlnJQsSLlJlgoShgsCsNYQoTJDE9goCnHAUg3SQ9dmBdaGZt+KHRxZabq94kEB1LOA093BlhN5W9vKf7nDWLl192E8ihWwMlqkR8zU4Xm8mtzTAUQxeaaYCKovtUkUywwUTqbQhpCw3Fs52r9sg6hYderlr1WutVyxS7X2lapWcviyKMzdI4uUQU5qIluUAt1EEGAHtEzejHujSfj1XhbteaMbOYU/YDx/gXTsY0Z</latexit>

Z

Source

Condenser

Lens

Pupil
Lens

Resist
Substrate

Masks

(a)

Mask

Aerial

Resist

Threshold

Optical
Kernels

Lithography

(b)

Fig. 1 (a) Components of the lithography imaging system: illumination
source, lenses, and pupil. (b) Lithography simulation flow using
source- and pupil-dependent optical kernels.

However, all these CNN-based image generation models still have
some drawbacks for lithography modeling problems. Since all previ-
ous arts are fitting a particular image-to-image mapping from massive
training pairs instead of learning the true lithography behavior, the
learned parameters have a strong bias on the mask shapes, layer types,
and training dataset distributions, which fails to generalize on out-of-
distribution (OOD) datasets. In Fig. 2(a), we visualize the t-Distributed
Stochastic Neighbor Embedding (t-SNE) of four datasets used in this
work and DOINN [5]. As depicted in Fig. 2(b), despite being well-
trained, DOINN and TEMPO fail to generalize on OOD datasets. A
possible solution is to use larger models to fit different distributions.
However, it will increase computational cost exponentially while
suffering from precision loss, thus is not a one-fit-all approach.

The generalization failure of a DNN model for lithography mod-
eling will not be desired, given the fact that a real simulator can
handle masks of different layers without any degradation. If we revisit
the lithography simulation model, as depicted in Fig. 1(b), it can be
noticed that the intrinsic knowledge of a lithography system is in the
optical kernel, which is almost ignored when conducting image-to-
image mapping based on a neural network. It motivates us to investi-
gate the mystery of the optical kernel for fast and accurate lithography
modeling. The rigorous Hopkins lithography model [6] separates the
influence of the mask and the lithographic imaging system, including
pupil function and illumination. The latter is an intermediate variable
often referred to as transmission cross-coefficient (TCC) T, which
can be pre-computed and stored as optical kernels to improve the
computing efficiency [7]. Now we may ask: Can we train a deep
neural network to replace the optical kernels for efficient lithography
modeling? Nevertheless, this framework encounters several obstacles.
First, TCC kernels are hard to obtain and calibrate, making direct
regression impractical. We are seeking for a feasible alternative to
decode the intermediate optical kernels from final imaging samples
of mask images and aerial images. Second, TCC-related computations
are performed in the spatial frequency domain with complex values,
which implies that the network needs to support complex-valued
computations.
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Fig. 2 (a) t-SNE distribution of datasets listed in TABLE II. (b) Com-
parison of generalization capability on out-of-distribution datasets.

To handle the above issues, we attempt to use physical ‘resolution
limits’ to design the TCC optical kernel dimensions. Then, a set
of differentiable complex-valued neuron layers are designed and
implemented. Last, optical kernels are location-dependent matrices.
Inspired by neural radiance field (NeRF) [8], we design and im-
plement a complex-valued multilayer perception (CMLP), which
only takes coordinates as input to perform optical kernel regression.
Moreover, a novel training procedure that separates mask processing
and optical kernel prediction is proposed. To conclude, in this paper,
we propose Nitho, a NeRF-inspired and physics-informed lithographic
network optimizing complex-valued neural fields to predict the TCC
spectrum as optical kernels, which will be further multiplied with the
mask spectrum to generate a high-accuracy aerial image. The major
contributions of this paper include:

1) To the best of our knowledge, it is the first neural network-based
framework predicting TCCs that models the true lithography be-
havior instead of learning an image-to-image black box mapping.

2) Inspired by Hopkins model, Nitho abandons CNN-based architec-
ture and creates a new training paradigm separating the influence
of mask and lithography system using a simple coordinate-based
complex-valued multilayer perception.

3) Similar to industrial simulator, the physics-informed design max-
imizes Nitho’s generalization capability on mixed types of mask
data with no more specific treatment on different types of masks.

4) The proposed Nitho framework can use 31% model size on
less training data to generate high-resolution aerial images while
achieving 69× smaller mean squared error and higher accuracy
than SOTA. Compared with traditional lithography simulator,
Nitho can achieve 90× speedup with less than 1% accuracy loss.

II. PRELIMINARIES

This section is about basic terminology related to Nitho framework
and problem formulation. Throughout this paper, we use lowercase
letters for scalars, bold lowercase for vectors, and bold uppercase for
matrices, ⊙ for element-wise production, ∗ for complex conjugate, I ,
Z, M for aerial, resist and mask image, F and F−1 for fast Fourier
transform (FFT) and inverse FFT, respectively

A. Hopkins Model and Transmission Cross-Coefficient (TCC)

In 1953, Hopkins [6] developed a formulation that has been wildly
used afterward, whose purpose is a separation of the influence of
the mask and the imaging system, including the pupil function and

the illumination. For numerical convenience, Hopkins method is often
stated in terms of the spatial spectrum of the aerial intensity I:

F(I)(f, g) =

∫∫ ∞

−∞
T
((
f ′ + f, g′ + g

)
,
(
f ′, g′

))
F(M)

(
f ′ + f, g′ + g

)
F(M)∗

(
f ′, g′

)
df ′dg′,

(1)

where M is mask, (f, g) is its frequencies. T is TCC given by:

T
((
f ′, g′

)
,
(
f ′′, g′′

))
:=

∫∫ ∞

−∞
F(J)(f, g)

F(H)
(
f + f ′, g + g′

)
F(H)∗

(
f + f ′′, g + g′′

)
df dg,

(2)

where the weight factor J solely depends on effective source, H
is projector transfer function. Observing Equations (1) and (2), T is
independent of mask transmission functions F(M). For applications
where source and pupil are fixed, but images must be calculated for a
wide range of different masks, the TCC matrix can be pre-calculated
and stored to accelerate imaging calculations.
Sum of Coherent Sources Approach (SOCS). The TCC is
Hermitian and positive definite and can be decomposed into a set
of eigenvalues with corresponding eigenvectors. An approximation
solution for the Hopkins imaging equations called Sum of Coherent
Source (SOCS) [9] using SVD algorithm which provides relatively fast
computation times and is thus widely used in some inverse imaging
calculation tasks such as mask optimization. The TCC spectrum
matrix can be written as

F(T) =
∑
i

αihih
∗
i , (3)

where hi are the eigenvectors and αi are eigenvalues of TCC spectrum
F(T). By Fourier-back-transfoming we then obtain the SOCS formula:

I =
∑
i

αi

∣∣F−1 (F (hi)⊙ F(M))
∣∣2 . (4)

B. Problem Formulation

In aerial image generation stage, the lithography modeling can be
viewed as a pixel-wise regression task, therefore we adopt Mean of
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Max Error
(ME) to evaluate the performance. In resist image generation stage,
it can be viewed as a pixel-wise classification problem, we adopt the
same matrices including Mean Intersection Over Union (mIOU) and
Mean Pixel Accuracy (mPA) as used in SOTA [5].
MSE, PSNR. Given aerial image I and its prediction Î , the MSE
can be calculated as

MSE(I, Î) =
1

N

N∑
i

(Ii − Îi)
2, (5)

where N is the total number of pixels in I and Î . The smaller MSE,
the better performance. PSNR is a quality measurement between the
original and the predicted image, in decibels. The higher PSNR, the
better quality of the predicted image. PSNR is given as

PSNR(I, Î) = 10 ∗ log10(max(I)2/MSE(I, Î)). (6)

mIOU, mPA. Given k classes of predicted resist patterns Ẑi and their
ground truth Zi, i = 1, 2 . . . k, the mIOU and mPA are:

mIOU(Z, Ẑ) =
1

k

k∑
i=1

Zi ∩ Ẑi

Zi ∪ Ẑi

, mPA(Z, Ẑ) =
1

k

k∑
i=1

Ẑi ∩Zi

Zi
. (7)

ME. Max error (ME) is measured by the maximum difference between
the predicted aerial image Î and its ground truth I:

ME = Max(|I − Î|). (8)

Problem Definition. Given a set of mask images Mtr =
{M1, . . . ,Mn} and their corresponding aerial images Itr =



{I1, . . . , In}. Resist images Ztr = {Z1, . . . ,Zn} can be obtained
by a constant threshold Ithres. Our target is to design a machine
learning model that can reconstruct the TCC optical kernels, then for
new designs Mte, Ite, Zte using the SOCS formula in Equation (4)
to get the predicted aerial images Î = {Î1, . . . , În}, and predicted
resist images Ẑ. The MSE(Ite, Î), ME(Ite, Î) can be minimized and
PSNR(Ite, Î), mIOU(Zte, Ẑ), mPA(Zte, Ẑ) can be maximized.

III. FRAMEWORK

This section covers the design flow of physics-informed Nitho,
including analysis of optical kernel dimensions, details about optical
kernel regression strategy using complex-valued neural fields, and a
new training paradigm for simulating forward lithography.

A. Design of Predicted Optical Kernel Dimensions

For simplicity, the aerial intensity I in Equation (4) can be written
as,

I =

r∑
i

∣∣F−1 (Ki ⊙ F(M))
∣∣2 , (9)

where Ki is the i-th optical kernel, r is the total number of kernels. To
design the predicted kernel dimensions, we find Mack introduced the
theoretical resolution in [1]. Let R represents the resolution element
(the line-width or the space-width) of mask patterns, the resolution
is given by R = 0.5 ∗ (λ/NA). λ is the exposure wavelength. NA
(numerical aperture) is an important factor for the resolution limit
of the projection system, which can be regarded as the “collection
efficiency” of the projector. The smallest pitch that can be printed
would put the first diffracted order at the largest angle that could pass
through the lens, defined by NA. Using this description, we can set
the kernel width and height as,

m = (W × 2×NA

λ
)× 2 + 1, n = (H × 2×NA

λ
)× 2 + 1, (10)

where we use one-pixel width/height to represent 1nm, the mask
pitch can be replaced by mask image width W , height H . Since
the eigenvalues αi in Equation (4) rapidly decay in magnitude,
truncating the summation at order r can be a decent approximation
with error bounds proven in [10]. With discussions above, we can
set a hyperparameter r and design the optical kernel dimension as
K ∈ Cr×n×m. Given commonly used λ = 193nm, NA = 1.35,
we can obtain in Equation (10), m ≈ 0.028 ∗W , n ≈ 0.028 ∗ H .
Previous image learning-based models need to cover the prediction
on RC×W×H space while Nitho is performing regression on a
much smaller space Cr×n×m (r < 60 in our settings). This can
fundamentally contribute to our smaller model size. Besides, we will
show in subsequent experiments, due to the resolution limit, even if λ
and NA are unknown, the optical kernel dimensions can be obtained
through a simple hyperparameter search.

B. Complex-Valued Neural Fields for Optical Kernel Regression

To predict the optical kernels, there are two critical issues to con-
sider. First, the optical kernels K are in a complex-valued formulation.
However, the vast majority of building blocks and architectures of
previous methods are based on real-valued operations and represen-
tations. So we design a series of atomic complex-valued activation
functions and layers to assemble a complex-valued multilayer per-
ceptron (CMLP) in Section III-B. Second, the implicit optical kernel
values need to be decoded from the mask-aerial image pairs. The
network’s input should be carefully designed to eliminate the effect
of mask layer types or data distribution. Observing Equation (2), TCC
spectrum values in the spatial frequency domain are integrals over the
frequency points (f, g), which means there will be a mapping between

the spectrum coordinates and TCC optical kernel values. Therefore,
inspired by NeRF [8], we leverage (CMLP) in Section III-B to
perform optical kernel regression from coordinates.
Complex-valued multilayer perceptron. A complex number z =
a+ ib has a real component ℜ(z) :=a, and an imaginary component
ℑ(z) := b. The complex-valued neuron can be defined as o = ϕ(x ·
w+b), with an activation function ϕ, applied to the input x ∈ Cn. We
can arrange complex neurons into a complex linear layer (CLinear),
o = ϕ(xW+b). W is layer weight. The differentiability of complex-
valued linear operations can be proved in the paper [11]. Complex
rectified linear unit (CReLU) is applied as the activation function:

CReLU(z) = ReLU(ℜ(z)) + iReLU(ℑ(z)). (11)

As illustrated in Fig. 3(a), the CMLP is further constructed as,

CMLP : CLinear→(CLinear→CReLU)×N. . .→CLinear, (12)

where ×N means there are N hidden blocks (CLinear→CReLU).
Neural fields for optical kernel regression.

A recent trend in computer vision and graphics research is replacing
discrete representations with coordinate-based neural representations.
Given the recent success of view synthesis, NeRF [8] presents a
continuous scene as a 5D vector-valued function whose input is a 3D
location x=(x, y, z) and viewing direction (θ, ϕ), and whose output
is an emitted color c=(r, g, b) and volume density σ at that location.
Then NeRF approximates the continuous 5D scene representation with
an MLP network FΘ : (x,d)→ (c, σ) and optimizes its weights Θ
to map from each input 5D coordinate to its corresponding volume
density and directional emitted color.

Considering the industrial case, as drawn in Fig. 1(a), the litho-
graphic imaging system consists of a source, a pupil, and a set of
lenses, independent of masks. As mentioned, imaging functions are
location-dependent on the wafer plane, meaning there is an implicit
mapping between the optical kernel coordinates and values. Similar
to NeRF, Nitho takes the 2D coordinates (x, y) in optical kernel
dimension space Rn×m, a constant matrix independent of mask types
or data distribution, as the inputs of our CMLP. Then leverage the
CMLP as the implicit mapping function to best recover the complex-
valued optical kernels K from coordinates:

K̂ = CMLP(v; Θ). (13)

Each of input coordinate vi = (x, y) specify the index of diffraction
orders of mask / TCC spectrum. And the outputs of neural fields
stand for the predicted optical kernels K̂, i.e., TCC spectrum matrix,
as depicted in Fig. 3(a). The predicted aerial image Î can be obtained
using SOCS formula in Equation (4). Physically, each predicted kernel
K̂i represents a coherent point on the source [1]. Using coordinates
as input also ensures a fair comparison with previous works, since no
extra information is needed beyond mask-aerial pairs. Like the real
simulator, the separation of kernel regression and mask processing
eliminates the dependence on data distribution to the greatest extent
possible, thus improving generalization and accuracy.
Positional encoding. To compensate for MLP’s inability to represent
high-frequency signals, NeRF uses positional encoding (PE) to map
the coordinates from R to a higher dimensional space R2L:

γ(v)=
[
sin(20πv),cos(20πv),. . . ,sin

(
2L−1πv

)
,cos

(
2L−1πv

)]T
, (14)

here γ(·) is a positional mapping applied separately on each of the
two coordinate values in v, L is a hyperparameter. The fidelity of
NeRF depends critically on the positional encoding, as it allows MLP
to parameterize both low-frequency and high-frequency embeddings.
However, Nitho confronts varied challenges. Directly utilizing of the
NeRF’s PE will cause a failure. The PE of NeRF in Equation (14)
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Fig. 3 (a) The overall aerial image prediction pipeline of Nitho framework, which separates mask-related linear operations from optical kernel
regression using coordinate-based CMLP. (b) Comparison with SOTA learning-based image-to-image frameworks, TEMPO [2], DOINN [5].

employs solely on-axis frequencies, which is ideal for NeRF’s ray
rendering tasks. Nonetheless, due to the absence of a strong prior of
optical kernel frequency distribution, the axis-aligned mapping used
in NeRF will decrease the performance of Nitho. Therefore, we adopt
Gaussian random Fourier feature (RFF) [12] mapping, which has an
isotropic frequency distribution, as our positional encoding:

γ(v) = [cos(2πBv) ∗ (1 + j), sin(2πBv) ∗ (1 + j)]T, (15)

where each entry in B ∈ Rl×d is sampled from N(0, σ2), and
σ is a hyperparameter for standard deviation. Coordinates v will
be normalized to lie in [0, 1], and each sin and cos entry will be
multiplied by (1+j) to map the coordinates to complex-valued fields.
Now the optical kernels are predicted as:

K̂ = CMLP(γ(v);Θ). (16)

C. Forward Training Procedure of Nitho

Algorithm 1 Nitho Forward Training Procedure

Require: Mask image set Mtr , aerial image set Itr .
Ensure: Predicted TCC optical kernels K̂

1: m,n← optical kernel width, height using Equation (10)
2: v ← coordinate space of Rn×m

3: vp ← γ(v) ▷ Complex-valued positional encoding.
4: for all M ∈Mtr do
5: I ∈ Itr ← the aerial image ground truth of M
6: F(M)← fftshift(fft2(M))
7: F(M)← Crop F(M) centrally to width m, height n
8: K̂ = CMLP(vp; Θ) ▷ Predicting kernels K̂.
9: r ← order number of predicted kernel K̂ ∈ Cr×n×m

10: for i ∈ {1, . . . r} do ▷ SOCS formula.
11: Ei = F−1(K̂i ∗ F(M)) ▷ Electric field Ei

12: Î = Î + |Ei ∗E∗
i | ▷ Converting to intensity

13: Loss = MSE(I, Î) ▷ Predicted aerial image Î

Algorithm 1 shows the forward training procedure of Nitho frame-
work, also illustrated in Fig. 3(a). In line 1, we calculate the kernel
width/height based on Equation (10) to set up dimensions of learning
target K̂. Next, in line 2, the kernel coordinates are flattened as a
matrix: [(0, 0), . . . , (0,m), . . . , (n,m)]T, then get positional encod-
ing in a higher dimension of complex fields by Equation (15). The
training process starts from line 4. We select training pairs M and
I , and get mask spectrum F(M) by 2D-FFT with necessary shifting.
Then crop the central region of mask spectrum to match the kernel
dimension. (Lines 5 to 7). In line 8, the positional encoding of kernel
coordinates γ(v) is provided as input to a CMLP parameterized by

complex-valued weight Θ, whose outputs are the predicted optical
kernels K̂. Finally, we can get the predicted aerial image Î using
SOCS formula in Equation (4) (lines 10 to 12). Note that E∗

i in line 12
is the complex conjugate of Ei, thus Î is a real-valued matrix. We can
apply MSE loss on predicted aerial image Î and its ground truth I
(line 13). As FFT is a differentiable linear operation, the whole Nitho
is differentiable. The weight Θ can be optimized by gradient descent.
Fast lithography. Nitho also significantly accelerates forward lithog-
raphy. Different from previous work, Nitho has no network inference
process after training. The predicted optical kernels can be stored
in the same manner as the actual TCC kernels to perform SOCS
calculation (lines 5 to 12). We also propose a hierarchical GPU
acceleration strategy for SOCS. In line 6, the FFT is operated on GPU
using the well-optimized PyTorch FFT library. And the summation
in line 10 can be performed parallelly to get the final aerial image.

D. Comparisons between Nitho and SOTA

TABLE I Comparisons between Nitho and SOTA.

TEMPO [2] DOINN [5] Nitho

Training pair Mask-Aerial Mask-Resist Mask-Aerial
Network Modeling S(T ∗G(·)) H(S(T ∗G(·))) F(T)
Network Arch. cGAN FNO+CNN CMLP
Network Size ∼ 31 MB ∼1.3 MB 0.41 MB

To compare Nitho and SOTA with greater clarity, the lithography
model can be reduced to:

I = S(T ∗G(M)), Z = H(I − Ithres), (17)

where S, G are mask-related linear operations. H is an image
binarization function. T is a constant optical matrix. In TABLE I, we
list two previous works TEMPO [2] and DOINN [5], which are the
SOTA of the aerial image stage and resist image stage, respectively.
As illustrated in Fig. 3(b), TEMPO uses cGAN to model the mask-to-
aerial process S(T ∗G(·)). DOINN learns the mask-to-resist process
H(S(T ∗ G(·))). Differently, Nitho models the mask independent
optical kernels F(T), which contributes to superior generalizability
with a smaller model size.

IV. EXPERIMENT

A. Datasets

In TABLE II, our model is evaluated on both metal and via layer
designs. The t-SNE distribution of datasets is shown in Fig. 2(a).
ICCAD-2013. ICCAD 2013 CAD contest [13] provides ten 4µm2

tiles for testing. We obtain the training set from GAN-OPC [14],



TABLE II Details of the Dataset.

Dataset Alias Train Test Tile Size Litho Engine

ICCAD-2013 B1 4875 10 4µm2 Lithosim [13]
ICCAD-2013 (OPC) B1opc - 10 4µm2 Lithosim [13]
ISPD-2019-metal B2m 1000 300 4µm2 Calibre [17]
ISPD-2019-via B2v 10000 10000 4µm2 Calibre [17]

(a) B1

(b) B2m

(c) B2v

Mask Resist G.T. TEMPO DOINN Ours Our Aerial
Fig. 4 Visualization of the results of Nitho in aerial and resist stage.
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Fig. 5 Runtime comparison with SOTA.

which contains 4K 4µm2 tiles generated following the same design
rules of the contest. To test the robustness of the model, we also
generate OPC’ed mask using MOSAIC [15]. We apply the lithography
simulator from [13] to obtain the golden aerial and resist images.
Different from previous art DOINN [5], we directly use the highest
resolution, i.e., 4µm2 tiles are converted to 2000×2000-pixels images.
ISPD-2019. ISPD 2019 initial detailed routing contest [16] provides
designs synthesized with commercial placement and routing tools.
We randomly choose 4µm2 tiles from ISPD-2019 designs for a fair
comparison. Unlike DOINN only tests its model on ISPD via layers,
we choose both via layers and metal layers.

• ISPD-2019 via layers: we apply the high-resolution settings from
DOINN, 10K training set and 10K testing set with 4µm2 tiles
converted to 2000× 2000 images.

• ISPD-2019 metal layers: we randomly select 1K metal patterns
for training and 300 testing patterns. All metal patterns will be
cropped into 4µm2 tiles and converted to 2000× 2000 images.

The ground truth for ISPD metal and via layers are generated by
commercial tool Mentor Calibre [17] with λ = 193nm,NA = 1.35.

B. Results Comparison with State-of-the-Art

We first compare Nitho with TEMPO [2], DOINN [5], which are
SOTA models in aerial and resist stage. Details are in TABLE III,
where “MSE”, “ME”, “PSNR”, “mPA” and “mIOU” are introduced
in Section II. We also merge the B2m and B2v datasets to be
“B2m+B2v” dataset to evaluate our models’ performance on larger
distribution case.

As can be seen from TABLE III, Nitho outperforms SOTA image
learning-based models in both aerial and resist stage. In aerial stage,
we achieve 69× and 102× smaller MSE than DOINN and TEMPO,
with 8×, 15× smaller ME. We achieve an average of 48.94dB PSNR
compared with 39.26dB of DOINN and 27.10dB of TEMPO. The
results demonstrate the superior advantage of Nitho on high-resolution

aerial image generation over previous SOTA. In resist stage, we
achieve above 99% mPA and mIOU in all datasets with 99.45%,
99.23% average mPA and mIOU: 1% better mPA and 2% better mIOU
than SOTA DOINN. The improvement can be attributed to the accurate
optical kernel regression, which generates high precision aerial images
with richer information. From the results on “B2m+B2v” dataset, we
find that Nitho’s high accuracy can still be maintained, while the
performance of DOINN and TEMPO degrades badly in both aerial
and resist stage. It indicates that the image learning-based models
have difficulty learning on more complex distributions, while Nitho
can still accurately extract optical kernel information. Result samples
are visualized in Fig. 4.
Generalization capability and robustness. In TABLE IV and
Fig. 2(b), we compare three models on out-of-distribution (OOD)
datasets to verify the generalization performance. Column “train on”
means the model is trained on the referenced dataset but is tested on
another dataset with a different mask shape and image distribution
from the column “test on”. Row “Drop” denotes the difference of
results between test results on the same distribution and OOD datasets,
with the direction of changes indicated by the up-down arrows
↑, ↓. The results demonstrate that Nitho can still achieve remarkable
accuracy when tested on OOD datasets, while TEMPO and DOINN
suffer strong performance degradation.

Fig. 6(a) demonstrates that Nitho can use less training data to
achieve better accuracy than previous art. We list the average PSNR
of B1, B2m, and B2v test sets in y-axis of Fig. 6(a), where the x-axis
represents the training set percentage. It can be concluded that when
Nitho only uses 10% of the training data, it is already more accurate
than TEMPO and DOINN with 100% of the training data.
Model size and runtime comparison. As shown in TABLE I,
Nitho can use 31% and 1% parameters of DOINN and TEMPO to
achieve better performance. Fig. 5 shows the runtime comparison
of three models and traditional lithography simulators in terms of
throughput (µm2/s). With a smaller model size and hierarchical GPU
acceleration, Nitho has 1.3× and 1.6× higher throughput than DOINN
and TEMPO since no network inference is required. Compared with
traditional lithography simulators, from which we obtain ground truth
aerial and resist images, Nitho achieves ∼90× speed up with less than
1% accuracy loss.

C. Ablation Study

We also conduct experiments to verify our design on kernel
dimensions and effectiveness of position encoding.
Kernel dimensions with resolution limit. In Fig. 6(b), the x-axis is
width/height of the kernel, i.e., (m,n) of K ∈ Cr×n×m, and m = n
in our settings. The y-axis is PSNR on the corresponding dataset.
We can observe that as the kernel width/height increase, the curve
flattens out and stops growing. This indicates that there is an optimal
dimension, and the network can not learn more information after the
optimal dimension due to the resolution limit. The experimental results
are consistent with the given optimal dimension in Equation (10). On
the other hand, if λ and NA of the lithography system are unknown,
the optimal dimension can also be obtained through experiments by
hyperparameter search.
Positional encoding. TABLE V illustrates that positional encoding
is extremely critical to Nitho. We first remove the positional encoding
layer by using a simple Gaussian matrix. As shown in the first line of
TABLE V, PSNR in test set B1 goes down to 25.33 with worse MSE
and ME than TEMPO and DOINN. Then we apply NeRF’s PE in
Equation (14) and our RFF PE in Equation (15), we get ∼2× PSNR
of 48.83 and 50.75 compared with Nitho without PE.



TABLE III Result Comparison with State-of-the-Art.

Bench

Aerial Image Resist Image

TEMPO [2] DOINN [5] Nitho TEMPO∗ [2] DOINN∗ [5] Nitho
MSE ME PSNR MSE ME PSNR MSE ME PSNR mPA mIOU mPA mIOU mPA mIOU

×10−5 ×10−2 dB ×10−5 ×10−2 dB ×10−5 ×10−2 dB (%) (%) (%) (%) (%) (%)

B1 108.29 10.49 32.01 5.55 1.94 47.10 1.32 0.51 50.75 94.60 88.70 99.19 98.32 99.45 99.21
B2m 1899.04 13.96 30.77 1202.39 6.11 31.64 25.48 0.82 49.06 98.24 96.55 98.79 97.10 99.15 99.02
B2v 6.54 3.86 42.76 2.26 2.75 46.37 2.01 0.68 48.06 99.06 93.28 99.21 98.41 99.59 99.34

B2m + B2v 4352.25 15.21 27.10 3114.24 12.35 29.92 33.13 0.78 47.88 98.63 95.84 98.71 96.68 99.61 99.36

Average 1591.53 10.88 33.16 1081.11 5.79 39.26 15.49 0.70 48.94 97.63 93.59 98.98 97.63 99.45 99.23
Ratio 102.77 15.55 0.68 69.81 8.27 0.80 1.00 1.00 1.00 0.98 0.94 0.99 0.98 1.00 1.00

* Models are re-trained using resist image dataset with an amendment to the final activation layer.

TABLE IV Comparison with SOTA on out-of-distribution dataset.

Benchmark TEMPO [2] DOINN [5] Nitho
Train Test mPA mIOU mPA mIOU mPA mIOU

on on % % % % % %

B1 B1opc 90.25 86.15 98.03 94.76 99.43 99.17
Drop ↓ 4.35 ↓ 2.55 ↓ 1.16 ↓ 3.56 ↓ 0.02 ↓ 0.04

B2m B2v 99.40 71.86 99.64 78.31 99.58 97.33
Drop ↑ 0.34 ↓ 21.42 ↑ 0.43 ↓ 20.10 ↓ 0.01 ↓ 2.01

B2v B2m 66.06 55.82 76.43 68.73 98.08 97.18
Drop ↓ 32.18 ↓ 40.73 ↓ 22.36 ↓ 28.37 ↓ 1.07 ↓ 1.84

Average 85.24 71.28 91.36 80.60 99.03 97.90
Avg. Drop ↓ 12.06 ↓ 21.57 ↓ 7.70 ↓ 17.34 ↓ 0.37 ↓ 1.29

TABLE V Ablation study for positional encoding on B1 dataset.

Type MSE (×10−5) ME (×10−2) PSNR (dB)

None 537.32 19.38 25.33
NeRF PE [8] 1.79 0.81 48.83
Ours (Equation (15)) 1.32 0.51 50.75
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Fig. 6 (a) Comparison with SOTA on smaller training sets. (b)
Ablation study on kernel size on different datasets.

V. CONCLUSION

In this paper, we abandon the CNN-based image learning methods
and devise a new paradigm of lithography model which separates the
influence of mask and lithographic system, aiming to learn optical
kernels with neural fields for lithography simulation. The model
starts with deriving the maximum dimension of the optical kernels
from physical ‘resolution limit’. Then Nitho leverages a CMLP to
learn the implicit mapping from positional encoded coordinates to
optical kernel values, which reflects information from the location-
dependent imaging system. With the predicted kernels, high-precision
aerial and resist images can be obtained following the SOCS formula.
Experiments show Nitho framework outperforms SOTA with a smaller
model size in both aerial and resist stages. At the same time, Nitho
demonstrates superior generalization capability than SOTA by a large

margin.
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