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Highlights

We propose LRSDP, a scalable low-rank SDP solver for the MPL

decomposition problem on large graphs.

We leverage the decomposition-based augmented Lagrangian method

(ALM) to solve the large-scale SDP problem from MPL.

We propose to exploit the problem structure by restricting the

searching space on a smooth manifold (unit sphere).

Our LRSDP method can achieve 186×, 25×, and 12× speedup with
better solution quality than the state-of-the-art decomposition

approaches with highly competitive solution quality.

Background

Triple Patterning Lithography Layout DecompositionDue to the availabil-

ity issue of EUV (Extreme Ultra-Violet) lithography, triple patterning layout

(TPL) decomposition is widely adopted in advanced technology nodes. It

imposes a layout decomposition step in the design flow that layout fea-

tures close to each other are assigned to different masks to prevent color-

ing conflicts.
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Figure 1. (a) Input features. (b) The final decomposed layout with three colors, where

the conflict edges are marked as black edges and stitch edges are marked as blue

dashed edges.

SDP-Based Layout Decomposition Among current TPL decomposition

methods, ILP can provide exact solutions at the cost of exponential run-

time complexity, while SDP can provide high-quality approximation with

affordable runtime. TPL decomposition problem can be relaxed as the fol-

lowing semidefinite program [4]:

min
X∈Rn×n

〈C, X〉

s.t. xii = 1, ∀i ∈ V

xij ≥ −1
2
, ∀eij ∈ CE

X ≥ 0,

where 〈C, X〉 = tr(C>X). The symmetric matrix X should be positive

semidefinite. Therefore, we can always find a matrix R ∈ Rp×n such that

X = R>R.

Motivation

Existing Problems Existing TPL decomposition studies follow a two-step

procedure [3]: 1) graph simplification; 2) subgraph decomposition (ILP, EC,

SDP, etc.). However, they usually assume the subgraphs after the simpli-

fication step are small, i.e., fewer than 100 vertices. When the design

complexity increases, the sizes of subgraphs also boost.
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Figure 2. (a) The proportion of small, medium, and large subgraphs after graph

simplification. (b) The time ratio spent on solving the TPL decomposition for these

subgraphs.

The time spent on solving large subgraphs is the runtime bottleneck of

current TPL decomposition methods.

Observations

The solution to the SDP program generated by the relaxation of

combinatorial optimization tasks is often low-rank [1], i.e., p << n.

R lies in a smooth manifold:
M = {R ∈ Rp×n|R = [r1, · · · , rn], ‖ri‖2 = 1}, which is exactly a unit
sphere.

Therefore, to achieve efficient yet high-quality decomposition, we propose

a scalable SDP-solving algorithm leveraging the low-rank property and ex-

ploiting the problem structure.

Pipeline

The overall LRSDP framework is shown in Fig. 3.
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Figure 3. The algorithm flow of LRSDP.

Methodology

Low-Rank Factorization leads tomany fewervariables in the problem of in-

terest and naturally guarantees the satisfiability of semidefinite constraint.

More importantly, the global optimality of the solution to the factorized

surrogate can still be ensured by properly choosing p [1].

Augmented Lagrangian Method The major framework of LRSDP is based

on the augmented lagrangian method, which includes an additional term

to penalize infeasible points.

The ALM function is denoted by:

Lσ(R, W, y, σ) = 〈C, R>R〉+h(W )−〈y, P�R>R−W 〉+σ

2
‖P�R>R−W‖2

F ,

(1)

where y ∈ Rn×n, and σ > 0 are parameters for ALM. The subproblem in k-
th iteration of the augmented Lagrangian framework is an unconstrained

Riemannian manifold optimization problem, denoted as:

min
R∈M

Φk(R) = 〈C, R>R〉+h(P �R>R−yk/σk −T (R))+ σk

2
‖T (R)‖2

F . (2)

Riemannian gradient descent is chosen as the subproblem solver. The

gradient-type method in Riemannian space performs:

xk+1 = Rxk(−αkgradf (xk)), (3)

where Rxk is a retraction from the tangent space TxkM at xk to the man-

ifold M. We can compare Euclidean optimization with Riemannian opti-

mization:

Euclidean optimization:

1. Find a descent direction

gk = −∇f (xk);
2. Update xk+1 = xk + αkgk.

Riemannian optimization:

1. Find a descent direction

gk = −gradf (xk) ∈ TxkM;

2. Update xk+1 = Rxk(αkgk).

Barzilai–Borwein (BB) method is employed as the step size selection strat-

egy for Riemannian gradient descent. The basic idea of the Barzilai–Bor-

wein (BB) method [2] is to approximate the computationally expensive

Hessian matrix. When s>
k yk > 0, the BB step-length is

αBB
k =

s>
k sk

s>
k yk

. (4)

with sk := xk − xk−1 and yk := ∇f (xk) − ∇f (xk−1). Then, the BB method
performs the iteration: xk+1 = xk − αBB

k ∇f (xk).

Riemannian gradient descent with Barzilai–Borwein Method (RGBB) is

performed here to find the optimal solution for the subproblem. The RGBB

at k-th step is illustrated as follows:
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Figure 4. A single iteration of RGBB.

Evaluation Results

Table 1. Experiments on different decomposition algorithms. The cases can be solved

by all the 4 decomposers.

ILP CSDP Ours

test case conflict stitch time/s conflict stitch time/s conflict stitch time/s

test1 100 241 299 88.9 269 287 4.5 262 285 2.8

test1 101 78 138 3739.1 94 134 34.1 98 141 4.8

test1 102 1 1 2.2 1 1 0.1 1 1 0.1

test2 100 5046 8934 22120.4 6439 8179 330.1 6456 8202 101.2

test2 102 213 502 12243.6 479 475 579.8 297 486 28.6

test3 100 680 757 24566.2 1058 1109 13577.3 911 733 168.3

test3 101 130 270 10422.4 196 276 854.4 194 266 30.7

test3 102 2 1 0.1 2 1 0.0 2 1 0.0

test5 100 354 330 5523.0 396 329 43.9 402 321 6.8

test5 101 467 232 113.1 527 228 9.9 496 229 3.8

test5 102 197 174 7225.2 262 151 1526.5 238 144 40.8

test6 102 115 482 451.1 144 477 65.0 150 479 10.8

test7 100 8424 9740 36696.6 9020 9509 2936.4 9089 9490 698.6

test8 100 5683 4606 158.2 5750 4547 47.2 5752 4549 38.0

test8 101 6199 13139 52660.6 7275 12741 7466.4 7235 12840 820.7

test9 100 8739 6969 249.3 8842 6880 73.1 8841 6879 60.3

test10 100 9775 9580 409.3 9963 9457 115.9 9964 9457 94.7

ratio 0.87 1.03 186.62 1.05 1.03 12.48 1.00 1.00 1.00
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Figure 5. Comparison of ILP, CSDP, and our LRSDP.

Table 2. Experiments on different decomposition algorithms on test cases with large

subgraphs. Some algorithms crash (‘Failed’) or exceed the time limit of 16 hours (‘TLE’).

ILP CSDP Ours

test case conflict stitch time/s conflict stitch time/s conflict stitch time/s

test2 101 TLE TLE TLE 4553 5026 12327.0 3837 5124 489.5

test4 100 TLE TLE TLE Failed Failed Failed 16377 10559 18357.1

test4 101 18012 6250 30439.1 TLE TLE TLE 12041 7238 41421.6

test6 100 14954 23427 11318.6 17657 22134 407.9 17596 22215 213.8

test6 101 TLE TLE TLE Failed Failed Failed 8851 12238 7469.2

test7 101 TLE TLE TLE Failed Failed Failed 13831 18247 23700.9

test7 102 TLE TLE TLE TLE TLE TLE 6480 6192 1880.9

test8 102 TLE TLE TLE Failed Failed Failed 97885 8937 16016.8

test9 101 TLE TLE TLE 24475 21418 11375.8 12031 21909 2471.8

test9 102 TLE TLE TLE Failed Failed Failed 10015 17668 33270.6

test10 101 TLE TLE TLE Failed Failed Failed 18480 28608 9748.4

Conclusion

Among two SDP-based approaches, our method is 12.48× faster than
CSDP on average with 5% lower cost.
Our method is 186.62× faster than ILP and only increases about 11%
cost, which makes a better trade-off between performance and

efficiency.

Our method is able to deal with fairly large cases within the time limit,

whereas CSDP is prone to fail on these large layouts.
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