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Abstract—Physical synthesis has emerged as a core component in a
modern circuit design flow. Large-scale optimization problem is often
involved in the process, which requires substantial efforts to solve and
no optimality is guaranteed. Reinforcement learning provides one direction
to deal with the above issue by automatically acquiring knowledge through
experience, which has shown great success in various applications. In this
paper, we introduce the foundation of and the progress in reinforcement
learning, and review some recent approaches in applying reinforcement
learning to physical synthesis. We hope to inspire more work and to see
more talented ideas in this field.

I. INTRODUCTION

Physical synthesis has undoubtedly emerged as a critical component in
modern electronic design automation (EDA) flow. The primary purpose
of physical synthesis is to perform timing closure [1]: given a netlist
generated by logical synthesis, the goal of physical synthesis is to
create a placed layout that satisfies the timing constraints, while other
objectives like performance, power, and area (PPA) got optimized.
The above process often involves solving large-scale sophisticated
optimization problems, most of which are considered unlikely to have
algorithms to solve in polynomial time (i.e. NP-hard). As the technology
node scaling down, the design complexity is even increased. Besides
the growth in problem size, the timing model also becomes more
complicated, since the wire delay continually gets significant, which
gradually dominates the overall performance. Given that, the demand
is highlighted to develop accurate and efficient physical synthesis tools.

Recently, we see a clear trend of incorporating machine learning
techniques into the field of EDA. In principle, machine learning is
well suited to deal with signals for which no explicit mathematical
formulation emerges due to unknown data distribution [2]. Therefore,
one way to apply machine learning to the EDA flow is to substitute
computationally expensive subprocesses with machine learning based
(fast) approximations, where no new algorithm is derived. For exam-
ple, machine learning models are utilized for hotspot detection [3],
routability prediction [4], and sub-resolution assist feature (SRAF)
insertion [5], respectively. Basically, these methods fall into the category
of supervised learning, where the algorithm is designed to learn from
labeled training data. In other words, expert knowledge is assumed to be
known. However, the expert knowledge may not be sufficient since lots
of state-of-the-art algorithms are hand-crafted heuristics, which have
little or no performance guarantee. In this sense, we certainly hope
to explore the algorithmic design space and obtain better performing
behaviours.

Reinforcement learning, one of the basic paradigms in machine
learning, has achieved great success in a wide range of disciplines
including robot control [6], game playing [7], and natural language
processing [8]. The power of reinforcement learning partly comes from
its generality: by training an agent to optimize its actions through inter-
actions with the environment, reinforcement learning can in principle
create new knowledge about the space that the agent interacts with.
Compared with supervised learning, no labeled data (input-output pairs)
is required in reinforcement learning, nor the explicit correction of
the sub-optimal actions. Instead, the target of an agent is to maximize

numerical rewards given by the environment. We will formally discuss
the learning paradigm in subsequent sections.

The remainder of the paper is organized as follows: Section II recapit-
ulates the preliminaries of reinforcement learning, Section III introduces
recent attempts of applying reinforcement learning to physical synthesis,
and Section IV concludes the paper with discussions.

II. PRELIMINARIES

A. Basis of Reinforcement Learning

Typically, Reinforcement Learning is formalized as a Markov Decision
Process (MDP), a 4-tuple (S,A, P,R), where

S is a set of states to describe the environment;
A is a set of actions that the agent can take;
P is the transition probability between states under actions;
R is the immediate reward signal.

MDP is a discrete-time stochastic control process: at timestamp t, the
agent is at a state st; then the agent selects an action at ∈ A, and
finds itself in a new state st+1, with an immediate reward rt+1. By
concatenating states, actions, and rewards of all time steps together, we
obtain a sequence called an episode: s0, a0, r1, s1, a1, · · · , which fully
describes the trajectory of the agent.

The objective in MDP is to find a good policy π(s) to maximize the
accumulative reward (return)

Gt =

∞∑
t

γtrt, (1)

where γ ∈ [0, 1] is the discount factor to penalize future rewards. We
define the value of a state s under policy π (denoted as Vπ(s)) as the
expected return starting from that state. According to Bellman Equation,
the state value can be stated recursively:

Vπ(s) = E[Gt|St = s]

= R(s, π(s)) + γ
∑
s′

P (s, π(s), s′)Vπ(s
′). (2)

Similarly, we define the expected return from taking an action a in state
s under policy π as the action value:

Qπ(s, a) = E[Gt|St = s, at = a]

= R(s, a) + γ
∑
s′

P (s, a, s′)Vπ(s
′)

= R(s, a) + γ
∑
s′

P (s, a, s′)Ea′∼πQπ(s′, a′).

(3)

B. Common Learning Approaches

1) Dynamic Programming: If the model is fully known (i.e., P and
R of the MDP is known), and both the state space and action space are
finite, solutions to the MDP can be obtained through iterative policy im-
provement following bellman equation. The generalized policy iteration
(GPI) algorithm refers to the optimization process consisting of iterative
policy evaluation (through Equation (2)) and policy improvement by



greedily selecting the action with highest action value:

π′(s) = argmax
a

{
R(s, a) + γ

∑
s′

P (s, a, s′)Vπ(s
′)

}
. (4)

Through alternating policy evaluation and policy improvement,

π0
evaluate−−−−→ Vπ0

improve−−−−→ π1
evaluate−−−−→ · · · improve−−−−→ π∗

evaluate−−−−→ V ∗,

the policy is guaranteed to be better:

Qπ(s, π
′(s))

=Qπ(s, argmax
a

{
R(s, a) + γ

∑
s′

P (s, a, s′)Vπ(s
′)

}
)

=max
a

Qπ(s, a) ≥ Qπ(s, π(s)).

(5)

2) Monte Carlo Methods: Monte Carlo methods rely on large amount
of repeated random sampling to obtain statistical properties, which
are broadly used in various optimization and simulation problems.
Following the GPI framework, policy evaluation can be substituted by
Monte Carlo simulations, while policy improvement remains the greedy
behaviour.

Recall from Equation (2) that Vπ(s) = E[Gt|St = s], we can
empirically estimate Gt through sampling instead of exactly computing
the expectation:

vπ(s) =

∑T
t=1 1[st = s]Gt∑T
t=1 1[st = s]

, (6)

where 1[·] is the indicator function. Similarly we can estimate Qπ(s, a)
as well:

qπ(s, a) =

∑T
t=1 1[st = s, at = 1]Gt∑T
t=1 1[st = s, at = a]

. (7)

With sufficiently amount of samples, the procedure is able to precisely
estimate the values due to the law of large numbers.

In Monte Carlo methods, state values and action values are estimated
through raw experience without knowing the model dynamics, which
is often the case in reality. However, it is important to note that Monte
Carlo methods only work in episodic problems (finite episode length),
otherwise the return may not be correctly computed. In practice, the
method is often regarded as sample inefficient, in that it requires
complete episodes to update estimates.

3) Temporal Difference Learning: Similar to Monte Carlo methods,
temporal difference (TD) Learning is another model-free learning
algorithm that learns from raw experiences. The key difference between
the two methods is that TD is based on bootstrapping: the values are
estimated with regard to other estimates, rather than exclusively relying
on actual rewards.

From bellman equation, we know that R(st, π(st))+Vπ(st+1) is an
unbiased estimation of state value Vπ(st). This motivates the following
update rule:

vπ(st) = vπ(st) + α(R(st, π(st)) + γvπ(st+1)− vπ(st)), (8)

where α is the step size (a.k.a. learning rate), and R(st, π(st)) +
γvπ(st+1) is refereed to as the TD target. Similarly, we can estimate
Qπ(st, at) as well:

qπ(st, at) = qπ(st, at)

+ α(R(st, at) + γqπ(st+1, at+1)− qπ(st, at)).
(9)

The algorithm that uses Equation (9) to estimate action value in GPI is
known as SARSA in the literature.

A popular algorithm, Q-learning [9], is an off-policy variant of TD
learning. In an off-policy algorithm, the policy that the agent follows
to interact with the environment (behavior policy) is independent of the
optimal policy that the agent aims to learn (target policy). To see the

TABLE I Comparisons of value-based reinforcement learning algo-
rithms. Methods differ in whether it samples and whether it boostraps.

Method Sampling? Bootstrapping?
Dynamic Programming No Yes
Monte Carlo Method Yes No

Temporal Difference Learning Yes Yes
Brute-force No No

difference, in SARSA (or Equation (9)), at+1 is selected following the
target policy π, which the algorithm is going to estimate. In Q-learning,
however, the action is greedily selected, despite the fact that the target
policy π is actually not greedy:

qπ(st, at) = qπ(st, at)

+ α(R(st, at) + γmax
a

qπ(st+1, a)− qπ(st, at)).
(10)

It is interesting to note that taking max over all actions may overesti-
mate the action values. Please refer to [10] for more discussions.

So far, we have introduced three value-based reinforcement learning
approaches. As shown in TABLE I, we compare the three algorithms,
together with brute-force, in terms of whether it samples and whether
it boostraps.

4) Policy Gradient: Instead of estimating state or action values and
deciding policy according to the values, an alternative approach is to
directly search in the policy space. Suppose the policy is parameterized
by θ, the objective is still to maximize the accumulative reward:

J(θ) = E[Vθ(s0)]. (11)

As by Policy Gradient Theorem [11], we have:

∇θJ(θ) = Eπθ [Qπ(s, a)∇ lnπ(a|s; θ)]. (12)

The algorithm REINFORCE [12] can be regarded as the Monte
Carlo policy gradient. Recalling that Qπ(st, at) = E[Gt|st, at], RE-
INFORCE estimates ∇θJ(θ) by Gt∇ lnπ(at|st; θ) and updates the
policy parameters by

θ = θ + αγtGt∇ lnπ(at|st; θ), (13)

for each t = 1, · · · , T in the episode.
5) Actor Critic: In vanilla policy gradient algorithms, the variance

of the gradient could be large. To stabilize the training, one idea is to
utilize the value model to guide the policy search, namely the actor-
critic [13] framework. In short, the critic is trained to predict the state
or action values using TD learning, and the actor is trained to select
actions by policy gradient using the predicted values.

C. State-of-the-art Algorithms

A great many variants of the above basic reinforcement learning
approaches have been proposed in recent years. Common techniques
include experience replay [14] and prioritized experience replay [15] to
both break sample correlations and to improve sample efficiency, multi-
step learning [16] to accelerate training, trust region optimization [17]
to constrain step direction, and maximum entropy reinforcement learn-
ing [18] to encourage exploration.

There is no silver bullet in reinforcement learning algorithm selection.
However, the first thing to consider is often in the action space. For dis-
crete action space, one may consider deep Q-learning (DQN) [19] and
its variants(e.g. rainbow [20] that combines lots of useful techniques),
or advantage actor-critic (A2C) [21] and its variants (e.g. actor-critic
with experience replay (ACER) [22]). For continuous action space, one
popular choice is soft actor-critic (SAC) [23], and other alternatives
include proximal policy optimization (PPO) [24] and Twin-delayed
DDPG (TD3) [25]. Among the above, A2C and PPO are on-policy
algorithms while the rests are off-policy. In summary, lots of the newly
proposed algorithms aim to reduce variance to stabilize training.



III. REINFORCEMENT LEARNING DRIVEN PHYSICAL SYNTHESIS

A. Placement
1) Macro Placement: Reinforcement Learning has been used in chip
macro placement [26]. In this work, the target is to place a netlist
graph of macros (e.g. SRAMs) to a chip canvas to optimize PPA.
Overall, the method is to first sort the macros in descending size, which
are placed sequentially by the agent, and followed by force-directed
standard cell clusters placement and greedy legalization. Therefore, in
their reinforcement learning settings, each state is a possible partial
placement, and each action is to place a macro onto the canvas.
The reward is always 0 except the last action (that leads to the
terminal state), where the reward is the negative weighted sum of proxy
wirelength and congestion of the placement.

Distilling useful features from state representation is essential for
good decision making. In the policy network, the netlist is encoded
with a graph convolutional network (GCN) for macro embedding and
edge embedding, which are concatenated with other metadata. A key
intuition presented in the paper is that a policy network capable of
transferring placement knowledge across chips should first be able to
encode the features into a meaningful signal in inference time. Given
that, they proposed to first train the model for reward prediction in
a supervised manner, with a dataset of 10000 chip placements of 5
netlists. After the supervised training, the reward prediction layers are
removed, and the encoder component is used in the policy network.

To handle different grid size, they allow a maximum row/column
number of 128, and the L-shaped unused section are masked if the grid
size is smaller. The decoder is composed of deconvolution layers and
batch normalization layers to generate a probability distribution for the
actions. The RL agent is trained with PPO [24] with a clipped objective:

LCLIP(θ) = Êt[min (rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (14)

where Êt is the expected value at time step t, rt is the probabilistic ratio
between new policy and old policy, and Ât is the estimated advantage
at time step t.

During the evaluation, the policy network without further tuning
yields a placement result (which they called zero-shot placement) in
less than one second. They observed that a pre-trained model with 2
hours fine-tuning performs even better than another model trained 24
hours from scratch, which indicates the effectiveness of offline training.
In comparison with baseline methods, the RL method converges in 3 to
6 hours, which is much faster than simulated annealing (18 hours) and
slower than RePlAce [27] (1 to 3.5 hours), one of the state-of-the-art
placer. They also compared with human experts (a chip design team)
that involves many iterations over a few weeks. When it comes to the
placement quality, the RL method is able to consistently meet timing
and congestion constrains, and outperforms human experts in several
metrics including WNS, area, power, and wirelength.

2) Placement Heuristic Selection: Another work worth mentioning
on RL-enhanced placement is [28]. In this work, the RL agent is trained
to select the move type in an SA framework for Field-Programmable
Gate Arrays (FPGA) placement. This is naturally modeled as a multi-
arm bandit problem with a Q table for each action (possible move type).
Given that, the agent selects the move type with the highest Q-value
and samples a random move, which the SA engine decides to accept or
reject. The proposed technique was integrated into VTR 8 placer [29]
and achieved improved quality-runtime tradeoff.

B. Routing
1) Global Routing: Global routing partitions the routing region into
tiles and decides tile-to-tile paths for all nets while attempting to
optimize some given objective function (e.g., total wirelength and circuit
timing) [30]. In [31], RL is used for sequential single net routing.
In their settings, the agent observes a vector representing current

coordinate, target pin coordinate, and the available resource of the
neighbouring tracks, and picks a direction (out of the 6 possible) to
move. The reward is +100 if the target pin is reached, otherwise −1
is given.

Since the action space is discrete and finite, they selected to use
DQN [19] for training. Before the exploration by RL agent, they collect
samples by running A* algorithm to fill the experience replay buffer
(which they called memory burn-in). The evaluation was conducted on
toy examples like 8 × 8 × 2 grid graphs with only a few nets. One
interesting observation is that A* performs much better in easy cases
(i.e., no edge with positive capacity is fully utilized in A*), while RL
agent wins more in difficult cases.

2) Detailed Routing: Given global routing paths, detailed routing
determines the exact tracks and vias for nets [30]. In a track-assignment
detailed router, a track assignment step is performed before detailed
routing to place the long routes onto tracks defined by the width space
pattering (WSP), which reduces the search space for the router as it
only needs to connect the components (i.e., instance terminal) of the
same net together. In [32], RL is used to decide the track assignment
order.

Specifically, the attention-based encoder-decoder framework [33] is
adopted, where greedy rollout is used as a baseline to train the agent
with REINFORCE [12]. The observation of the agent includes an
overlap graph of instance terminals, in which an edge indicates two
terminals overlap in x-range and hence cannot be assigned to the same
track, and an assignment graph, which is a bipartite graph of instance
terminals and available tracks.

The evaluation was done on two artificial datasets of analog design
problems. The small dataset contains placement solutions for Compara-
tors and OpAmp, which consists of 10-100 instance terminals, while
the large dataset are designs for analog-to-digital converter (ADC)
with 100–1000 instance terminals. In comparison with the genetic
algorithm (GA), the RL solution runs 100× to 1000× faster, while
GA outperforms in solution quality. The paper also shows that the
performance of RL agent could be further improved with more training
samples.

3) Printed Circuit Boards Routing: To target printed circuit boards
(PCBs) routing, [34] proposed to use Monte-Carlo-tree-search (MCTS)
to guide the agent training. Basically, a search tree is constructed based
on rollouts to obtain optimal solution, which is then back-propogated
to update the agent parameters. The input of the agent is the grid graph
(a matrix) states, and the output is one of the four actions representing
the four directions to go.

In practice, they consider a single layer board of 30 × 30, so the
model architecture is a convolutional neural network (CNN). To train
this model, a dataset of 2000 randomly generated circuits (grid size
30-by-30) routed with maze routing and manual routing was created.
Then each vertex on the net of the circuit can be taken as the head of
a training sample. With one sample taken from each net, totally 9459
samples were obtained. Experiments then show that the agent is able
to obtain good solutions after thousands of training iterations, while
some instances could be successfully routed by A* or Lee’s algorithm
(because of the routing order).

The authors have also emphasized to use maximal reward in MCTS
expansion (Max-UCT), instead of using average reward (Avg-UCT)
as in vanilla MCTS. Experimental results show that using Max-UCT
indeed greatly outperforms Avg-UCT in terms of wire redundancy ratio
and convergence speed. One possible explanation, as pointed out by the
authors, is that the routing search space is very large and nice solutions
are rarely seen, which makes average reward somehow useless in the
context.

4) Sizing: Transistor sizing can be modeled as a continuous parameter



search problem. In [35], a sequence to sequence model is used to
encode observations (e.g. voltage at a node) and to decide sizing
solution (e.g. width and length of transistors, capacitance of capacitors).
Reward function was designed to include both hard constraints and
optimization targets. To train the model, DDPG [36] was used, with
truncated uniform distribution as noise for search space exploration.
Experiments on two transimpedance amplifiers circuits show that the
proposed method can achieve comparable performance with much
higher (250×) sample efficiency compared with grid search based
human design. It also outperforms Bayesian Optimization under the
same runtime constraint.

Later on, GCN was involved [37] since the circuit topology can be
naturally represented by a graph, whose vertices are transistors and
edges are wires. In this work, the agent determines the action for
each node (e.g., width, length, and multiplexer for an NMOS), and
therefore the action decoder is component-specific. The state for each
node includes one-hot representation for transistor index and component
type, as well as a vector of selected features. Note that the action
space is continuous here, otherwise the action space will be too large
to deal with. The reward is still figure of merits (FoM), a weighted
sum of normalized performance metrics. The effectiveness of RL agent
is demonstrated on a few real-world circuits, compared with black-
box optimization tools and human experts. Experiments on knowledge
transfer between nodes and between topologies are also conducted,
which shows that transfer learning indeed helps, and using GCN for
feature extraction is critical.

IV. CONCLUSION

Significant progress has been made in solving challenging problems
across various domains using Reinforcement Learning, and physical
synthesis also benefits from it. In this paper we reviewed a few of these
attempts targeting some core problems (placement, routing, sizing) in
physical synthesis. We see that impressive results are obtained thanks to
state-of-the-art training algorithms and model architectures. To further
make use of the great power of reinforcement learning, we argue
that new problem formulation is critical, in order to align the large-
scale optimzation problem in physical synthesis to the optimal control
problem in reinforcement learning.
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