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Abstract. In this paper, we will describe some heuristics that can be
used to improve the runtime of a wide range of commonly used al-
gorithms for the negative cycle detection problem significantly, such
as Bellman-Ford-Tarjan (BFCT) algorithm, Goldberg-Radzik (GORC)
algorithm and Bellman-Ford-Moore algorithm with Predecessor Array
(BFCF). The heuristics are very easy to be implemented and only re-
quire modifications of several lines of code of the original algorithms. We
observed that the modified algorithms outperformed the original ones,
particularly in random graphs and no cycle graphs. We discovered that
69% of test cases have improved. Also, the improvements are sometimes
dramatic, which have an improvement of a factor of 23, excluding the
infinity case, while the worst case has only decreased by 85% only, which
is comparably small when compared to the improvement.

1 The Negative Cycle Detection Problem

1.1 Introduction

The Negative Cycle Detection problem has numerous applications in model ver-
ification, compiler construction, software engineering, VLSI design, scheduling,
circuit production, constraint programming and image processing. For example,
Constraint-based program analysis requires feasibility checking of constraint sets.
Constraint graphs are often used to represent systems of difference constraints;
an application of Farkas’ Lemma shows that a system of difference constraints
is feasible if and only if there are no negative cost cycles in the corresponding
constraint graph. That is, a difference constraint problem is feasible if and only
if there are no negative cycles in the graph.

In the design of VLSI circuits, it is required to isolate negative feedback loops.
These negative feedback loops correspond to negative cost cycles in the amplifier-
gain graph of the circuit. The problem of checking whether a zero-clairvoyant
scheduling system has a valid schedule can also be reduced to the problem of
identifying negative cost cycles in the appropriate graph. Recent approaches to
the image segmentation problem are also based on negative cycle detection. Most
of the approaches are based on the famous Bellman-Ford (BF) algorithm. All
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these algorithms have their worst case bound of O(]V||E]) in runtime. Most of
the previous algorithms run relatively slow on no cycle graphs. However, no cycle
graph is common in practice. So we try to develop some heuristics that are good
in detecting no cycle graphs. Our heuristics can be used to improve the runtime
of a wide range of Bellman-Ford based algorithms. We discovered that 69% of
test cases have improved. Also, the improvements are sometimes dramatic, which
have an improvement of a factor of 23, excluding the infinity case, while the worst
case has only decreased by 85% only, which is comparably small when compared
to the improvement. There are also significant improvement in no cycle graphs
and random graphs.

2 Related Works

2.1 Definitions

The Negative Cycle Detection problem can be defined as the problem of deciding
whether a negative cost cycle exists in a directed graph. This does not require
finding a path from a particular source to a particular destination, as it is only
a decision problem and require only a yes or no answer. Formally, the Negative
Cycle Detection (NCD) problem is defined as follows:

Given a directed graph G = < V, E, ¢ >, where V = { vg,v1,..., Un_1 },
|Vl =n, E={¢€j:v; = v}, |E| =m, and a cost function ¢ : E — Z, is there
a negative cost cycle in G ?

There are no restrictions on the edge costs, i.e., they can be arbitrary integers
as opposed to small integers, as required by some scaling algorithms. We can even
extend the weights to floating point numbers.

Our heuristics can be applied to a wide range of commonly used algorithms
for the Negative Cycle Detection problem that is a single source algorithm. In
the following, we will define the meaning of single source algorithm.

An algorithm for the negative cycle detection problem is defined as a sin-
gle source algorithm if and only if the algorithm is relaxation-based and all the
relazations (or calculations of labels) originate from a single vertex (the source).

We will give some examples of single source algorithms in the following.

2.2 The Bellman-Ford Moore Algorithm with Predecessor Array
(BFCF)

The Bellman-Ford-Moore (BFFI) algorithm attempts to reduce the number of
vertices that must be examined in each stage of the “standard” Bellman-Ford
(BF) algorithm by using a First-In-First-Out (FIFO) queue to store the vertices
whose distance labels were changed in the previous stage.

Predecessor Array is a strategy that uses parent pointer to store the parent of
each vertex v;, where the parent of v; is the vertex that caused the most recent
label change to v;. This strategy is widely used in many Bellman-Ford based
algorithms.
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The Bellman-Ford-Moore algorithm with Predecessor Array (BFCF) is an
algorithm that combines the above two techniques. As the algorithm starts with
a vertex with label 0 and all the other vertices of label infinity, it is a single
source algorithm. Notice that BFCF still has the worst case bound of O(| V]| E])
in runtime.

2.3 The Bellman-Ford-Tarjan Algorithm (BFCT)

Another variation of the BF algorithm is BFCT, which combines the “standard”
BF algorithm with the FIFO queue of BFFI and the sub-tree disassembly cycle
detection strategy due to Tarjan. The sub-tree disassembly strategy is imple-
mented by describing the tree structure by, besides the usual predecessor func-
tion, the first son and the adjacent brother function (next and previous). This
allows traversals of sub-trees in linear time, and tree modifications in constant
time. When no cycle is found in the traversal of a sub-tree T),, all vertices in T,
will be discarded from the queue and the tree. [Tar81]. A negative cycle will be
detected when a tree path from a vertex goes back to one of its ancestors. As
the algorithm is started with one source of label 0 and all the other vertices of
labels infinity, it is a single source algorithm.

2.4 The Goldberg-Radzik Algorithm (GORC)

The Goldberg-Radzik algorithm improved the Bellman-Ford-Moore algorithm.
It achieves the same worst-case bound of O(|V]|E|), but can usually outperform
BFFI in practice. The algorithm maintains the set of labelled vertices in two
queues, queue A and queue B. Vertices in queue A will undergo a Bellman-
Ford-Moore pass while vertices in queue B will undergo a depth first search
with no update. At the beginning of the algorithm, the source is put in queue
B. In pass B, if there is an outgoing arc with reduced cost including zero, the
path is traversed and all vertices visited will be put in queue A. Notice that
there are no updates on the vertices’ labels in this step. Also, if a reduced path
from a vertex goes back to one of its ancestors, a negative cycle is detected. On
the other hand, pass A is a one step Bellman-Ford-Moore pass that relaxes the
vertices in queue A following the queue order. Notice that topological sort will
be done after the depth first searches in pass B, so we will relax the vertices in
pass A topologically and the label will be updated.

The algorithm starts with one source of label 0 and all the other vertices of
labels infinity, it is a single source algorithm.

3 Owur New Approach to This Problem

Our approach is to incorporate two heuristics to the above single source algo-
rithms.

3.1 Heuristic One: Pumping Negative Strategy

The first heuristic is based on an observation that in any negative cost cycle,
we can find a negative weighted edge e such that when we travel through the
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negative cost cycle starting from e, the accumulated costs are always negative.
The formal definition of this lemma is as follows.

Lemma 1: Given a directed graph G = < V, E, ¢ >, where V ={ vg,v1,..., Un—1
LAV =n, E={ej:v; = v}, |E| =m, and c is cost function E — Z, with
a negative cost cycle { Vr(1)s Un(2), Vn(3) »- -1 Un(k) }, where Ur(1) = Un(k), there

exists at least one node vy where 1<i<k such that when we travel through the
negative cost cycle starting from vy (), the accumulated costs are always negative.

In this heuristic, we will stop the relaxation once the label becomes positive.
But since we do not know which vertex in the negative cycle is the starting
vertex with the property as stated in Lemma 1, we need to treat each vertex as
source once. The proof of Lemma 1 is shown in Appendix II.

3.2 Heuristic Two: Reduced Cost Elimination

This heuristic is simply not deleting the labels on the vertices when moving from
one pass to another with different vertices as the source. Consider a case where
a particular vertex relaxes another vertex with label that is not marked 0. If
the label is smaller than the accumulated cost, we will have the following two
conclusions:

1. That particular vertex has been travelled previously as it has a label that is
not 0.

2. The accumulated cost of the previous travel must be smaller than current
accumulated cost as the label is smaller than the current accumulated cost.

Therefore, as the current accumulated cost is larger, using the current accumu-
lated cost will reduce the number of vertices visited. Therefore, we can keep the
cost label.

4 Modifications on Various Algorithms

In this section, we will briefly describe how we implement our heuristics into
some single source algorithms.

4.1 Modification of BFCF

For heuristic one, we first change the algorithm such that the original BFCF
algorithm will run V' times with a different vertex as the source each time. We
also add a condition for the relaxation process which is, a relaxation can only
be done and continued if the accumulated cost is negative. When there are no
more relaxations, a new source will be chosen and the whole process is repeated.
For heuristic two, we can implement it simply by keeping the cost label on each
vertex unchanged when we start a new pass with a new source. The pseudo-code
is as follows:

Initialize all cost labels to 0. /*So, all accumulated cost will be negative
(Heuristic 1)*/
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For all v /*(Heuristic 1)*/

{

BFCF with v as the source /*(Heuristic 1)*/
/*Keep all the labels unchanged (Heuristic 2)*/

}

4.2 Modifications of BFCT

The modifications to BFCT are similar to that in BFCF. However, each vertex
in BFCT will be involved in the first son and adjacent brother functions (next
and previous). During our modification, we can leave the values of the function
(next and previous) unchanged when we choose a new starting point. This will
improve the runtime without affecting the correctness.

4.3 Modifications of GORC

The modifications for GORC are a bit different from that of BFCF and BFCT.
For heuristic one, we need to modify the condition in pass B to ensure that the
depth first search traversal will only traverse an edge when it leads to a nega-
tive reduced cost. GORC has already implemented the reduced cost elimination
heuristic, so we do not need to do any modification for heuristic two.

5 Experimental Setups

5.1 Results

The problem generator was developed by the authors of [Gol95]. It can be down-
loaded from the website http://www.avglab.com/andrew/index.html. There are
several sets of data.

1. The Rand-5 families have a fixed network size n=2000000 and m=10000000.
The maximum arc length U is fixed at 32000 and the minimum arc length
L varies from 0 to —64000 [Gol95].

2. The SQNC families represent the square grid families. Vertices of these net-
works correspond to points on the 2 — y plane with integer coordinates [z,
yl, =2 £ X, 0y £Y and X =Y. The SQNCO1 family has no cycles. The
SQNCO02 family has sparse small negative cycles. The SQNCO03 family has
dense small negative cycles. The SQNC04 family has several long cycles. The
SQNCO05 family has Hamilton cycle.

3. The LNC families are the grid networks mentioned above but with Y'=16.
The LNCO01, LNC02, LNC03, LNC04 and LNCO05 are similar to those in the
SQNC families.

4. The PNC families are the layered networks. A layered network consists of
layers 0... X-1. Each layer is a simple cycle plus a collection of arcs con-
necting randomly selected pairs of vertices on the cycle. In the PNC families
each layer contains 32 vertices and X = n/32 [Gol95]. The PNCO01, PNC02,
PNCO03, PNCO04 and PNCO05 are similar to those in the SQNC families.
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There are 5 test cases for each row shown in the following tables. The number
of scan operations shown is the average of the 5 test cases. The percentage
improvement is calculated according to the number of operation of relaxing.
Results with more than 10% faster or slower will be highlighted in different
colors. Finally, the "M’ in front of the name of the algorithm implies the modified
algorithm with our heuristics implemented. The results are shown in Appendix I.

6 Conclusion

In this paper, we described two heuristics that can be incorporated into a wide
range of commonly used single source algorithms for the Negative Cycle Detec-
tion problem. The modifications are very simple, involving only adding several
lines of code.

After modification, all algorithms have increased the speed generally. There
are significant results in the set of random graphs and no cycle graphs. We
discovered that 69% of test cases have improved. Also, the improvements are
sometimes dramatic, which have an improvement of a factor of 23, excluding
the infinity case, while the worst case has only decreased by 85% only, which is
comparably small when compared to the improvement.
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Appendix 1
Table 1. Results for no cycle graphs LNCO01
#Verticess MGORC| GORC |Improve|| MBFCT | BFCT |Improve
LNCo01 8193 29571 51894 | 75.5% 14891 27338 | 83.6%
16385 59399 | 102501 | 72.6% 29864 54115 | 81.2%
32769 | 117508 | 204668 | 74.2% 59016 | 107378 | 81.9%
65537 | 236006 | 412421 | 74.8% || 118558 | 217019 | 83.0%
131073 | 471187 | 824874 | 75.1% || 236706 | 433352 | 83.1%
262145 | 940478 | 1643797 | 74.8% || 472542 | 864805 | 83.0%
524289 | 1881286 | 3289308 | 74.8% || 945099 | 1733480 | 83.4%
1048577 | 3764090 | 6590393 | 75.1% || 1890963 | 3455877 | 82.8%
2097153 | 7523534 (13186716 75.3% || 3779505 | 6917921 | 83.0%
4194305 [15052684(26342784| 75.0% || 7561213 |13826436| 82.9%
8388609 (30111238|52697650| 75.0% [|15127398|27660704| 82.9%
16777217 |60193979|58728907| -2.4% (|30237773|30997195| 2.5%
Average 68.32% 76.11%
Table 2. Results for no cycle graphs PNCO01
#Verticess MGORC| GORC |Improve|MBFCT| BFCT |Improve
PNCO1 8193 0 141440 INF 0 101024 INF
16385 0 282502 INF 0 206452 INF
32769 0 577308 INF 0 421004 INF
65537 0 1175657 INF 0 840400 INF
131073 0 2326792 | INF 0 1697588 | INF
262145 0 4662634 | INF 0 3378583 | INF
524289 0 9360087 INF 0 6776352 INF
1048577 0 18799475 | INF 0 13545258 | INF
2097153 0 37359269 | INF 0 27079159 | INF
4194305 0 74824647 | INF 0 54191807 | INF
8388609 0 149660040 INF 0 108381976 INF
Average INF INF
Table 3. Results for no cycle graphs SQNCO01
#Verticess MGORC| GORC |Improve|| MBFCT | BFCT |Improve
SQNCO01|| 4097 13503 29080 | 115.4% 6933 12259 | 76.8%
16385 51932 114828 | 121.1% || 26775 48554 | 81.3%
65537 | 203158 | 479398 | 136.0% || 104971 | 191840 | 82.8%
262145 | 807586 | 1961943 | 142.9% || 418223 | 733359 | 75.4%
1048577 | 3211258 | 7930611 | 147.0% || 1663635 | 2919808 | 75.5%
4194305 [12817258| 32338613 | 152.3% || 6643025 {11873024| 78.7%
16777217 |51213266|140101492| 173.6% {|26550354(48035413| 80.9%
Average 141.19% 78.77%
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Table 4. Results for a few short cycle graphs LNC02

#Vertices MGORC| GORC |Improve|| MBFCT | BFCT |Improve
LNCO02 8193 6442 11480 | 78.2% 3240 5825 79.8%
16385 19433 34692 | 78.5% 9716 17916 | 84.4%
32769 42381 46765 | 10.3% || 21241 24144 | 13.7%
65537 90512 114548 | 26.6% 45277 61044 | 34.8%
131073 | 151996 | 267506 | 76.0% || 75979 | 141937 | 86.8%
262145 | 247744 | 438869 | 77.1% || 123912 | 231623 | 86.9%
524289 | 696032 | 1163851 | 67.2% || 348365 | 616440 | 77.0%
1048577 | 1563907 | 1669857 | 6.8% || 782080 | 883473 | 13.0%
2097153 | 1845286 | 3252535 | 76.3% || 923584 | 1729789 | 87.3%
4194305 | 6011875 | 6697666 | 11.4% || 3007849 | 3560722 | 18.4%
8388609 |13820476|24466542| 77.0% || 6911521 |12969000| 87.6%
16777217 |22339356|37514660| 67.9% |/11172724/19902492| 78.1%
Average 54.44% 62.32%
Table 5. Results for a few short cycle graphs PNC02
#Verticesst MGORC| GORC |Improve|| MBFCT | BFCT |Improve
PNCO02 8193 47185 59183 | 25.4% || 29484 30705 | 4.1%
16385 86450 64450 | -25.4% || 53720 54659 1.7%
32769 | 225235 | 205400 | -8.8% || 140052 | 142698 | 1.9%
65537 | 287805 | 203174 |-29.4% || 178108 | 180636 | 1.4%
131073 | 350055 | 294782 | -15.8% || 218465 | 212419 | -2.8%
262145 | 503878 | 386424 |-23.3% || 314458 | 330199 | 5.0%
524289 | 1316216 | 1095546 | -16.8% || 820598 | 874808 | 6.6%
1048577 | 4790290 | 3915894 | -18.3% || 2983431 | 3175931 | 6.5%
2097153 |10428337| 8593237 | -17.6% || 6495202 | 6953796 | 7.1%
4194305 (23124100/19013193| -17.8% |/14408767|15390086| 6.8%
8388609 (67316841|55413705| -17.7% |141913396|44775974| 6.8%
Average -15.05% 4.10%
Table 6. Results for a few short cycle graphs SQNC02
#Verticess MGORC| GORC |Improve|| MBFCT | BFCT |Improve
SQNCO02|| 4097 13503 29080 |115.4% || 6933 12259 | 76.8%
16385 51932 114828 | 121.1% || 26775 48554 | 81.3%
65537 | 203158 | 479398 | 136.0% || 104971 | 191840 | 82.8%
262145 | 807586 | 1961943 | 142.9% || 418223 | 733359 | 75.4%
1048577 | 3211258 | 7930611 | 147.0% || 1663635 | 2919808 | 75.5%
4194305 [12817258| 32338613 | 152.3% || 6643025 {11873024| 78.7%
16777217 |51213266|140101492| 173.6% [|26550354(48035413| 80.9%
Average 141.19% 78.77%
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Table 7. Results for many short cycles graphs LNC03

#Vertices MGORC|GORC|Improve|| MBFCT|BFCT |Improve
LNCO03 8193 343 396 15.3% 173 196 | 13.2%
16385 71 136 | 93.2% 31 47 48.4%
32769 112 275 | 145.9% 54 72 33.1%
65537 208 262 26.2% 106 97 -8.5%
131073 180 221 22.3% 92 91 -0.7%
262145 138 297 | 115.5% 72 82 14.2%
524289 240 349 | 45.4% 120 110 | -8.0%
1048577 198 224 13.4% 97 69 | -28.7%
2097153 149 313 | 110.3% 74 73 -1.1%
4194305 172 344 99.7% 86 86 -0.2%
8388609 216 261 20.9% 106 102 | -3.6%
16777217 193 202 4.6% 95 100 5.7%
Average 59.39% 5.32%

Table 8. Results for many short cycles graphs PNCO03

#Vertices MGORC|GORC|Improve|| MBFCT|BFCT |Improve
PNCO03 8193 461 2713 | 489.1% 327 865 | 164.6%
16385 473 3046 | 543.5% 256 451 | 75.7%
32769 468 3843 | 721.2% 248 513 | 106.9%
65537 341 3030 | 788.0% 165 829 |402.9%
131073 967 3842 | 297.1% 697 686 | -1.7%
262145 381 3670 | 863.8% 214 339 | 58.7%
524289 1144 4174 | 265.0% 620 525 | -15.3%
1048577 177 2743 [1453.5%|| 113 244 | 116.9%
2097153 1125 3747 | 233.0% 617 552 | -10.6%
4194305 314 2063 | 557.5% 175 394 | 124.9%
8388609 632 2628 | 315.5% 292 409 | 40.1%
Average 593.38% 96.65%

Table 9. Results for many short cycles graphs SQNCO03

#Vertices MGORC|GORC|Improve|| MBFCT|BFCT|Improve

SQNCO03|| 4097 109 487 | 345.3% 55 173 | 216.1%

16385 74 584 | 686.5% 34 249 |625.0%

65537 250 1101 | 340.5% 130 493 | 280.1%

262145 477 3779 | 691.6% 243 1077 | 343.2%

1048577 | 1818 7839 | 331.1% 950 2441 | 157.0%

4194305 | 2934 7534 | 156.8% || 1536 | 4593 | 199.0%

16777217 | 5896 | 28282 (379.7% || 3066 | 8719 | 184.4%

Average 418.79% 286.40%
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Table 10. Results for a few long cycles graphs LNC04

#Vertices] MGORC | GORC |Improve|| MBFCT | BFCT |Improve
LNCO04 8193 26711 54962 105.8% 12910 20687 60.2%
16385 92773 148990 | 60.6% 41107 56489 37.4%
32769 251488 349870 | 39.1% 122379 145197 | 18.6%
65537 881848 948447 7.6% 365853 376227 2.8%
131073 | 1980993 | 2097090 | 5.9% 874778 898293 2.7%
262145 | 4467623 | 5460818 | 22.2% 1892207 | 2215706 | 17.1%
524289 | 11883080 | 11385873 | -4.2% 4968220 | 5017279 1.0%
1048577 | 25741146 | 28462486 | 10.6% || 10792331 | 12567955 | 16.5%
2097153 | 62102224 | 61088246 | -1.6% || 26089374 | 27892978 | 6.9%
4194305 [121983730[128064383| 5.0% || 53771346 | 59798591 | 11.2%
8388609 |275905623|286903304| 4.0% ||112925426|135532732| 20.0%

16777217 |538729562|664472322| 23.3% ||231721552{299999324| 29.5%
23.19% 18.66%

Average

Table 11. Results for a few long cycles graphs PNC04

#Vertices) MGORC | GORC |Improve|| MBFCT | BFCT |Improve
PNCo04 8193 96459 82610 |-14.4% 55914 37737 | -32.5%
16385 363660 189675 | -47.8% || 222163 89015 | -59.9%
32769 | 1032742 | 416393 |-59.7% || 633831 | 215134 |-66.1%
65537 | 2475918 | 932459 | -62.3% || 1574038 | 485710 | -69.1%
131073 | 3959249 | 2244526 | -43.3% || 2482065 | 1042791 | -58.0%
262145 | 11673063 | 4881046 | -58.2% || 6672867 | 2282332 | -65.8%
524289 | 26999818 | 10280214 | -61.9% || 16888696 | 4707412 | -72.1%
1048577 | 56517150 | 21103100 | -62.7% || 35114982 | 9594361 | -72.7%
2097153 |118365443| 44260038 | -62.6% || 74302031 |20881883| -71.9%
4194305 |225343295| 95936613 | -57.4% |{147809535(43256228| -70.7%
8388609 |517666048|189688611| -63.4% |{328137483(88085199| -73.2%
-53.97% -63.74%

Average

Table 12. Results for a few long cycles graphs SQNC04

#Verticess MGORC| GORC |Improve||MBFCT| BFCT |Improve
SQNCO04|| 4097 32707 30880 -5.6% 15213 13944 -8.3%
16385 184893 | 170162 | -8.0% || 81463 67445 | -17.2%
65538 | 573055 | 746841 | 30.3% || 254273 | 297501 | 17.0%
262145 | 1313928 | 3264595 | 148.5% || 560271 | 1389863 | 148.1%
1048577 | 2338506 | 15068659 | 544.4% |/ 1099832 | 6288913 | 471.8%
4194305 | 6204248 | 68242481 | 999.9% ||2710118| 27430729 | 912.2%
16777217 |14024018|272653950(1844.2% || 6681120 [121993247|1725.9%
507.67% 464.21%

Average
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Table 13. Results for Hamiltonian cycle graphs LNC05

#Vertices) MGORC | GORC |Improve|| MBFCT | BFCT |Improve
LNCO05 8193 163438 172029 5.3% 98947 91658 -7.4%
16385 346868 364541 5.1% 215632 202262 | -6.2%
32769 753945 803979 | 6.6% 458880 436855 | -4.8%
65537 1633918 | 1733490 | 6.1% 999207 934728 -6.5%
131073 | 3499646 | 3789556 | 8.3% || 2082565 | 2027643 | -2.6%
262145 | 7599126 | 7828071 | 3.0% || 4637622 | 4329335 | -6.6%
524289 | 15608355 | 16876480 | 8.1% 9456863 | 9179454 | -2.9%
1048577 | 33572684 | 35232411 | 4.9% || 20445301 | 19287842 | -5.7%
2097153 | 69453620 | 74266615 | 6.9% || 42213747 | 40477734 | -4.1%
4194305 |144322754[156777150| 8.6% || 89613042 | 84456141 | -5.8%
8388609 |314273826|331798694| 5.6% |/189346386(181584841| -4.1%
16777217 |637684719(668256739| 4.8% ||387236035|364980712| -5.7%
Average 6.11% -5.20%
Table 14. Results for Hamiltonian cycle graphs PNC05
#Vertices MGORC | GORC |Improve|| MBFCT | BFCT |Improve
PNCO05 8194 82594 90718 9.8% 54836 47319 | -13.7%
16386 179350 203306 | 13.4% || 116631 | 100007 |-14.3%
32770 361404 401511 11.1% || 249244 | 210670 | -15.5%
65538 785227 | 870523 | 10.9% || 516925 | 443592 | -14.2%
131074 | 1732688 | 1680790 | -3.0% || 1096942 | 901936 |-17.8%
262146 | 3462811 | 3965235 | 14.5% || 2232233 | 1928211 | -13.6%
524290 | 7714697 | 7216528 | -6.5% || 4579138 | 4039317 | -11.8%
1048578 | 16872712 | 16794782 | -0.5% || 9786195 | 8450277 | -13.7%
2097154 | 32924136 | 37489022 | 13.9% |[19973817|17243048| -13.7%
4194306 | 63798970 | 71903161 | 12.7% ||41054033|35357906| -13.9%
8388610 |154010041|151672136| -1.5% ||86223637(74532047| -13.6%
Average -1.50% -14.16%
Table 15. Results for Hamiltonian cycle graphs SQNC05
#Vertices) MGORC | GORC |Improve|| MBFCT | BFCT |Improve
SQNCO05|| 4098 70976 79742 12.4% 44744 41610 -7.0%
16386 360423 365960 1.5% 207067 197097 | -4.8%
65538 | 1644198 | 1712316 | 4.1% 983910 928755 | -5.6%
262146 | 7650803 | 8070454 | 5.5% || 4679524 | 4297402 | -8.2%
1048578 | 32523850 | 34451433 | 5.9% || 19818466 | 18737042 | -5.5%
4194306 [151666794(149113446| -1.7% || 91909813 | 82151343 | -10.6%
16777218 |648487235(648211387| 0.0% |[394621759|353276864| -10.5%
Average 3.96% -7.46%
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Table 16. Results for random graphs RAND-5

Negative Weight||MGORC| GORC |Improve|| MBFCT| BFCT |Improve
0 0 7780968| INF 0 4578450, INF
-1000 1133358 [8892373| 684.6% || 341958 |5350722|1464.7%
-2000 2080317 |9588453| 360.9% || 762572 |6481434| 749.9%
-4000 260253 [3665786(1308.5%|| 211730 |5139325|2327.3%
-6000 328345 | 884558 | 169.4% || 218531 |1634924| 648.1%
-8000 224668 | 41588 | -81.5% || 115428 | 721280 | 524.9%
-16000 603 541 | -10.4% || 328455 | 237747 | -27.6%
-32000 175 174 -0.5% || 329102 | 143538 | -56.4%
-64000 51 48 -4.3% || 380534 | 55175 | -85.5%

Table 17. General results for GORC Table 18. General results for BECT

Improve|Degrade Improve|Degrade
100% < X 36.1% | 0.0% 100% < X 24.8% | 0.0%
10% < X < 100%|| 27.8% | 17.0% 10% < X < 100%|| 29.3% | 25.7%
X <10% 12.8% | 6.3% X <10% 9.6% | 10.6%

| Total [76.7% [ 233% | | Total [ 63.7% | 36.3% |

Appendix II

Proof of Lemma 1

Consider a negative cost cycle C in a directed graph G(V, E) where C={vy, v1,
.5 Up—1}. The accumulated costs on C starting from vy are {C10,C11,...,
C1n-1 }, where C1 y is the accumulated cost at vertex vy, starting from vy.
First of all, at the end of the cycle, i.e. v,_1, the accumulated cost (Weyere)
along this cycle must be negative. Secondly, there is at least one maximum ac-
cumulated cost Cp,q, on this cycle. Finally, there must be at least one edge,
(v; ,vj), where j = i+1, that is negative since there must be at least one neg-
ative edge on a negative cycle. Note that we can change the ordering of the
vertices by choosing another “starting vertex”. Suppose that we take vy as the
starting vertex where vy has the largest accumulated cost (chose the last one if
there is more than one), we will have the accumulated costs { Ca 41, C2 k+2;- - -
C2n-1,C20,C21,..., Co }.
Now we will have the path {vxi1,Vk42,..., Un_1,V0,01,..., vg}. Then we
will have two sets of vertices. The first set contains the vertices in {vgy1, Vg2,
.., Up—1 }. For any vertex v in this set, Co,v = C1,v0 — Crae < 0, where
Cinaz20 because otherwise, vg is already the correct starting point. The second
set contains the vertices in {vg, vy, ..., vi}. For any vertex v in this set, Cy,v =
Chv + chcle - Cmaw < 0.
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