
Negative Cycle Detection Problem

WongChi-Him and TamYiu-Cheong

The Chinese University of Hong Kong
{02658924, 02654543}@alumni.cse.cuhk.edu.hk

Abstract. In this paper, we will describe some heuristics that can be
used to improve the runtime of a wide range of commonly used al-
gorithms for the negative cycle detection problem significantly, such
as Bellman-Ford-Tarjan (BFCT) algorithm, Goldberg-Radzik (GORC)
algorithm and Bellman-Ford-Moore algorithm with Predecessor Array
(BFCF). The heuristics are very easy to be implemented and only re-
quire modifications of several lines of code of the original algorithms. We
observed that the modified algorithms outperformed the original ones,
particularly in random graphs and no cycle graphs. We discovered that
69% of test cases have improved. Also, the improvements are sometimes
dramatic, which have an improvement of a factor of 23, excluding the
infinity case, while the worst case has only decreased by 85% only, which
is comparably small when compared to the improvement.

1 The Negative Cycle Detection Problem

1.1 Introduction

The Negative Cycle Detection problem has numerous applications in model ver-
ification, compiler construction, software engineering, VLSI design, scheduling,
circuit production, constraint programming and image processing. For example,
Constraint-based program analysis requires feasibility checking of constraint sets.
Constraint graphs are often used to represent systems of difference constraints;
an application of Farkas’ Lemma shows that a system of difference constraints
is feasible if and only if there are no negative cost cycles in the corresponding
constraint graph. That is, a difference constraint problem is feasible if and only
if there are no negative cycles in the graph.

In the design of VLSI circuits, it is required to isolate negative feedback loops.
These negative feedback loops correspond to negative cost cycles in the amplifier-
gain graph of the circuit. The problem of checking whether a zero-clairvoyant
scheduling system has a valid schedule can also be reduced to the problem of
identifying negative cost cycles in the appropriate graph. Recent approaches to
the image segmentation problem are also based on negative cycle detection. Most
of the approaches are based on the famous Bellman-Ford (BF) algorithm. All

0 The work described in this paper was partially supported by a direct allocation grant
from the Research Grant Council of the Hong Kong Special Administrative Region,
China (Project No. 2050321).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 652–663, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Negative Cycle Detection Problem 653

these algorithms have their worst case bound of O(|V||E|) in runtime. Most of
the previous algorithms run relatively slow on no cycle graphs. However, no cycle
graph is common in practice. So we try to develop some heuristics that are good
in detecting no cycle graphs. Our heuristics can be used to improve the runtime
of a wide range of Bellman-Ford based algorithms. We discovered that 69% of
test cases have improved. Also, the improvements are sometimes dramatic, which
have an improvement of a factor of 23, excluding the infinity case, while the worst
case has only decreased by 85% only, which is comparably small when compared
to the improvement. There are also significant improvement in no cycle graphs
and random graphs.

2 Related Works

2.1 Definitions

The Negative Cycle Detection problem can be defined as the problem of deciding
whether a negative cost cycle exists in a directed graph. This does not require
finding a path from a particular source to a particular destination, as it is only
a decision problem and require only a yes or no answer. Formally, the Negative
Cycle Detection (NCD) problem is defined as follows:

Given a directed graph G = < V, E, c >, where V = { v0, v1,. . . , vn−1 },
|V| = n, E = { eij : vi → v j }, |E| = m, and a cost function c : E → Z, is there
a negative cost cycle in G ?

There are no restrictions on the edge costs, i.e., they can be arbitrary integers
as opposed to small integers, as required by some scaling algorithms. We can even
extend the weights to floating point numbers.

Our heuristics can be applied to a wide range of commonly used algorithms
for the Negative Cycle Detection problem that is a single source algorithm. In
the following, we will define the meaning of single source algorithm.

An algorithm for the negative cycle detection problem is defined as a sin-
gle source algorithm if and only if the algorithm is relaxation-based and all the
relaxations (or calculations of labels) originate from a single vertex (the source).

We will give some examples of single source algorithms in the following.

2.2 The Bellman-Ford Moore Algorithm with Predecessor Array
(BFCF)

The Bellman-Ford-Moore (BFFI) algorithm attempts to reduce the number of
vertices that must be examined in each stage of the “standard” Bellman-Ford
(BF) algorithm by using a First-In-First-Out (FIFO) queue to store the vertices
whose distance labels were changed in the previous stage.

Predecessor Array is a strategy that uses parent pointer to store the parent of
each vertex vi, where the parent of vi is the vertex that caused the most recent
label change to vi. This strategy is widely used in many Bellman-Ford based
algorithms.

654 C.-H. Wong and Y.-C. Tam

The Bellman-Ford-Moore algorithm with Predecessor Array (BFCF) is an
algorithm that combines the above two techniques. As the algorithm starts with
a vertex with label 0 and all the other vertices of label infinity, it is a single
source algorithm. Notice that BFCF still has the worst case bound of O(|V||E|)
in runtime.

2.3 The Bellman-Ford-Tarjan Algorithm (BFCT)

Another variation of the BF algorithm is BFCT, which combines the “standard”
BF algorithm with the FIFO queue of BFFI and the sub-tree disassembly cycle
detection strategy due to Tarjan. The sub-tree disassembly strategy is imple-
mented by describing the tree structure by, besides the usual predecessor func-
tion, the first son and the adjacent brother function (next and previous). This
allows traversals of sub-trees in linear time, and tree modifications in constant
time. When no cycle is found in the traversal of a sub-tree Tv, all vertices in Tv

will be discarded from the queue and the tree. [Tar81]. A negative cycle will be
detected when a tree path from a vertex goes back to one of its ancestors. As
the algorithm is started with one source of label 0 and all the other vertices of
labels infinity, it is a single source algorithm.

2.4 The Goldberg-Radzik Algorithm (GORC)

The Goldberg-Radzik algorithm improved the Bellman-Ford-Moore algorithm.
It achieves the same worst-case bound of O(|V||E|), but can usually outperform
BFFI in practice. The algorithm maintains the set of labelled vertices in two
queues, queue A and queue B. Vertices in queue A will undergo a Bellman-
Ford-Moore pass while vertices in queue B will undergo a depth first search
with no update. At the beginning of the algorithm, the source is put in queue
B. In pass B, if there is an outgoing arc with reduced cost including zero, the
path is traversed and all vertices visited will be put in queue A. Notice that
there are no updates on the vertices’ labels in this step. Also, if a reduced path
from a vertex goes back to one of its ancestors, a negative cycle is detected. On
the other hand, pass A is a one step Bellman-Ford-Moore pass that relaxes the
vertices in queue A following the queue order. Notice that topological sort will
be done after the depth first searches in pass B, so we will relax the vertices in
pass A topologically and the label will be updated.

The algorithm starts with one source of label 0 and all the other vertices of
labels infinity, it is a single source algorithm.

3 Our New Approach to This Problem

Our approach is to incorporate two heuristics to the above single source algo-
rithms.

3.1 Heuristic One: Pumping Negative Strategy

The first heuristic is based on an observation that in any negative cost cycle,
we can find a negative weighted edge e such that when we travel through the

Negative Cycle Detection Problem 655

negative cost cycle starting from e, the accumulated costs are always negative.
The formal definition of this lemma is as follows.

Lemma 1: Given a directed graph G = < V, E, c >, where V = { v0, v1,. . . , vn−1

}, |V| = n, E = { eij : vi → v j }, |E| = m, and c is cost function E → Z, with
a negative cost cycle { vπ(1), vπ(2), vπ(3) ,. . . , vπ(k) }, where vπ(1) = vπ(k), there
exists at least one node vπ(i) where 1<

=i<=k such that when we travel through the
negative cost cycle starting from vπ(i), the accumulated costs are always negative.

In this heuristic, we will stop the relaxation once the label becomes positive.
But since we do not know which vertex in the negative cycle is the starting
vertex with the property as stated in Lemma 1, we need to treat each vertex as
source once. The proof of Lemma 1 is shown in Appendix II.

3.2 Heuristic Two: Reduced Cost Elimination

This heuristic is simply not deleting the labels on the vertices when moving from
one pass to another with different vertices as the source. Consider a case where
a particular vertex relaxes another vertex with label that is not marked 0. If
the label is smaller than the accumulated cost, we will have the following two
conclusions:

1. That particular vertex has been travelled previously as it has a label that is
not 0.

2. The accumulated cost of the previous travel must be smaller than current
accumulated cost as the label is smaller than the current accumulated cost.

Therefore, as the current accumulated cost is larger, using the current accumu-
lated cost will reduce the number of vertices visited. Therefore, we can keep the
cost label.

4 Modifications on Various Algorithms

In this section, we will briefly describe how we implement our heuristics into
some single source algorithms.

4.1 Modification of BFCF

For heuristic one, we first change the algorithm such that the original BFCF
algorithm will run V times with a different vertex as the source each time. We
also add a condition for the relaxation process which is, a relaxation can only
be done and continued if the accumulated cost is negative. When there are no
more relaxations, a new source will be chosen and the whole process is repeated.
For heuristic two, we can implement it simply by keeping the cost label on each
vertex unchanged when we start a new pass with a new source. The pseudo-code
is as follows:

Initialize all cost labels to 0. /*So, all accumulated cost will be negative
(Heuristic 1)*/

656 C.-H. Wong and Y.-C. Tam

For all v /*(Heuristic 1)*/
{
BFCF with v as the source /*(Heuristic 1)*/
/*Keep all the labels unchanged (Heuristic 2)*/
}

4.2 Modifications of BFCT

The modifications to BFCT are similar to that in BFCF. However, each vertex
in BFCT will be involved in the first son and adjacent brother functions (next
and previous). During our modification, we can leave the values of the function
(next and previous) unchanged when we choose a new starting point. This will
improve the runtime without affecting the correctness.

4.3 Modifications of GORC

The modifications for GORC are a bit different from that of BFCF and BFCT.
For heuristic one, we need to modify the condition in pass B to ensure that the
depth first search traversal will only traverse an edge when it leads to a nega-
tive reduced cost. GORC has already implemented the reduced cost elimination
heuristic, so we do not need to do any modification for heuristic two.

5 Experimental Setups

5.1 Results

The problem generator was developed by the authors of [Gol95]. It can be down-
loaded from the website http://www.avglab.com/andrew/index.html. There are
several sets of data.

1. The Rand-5 families have a fixed network size n=2000000 and m=10000000.
The maximum arc length U is fixed at 32000 and the minimum arc length
L varies from 0 to –64000 [Gol95].

2. The SQNC families represent the square grid families. Vertices of these net-
works correspond to points on the x − y plane with integer coordinates [x,
y], 0<

=x <
= X, 0<

=y <
= Y and X = Y . The SQNC01 family has no cycles. The

SQNC02 family has sparse small negative cycles. The SQNC03 family has
dense small negative cycles. The SQNC04 family has several long cycles. The
SQNC05 family has Hamilton cycle.

3. The LNC families are the grid networks mentioned above but with Y =16.
The LNC01, LNC02, LNC03, LNC04 and LNC05 are similar to those in the
SQNC families.

4. The PNC families are the layered networks. A layered network consists of
layers 0. . . X-1. Each layer is a simple cycle plus a collection of arcs con-
necting randomly selected pairs of vertices on the cycle. In the PNC families
each layer contains 32 vertices and X = n/32 [Gol95]. The PNC01, PNC02,
PNC03, PNC04 and PNC05 are similar to those in the SQNC families.

Negative Cycle Detection Problem 657

There are 5 test cases for each row shown in the following tables. The number
of scan operations shown is the average of the 5 test cases. The percentage
improvement is calculated according to the number of operation of relaxing.
Results with more than 10% faster or slower will be highlighted in different
colors. Finally, the ’M’ in front of the name of the algorithm implies the modified
algorithm with our heuristics implemented. The results are shown in Appendix I.

6 Conclusion

In this paper, we described two heuristics that can be incorporated into a wide
range of commonly used single source algorithms for the Negative Cycle Detec-
tion problem. The modifications are very simple, involving only adding several
lines of code.

After modification, all algorithms have increased the speed generally. There
are significant results in the set of random graphs and no cycle graphs. We
discovered that 69% of test cases have improved. Also, the improvements are
sometimes dramatic, which have an improvement of a factor of 23, excluding
the infinity case, while the worst case has only decreased by 85% only, which is
comparably small when compared to the improvement.

References

[CG96] Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle detection al-
gorithms. In Josep D’ıaz and Maria Serna, editors, Algorithms—ESA ’96,
Fourth Annual European Symposium, volume 1136 of Lecture Notes in
Computer Science, pages 349–363, Barcelona, Spain, 25–27 September 1996.
Springer.

[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem.
SIAM Journal on Computing, 24(3):494–504, June 1995.

[Tar81] R. E. Tarjan. Shortest Paths. Technical report, AT&T Bell Laboratories,
Murray Hill, NJ, 1981.

658 C.-H. Wong and Y.-C. Tam

Appendix I

Table 1. Results for no cycle graphs LNC01

#Vertices MGORC GORC Improve MBFCT BFCT Improve

LNC01 8193 29571 51894 75.5% 14891 27338 83.6%

16385 59399 102501 72.6% 29864 54115 81.2%

32769 117508 204668 74.2% 59016 107378 81.9%

65537 236006 412421 74.8% 118558 217019 83.0%

131073 471187 824874 75.1% 236706 433352 83.1%

262145 940478 1643797 74.8% 472542 864805 83.0%

524289 1881286 3289308 74.8% 945099 1733480 83.4%

1048577 3764090 6590393 75.1% 1890963 3455877 82.8%

2097153 7523534 13186716 75.3% 3779505 6917921 83.0%

4194305 15052684 26342784 75.0% 7561213 13826436 82.9%

8388609 30111238 52697650 75.0% 15127398 27660704 82.9%

16777217 60193979 58728907 -2.4% 30237773 30997195 2.5%

Average 68.32% 76.11%

Table 2. Results for no cycle graphs PNC01

#Vertices MGORC GORC Improve MBFCT BFCT Improve

PNC01 8193 0 141440 INF 0 101024 INF

16385 0 282502 INF 0 206452 INF

32769 0 577308 INF 0 421004 INF

65537 0 1175657 INF 0 840400 INF

131073 0 2326792 INF 0 1697588 INF

262145 0 4662634 INF 0 3378583 INF

524289 0 9360087 INF 0 6776352 INF

1048577 0 18799475 INF 0 13545258 INF

2097153 0 37359269 INF 0 27079159 INF

4194305 0 74824647 INF 0 54191807 INF

8388609 0 149660040 INF 0 108381976 INF

Average INF INF

Table 3. Results for no cycle graphs SQNC01

#Vertices MGORC GORC Improve MBFCT BFCT Improve

SQNC01 4097 13503 29080 115.4% 6933 12259 76.8%

16385 51932 114828 121.1% 26775 48554 81.3%

65537 203158 479398 136.0% 104971 191840 82.8%

262145 807586 1961943 142.9% 418223 733359 75.4%

1048577 3211258 7930611 147.0% 1663635 2919808 75.5%

4194305 12817258 32338613 152.3% 6643025 11873024 78.7%

16777217 51213266 140101492 173.6% 26550354 48035413 80.9%

Average 141.19% 78.77%

Negative Cycle Detection Problem 659

Table 4. Results for a few short cycle graphs LNC02

#Vertices MGORC GORC Improve MBFCT BFCT Improve

LNC02 8193 6442 11480 78.2% 3240 5825 79.8%

16385 19433 34692 78.5% 9716 17916 84.4%

32769 42381 46765 10.3% 21241 24144 13.7%

65537 90512 114548 26.6% 45277 61044 34.8%

131073 151996 267506 76.0% 75979 141937 86.8%

262145 247744 438869 77.1% 123912 231623 86.9%

524289 696032 1163851 67.2% 348365 616440 77.0%

1048577 1563907 1669857 6.8% 782080 883473 13.0%

2097153 1845286 3252535 76.3% 923584 1729789 87.3%

4194305 6011875 6697666 11.4% 3007849 3560722 18.4%

8388609 13820476 24466542 77.0% 6911521 12969000 87.6%

16777217 22339356 37514660 67.9% 11172724 19902492 78.1%

Average 54.44% 62.32%

Table 5. Results for a few short cycle graphs PNC02

#Vertices MGORC GORC Improve MBFCT BFCT Improve

PNC02 8193 47185 59183 25.4% 29484 30705 4.1%

16385 86450 64450 -25.4% 53720 54659 1.7%

32769 225235 205400 -8.8% 140052 142698 1.9%

65537 287805 203174 -29.4% 178108 180636 1.4%

131073 350055 294782 -15.8% 218465 212419 -2.8%

262145 503878 386424 -23.3% 314458 330199 5.0%

524289 1316216 1095546 -16.8% 820598 874808 6.6%

1048577 4790290 3915894 -18.3% 2983431 3175931 6.5%

2097153 10428337 8593237 -17.6% 6495202 6953796 7.1%

4194305 23124100 19013193 -17.8% 14408767 15390086 6.8%

8388609 67316841 55413705 -17.7% 41913396 44775974 6.8%

Average -15.05% 4.10%

Table 6. Results for a few short cycle graphs SQNC02

#Vertices MGORC GORC Improve MBFCT BFCT Improve

SQNC02 4097 13503 29080 115.4% 6933 12259 76.8%

16385 51932 114828 121.1% 26775 48554 81.3%

65537 203158 479398 136.0% 104971 191840 82.8%

262145 807586 1961943 142.9% 418223 733359 75.4%

1048577 3211258 7930611 147.0% 1663635 2919808 75.5%

4194305 12817258 32338613 152.3% 6643025 11873024 78.7%

16777217 51213266 140101492 173.6% 26550354 48035413 80.9%

Average 141.19% 78.77%

660 C.-H. Wong and Y.-C. Tam

Table 7. Results for many short cycles graphs LNC03

#Vertices MGORC GORC Improve MBFCT BFCT Improve

LNC03 8193 343 396 15.3% 173 196 13.2%

16385 71 136 93.2% 31 47 48.4%

32769 112 275 145.9% 54 72 33.1%

65537 208 262 26.2% 106 97 -8.5%

131073 180 221 22.3% 92 91 -0.7%

262145 138 297 115.5% 72 82 14.2%

524289 240 349 45.4% 120 110 -8.0%

1048577 198 224 13.4% 97 69 -28.7%

2097153 149 313 110.3% 74 73 -1.1%

4194305 172 344 99.7% 86 86 -0.2%

8388609 216 261 20.9% 106 102 -3.6%

16777217 193 202 4.6% 95 100 5.7%

Average 59.39% 5.32%

Table 8. Results for many short cycles graphs PNC03

#Vertices MGORC GORC Improve MBFCT BFCT Improve

PNC03 8193 461 2713 489.1% 327 865 164.6%

16385 473 3046 543.5% 256 451 75.7%

32769 468 3843 721.2% 248 513 106.9%

65537 341 3030 788.0% 165 829 402.9%

131073 967 3842 297.1% 697 686 -1.7%

262145 381 3670 863.8% 214 339 58.7%

524289 1144 4174 265.0% 620 525 -15.3%

1048577 177 2743 1453.5% 113 244 116.9%

2097153 1125 3747 233.0% 617 552 -10.6%

4194305 314 2063 557.5% 175 394 124.9%

8388609 632 2628 315.5% 292 409 40.1%

Average 593.38% 96.65%

Table 9. Results for many short cycles graphs SQNC03

#Vertices MGORC GORC Improve MBFCT BFCT Improve

SQNC03 4097 109 487 345.3% 55 173 216.1%

16385 74 584 686.5% 34 249 625.0%

65537 250 1101 340.5% 130 493 280.1%

262145 477 3779 691.6% 243 1077 343.2%

1048577 1818 7839 331.1% 950 2441 157.0%

4194305 2934 7534 156.8% 1536 4593 199.0%

16777217 5896 28282 379.7% 3066 8719 184.4%

Average 418.79% 286.40%

Negative Cycle Detection Problem 661

Table 10. Results for a few long cycles graphs LNC04

#Vertices MGORC GORC Improve MBFCT BFCT Improve

LNC04 8193 26711 54962 105.8% 12910 20687 60.2%

16385 92773 148990 60.6% 41107 56489 37.4%

32769 251488 349870 39.1% 122379 145197 18.6%

65537 881848 948447 7.6% 365853 376227 2.8%

131073 1980993 2097090 5.9% 874778 898293 2.7%

262145 4467623 5460818 22.2% 1892207 2215706 17.1%

524289 11883080 11385873 -4.2% 4968220 5017279 1.0%

1048577 25741146 28462486 10.6% 10792331 12567955 16.5%

2097153 62102224 61088246 -1.6% 26089374 27892978 6.9%

4194305 121983730 128064383 5.0% 53771346 59798591 11.2%

8388609 275905623 286903304 4.0% 112925426 135532732 20.0%

16777217 538729562 664472322 23.3% 231721552 299999324 29.5%

Average 23.19% 18.66%

Table 11. Results for a few long cycles graphs PNC04

#Vertices MGORC GORC Improve MBFCT BFCT Improve

PNC04 8193 96459 82610 -14.4% 55914 37737 -32.5%

16385 363660 189675 -47.8% 222163 89015 -59.9%

32769 1032742 416393 -59.7% 633831 215134 -66.1%

65537 2475918 932459 -62.3% 1574038 485710 -69.1%

131073 3959249 2244526 -43.3% 2482065 1042791 -58.0%

262145 11673063 4881046 -58.2% 6672867 2282332 -65.8%

524289 26999818 10280214 -61.9% 16888696 4707412 -72.1%

1048577 56517150 21103100 -62.7% 35114982 9594361 -72.7%

2097153 118365443 44260038 -62.6% 74302031 20881883 -71.9%

4194305 225343295 95936613 -57.4% 147809535 43256228 -70.7%

8388609 517666048 189688611 -63.4% 328137483 88085199 -73.2%

Average -53.97% -63.74%

Table 12. Results for a few long cycles graphs SQNC04

#Vertices MGORC GORC Improve MBFCT BFCT Improve

SQNC04 4097 32707 30880 -5.6% 15213 13944 -8.3%

16385 184893 170162 -8.0% 81463 67445 -17.2%

65538 573055 746841 30.3% 254273 297501 17.0%

262145 1313928 3264595 148.5% 560271 1389863 148.1%

1048577 2338506 15068659 544.4% 1099832 6288913 471.8%

4194305 6204248 68242481 999.9% 2710118 27430729 912.2%

16777217 14024018 272653950 1844.2% 6681120 121993247 1725.9%

Average 507.67% 464.21%

662 C.-H. Wong and Y.-C. Tam

Table 13. Results for Hamiltonian cycle graphs LNC05

#Vertices MGORC GORC Improve MBFCT BFCT Improve

LNC05 8193 163438 172029 5.3% 98947 91658 -7.4%

16385 346868 364541 5.1% 215632 202262 -6.2%

32769 753945 803979 6.6% 458880 436855 -4.8%

65537 1633918 1733490 6.1% 999207 934728 -6.5%

131073 3499646 3789556 8.3% 2082565 2027643 -2.6%

262145 7599126 7828071 3.0% 4637622 4329335 -6.6%

524289 15608355 16876480 8.1% 9456863 9179454 -2.9%

1048577 33572684 35232411 4.9% 20445301 19287842 -5.7%

2097153 69453620 74266615 6.9% 42213747 40477734 -4.1%

4194305 144322754 156777150 8.6% 89613042 84456141 -5.8%

8388609 314273826 331798694 5.6% 189346386 181584841 -4.1%

16777217 637684719 668256739 4.8% 387236035 364980712 -5.7%

Average 6.11% -5.20%

Table 14. Results for Hamiltonian cycle graphs PNC05

#Vertices MGORC GORC Improve MBFCT BFCT Improve

PNC05 8194 82594 90718 9.8% 54836 47319 -13.7%

16386 179350 203306 13.4% 116631 100007 -14.3%

32770 361404 401511 11.1% 249244 210670 -15.5%

65538 785227 870523 10.9% 516925 443592 -14.2%

131074 1732688 1680790 -3.0% 1096942 901936 -17.8%

262146 3462811 3965235 14.5% 2232233 1928211 -13.6%

524290 7714697 7216528 -6.5% 4579138 4039317 -11.8%

1048578 16872712 16794782 -0.5% 9786195 8450277 -13.7%

2097154 32924136 37489022 13.9% 19973817 17243048 -13.7%

4194306 63798970 71903161 12.7% 41054033 35357906 -13.9%

8388610 154010041 151672136 -1.5% 86223637 74532047 -13.6%

Average -1.50% -14.16%

Table 15. Results for Hamiltonian cycle graphs SQNC05

#Vertices MGORC GORC Improve MBFCT BFCT Improve

SQNC05 4098 70976 79742 12.4% 44744 41610 -7.0%

16386 360423 365960 1.5% 207067 197097 -4.8%

65538 1644198 1712316 4.1% 983910 928755 -5.6%

262146 7650803 8070454 5.5% 4679524 4297402 -8.2%

1048578 32523850 34451433 5.9% 19818466 18737042 -5.5%

4194306 151666794 149113446 -1.7% 91909813 82151343 -10.6%

16777218 648487235 648211387 0.0% 394621759 353276864 -10.5%

Average 3.96% -7.46%

Negative Cycle Detection Problem 663

Table 16. Results for random graphs RAND-5

Negative Weight MGORC GORC Improve MBFCT BFCT Improve

0 0 7780968 INF 0 4578450 INF

-1000 1133358 8892373 684.6% 341958 5350722 1464.7%

-2000 2080317 9588453 360.9% 762572 6481434 749.9%

-4000 260253 3665786 1308.5% 211730 5139325 2327.3%

-6000 328345 884558 169.4% 218531 1634924 648.1%

-8000 224668 41588 -81.5% 115428 721280 524.9%

-16000 603 541 -10.4% 328455 237747 -27.6%

-32000 175 174 -0.5% 329102 143538 -56.4%

-64000 51 48 -4.3% 380534 55175 -85.5%

Table 17. General results for GORC

Improve Degrade

100% < X 36.1% 0.0%

10% < X ≤ 100% 27.8% 17.0%

X ≤ 10% 12.8% 6.3%

Total 76.7% 23.3%

Table 18. General results for BFCT

Improve Degrade

100% < X 24.8% 0.0%

10% < X ≤ 100% 29.3% 25.7%

X ≤ 10% 9.6% 10.6%

Total 63.7% 36.3%

Appendix II

Proof of Lemma 1

Consider a negative cost cycle C in a directed graph G(V, E) where C={v0, v1,
. . . , vn−1}. The accumulated costs on C starting from v0 are {C 1,0, C1,1,. . . ,
C 1,n−1 }, where C1,k is the accumulated cost at vertex vk starting from v0.

First of all, at the end of the cycle, i.e. vn−1, the accumulated cost (Wcycle)
along this cycle must be negative. Secondly, there is at least one maximum ac-
cumulated cost Cmax on this cycle. Finally, there must be at least one edge,
(vi ,vj), where j = i+1, that is negative since there must be at least one neg-
ative edge on a negative cycle. Note that we can change the ordering of the
vertices by choosing another “starting vertex”. Suppose that we take vk as the
starting vertex where vk has the largest accumulated cost (chose the last one if
there is more than one), we will have the accumulated costs {C 2,k+1, C2,k+2,. . . ,
C 2,n−1, C2,0, C2,1,. . . , C 2,k }.

Now we will have the path {vk+1, vk+2,. . . , vn−1, v0, v1,. . . , vk}. Then we
will have two sets of vertices. The first set contains the vertices in {vk+1, vk+2,
. . . , vn−1 }. For any vertex v in this set, C2,v = C1,v − Cmax < 0, where
Cmax

>
=0 because otherwise, v0 is already the correct starting point. The second

set contains the vertices in {v0, v1, . . . , vk}. For any vertex v in this set, C2,v =
C1,v + Wcycle − Cmax < 0.

	The Negative Cycle Detection Problem
	Introduction

	Related Works
	Definitions
	The Bellman-Ford Moore Algorithm with Predecessor Array (BFCF)
	The Bellman-Ford-Tarjan Algorithm (BFCT)
	The Goldberg-Radzik Algorithm (GORC)

	Our New Approach to This Problem
	Heuristic One: Pumping Negative Strategy
	Heuristic Two: Reduced Cost Elimination

	Modifications on Various Algorithms
	Modification of BFCF
	Modifications of BFCT
	Modifications of GORC

	Experimental Setups
	Results

	Conclusion
	References

