
Ripple: An Effective Routability-Driven Placer
by Iterative Cell Movement

Xu He, Tao Huang, Linfu Xiao, Haitong Tian, Guxin Cui and Evangeline F.Y. Young
Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
email: {xhe, thuang, lfxiao, httian, gxcui, fyyoung}@cse.cuhk.edu.hk

ABSTRACT
In this paper, we describe a routability-driven placer calledRipple.
Two major techniques called cell inflation and net-based move-
ment are used in global placement followed by a rough legaliza-
tion step to reduce congestion. Cell inflation is performed in the
horizontal and the vertical directions alternatively. We propose
a new method called net-based movement, in which a target po-
sition is calculated for each cell by considering the movement of a
net as a whole instead of working on each cell individually. In de-
tailed placement, we use a combination of two kinds of strategy:
the traditional HPWL-driven approach and our new congestion-
driven approach. Experimental results show that Ripple is very
effective in improving routability. Comparing with our pervious
placer, which is the winner in the ISPD 2011 Contest, Ripple can
further improve the overflow by 38% while reduce the runtime
is reduced by 54%.

1. INTRODUCTION
Routability has become an important issue in VLSI physical

design. Placement, which plays a fundamental and importan-
t role in physical design, can greatly affect the quality of the
routing solution and is perhaps the most powerful tool in the
congestion alleviation [1].
In previous placement algorithms, the major objective is to

minimize wirelength which is often estimated by the half-perimeter
wirelength (HPWL) model. Although minimizing HPWL can
reduce the average routing demand, the routing demand may
be distributed unevenly and as a result, some nets are difficult
to be routed or even unroutable at the end. Moreover, hundreds
of large macros which occupy several metal layers usually ex-
ist in modern circuits. The existence of such routing blockages
have made this routability-driven placement problem even more
challenging.
There are some previous works on this routability-driven place-

ment problem. Several of them try to distribute the routing de-
mand evenly by allocating whitespace in the congested regions
explicitly or implicitly [14][8][2][10][4]. However, the congestion
maps in the works [2][4] may be inaccurate during their top-down
partitioning-based global placement, since all the cells are still
far from being legalized. Therefore, it is difficult to calculate the
amount of whitespace needed based on the inaccurate congestion
maps. The works [14][8][10] adjust the whitespace distribution
after global placement, but this is not flexible enough since the
global placement result cannot be changed too much. Some pre-
vious works try to change the objective function in analytical
placement [6][5][3][11] to address the routability issue. However,
the function modeling the routing demand information directly
is usually nonlinear [6][5][3]. This kind of nonlinear analytical

placement is often based on a multilevel framework for efficiency,
but accurate congestion estimations of those intermediate-level
layouts in the multilevel framework will be hard to obtain. The
work [11] uses an additional move force in their quadratic func-
tion to move cells to regions with lower routing demand, but
this approach lags behind in solution quality [7].

In this paper, our routability-driven placer Ripple is based
on a lower-upper-bound framework described in [7] during glob-
al placement. Since Ripple is a flat placer and congestion es-
timation will always be done after a rough legalization step,
the estimation obtained is much more accurate. In the lower-
bound computation, the objective is to minimize the HPWL
using Bound2Bound (B2B) net model [12], in order to reduce
the total routing demand and wirelength. In the upper-bound
computation, after congestion estimation, we will use two major
techniques, called cell inflation and net-based movement followed
by rough legalization to distribute the congestion measures even-
ly. Since the cell inflation step will enlarge the cell areas in the
congested regions, the cells will be placed further apart after
the rough legalization step. The net-based movement method
will try to move a whole net directly according to the conges-
tion estimation, and is an effective method to be used with cell
inflation. For detailed placement, we use a combination of two
strategies: the traditional HPWL-driven approach, and a new
congestion-driven approach that considers the displacement be-
tween the cells and their target positions computed to reduce
congestion.

We summarize our major contributions as follows:

• Our cell inflation method considers the inflation ratio and
the cell spreading scope as a whole in the horizontal and
vertical directions separately. We find that by doing cell
inflation in alternate directions iteratively, the total con-
gestion can be reduced more effectively.

• We devise an approach called net-based movement to cal-
culate the target positions for the cells by considering con-
gestion and the movement of a whole net directly.

• In detailed placement, we propose a congestion-driven ap-
proach. Besides minimizing HPWL, we also consider the
displacement between the cells and their target positions
calculated to optimize congestion.

The remainder of this paper is organized as follows. In Sec-
tion 2, we give the problem formulation. Section 3 is an overview
of the whole process of our placer. Section 4 explains the con-
gestion estimation method to compute congestion maps quickly.
Section 5 gives details of the cell inflation and net-based move-
ment steps. Section 6 describes the detailed placement phase.

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 74

Table 1: Major information for global router
Parameter Description
LayerNum Number of layers
VTrack(i) Number of vertical or horizontal tracks
HTrack(i) on layer i in a tile (i = 1, ..., LayerNum)
TileSizeX/Y Width/Height of a tile
BlockPorosity Porosity of the routing blockages: zero implies

complete blockage
BlockLayer(i) The set of blocked layers of routing blockage i

Figure 1: Flow of our placement algorithm

Experimental results and a conclusion will be given in Section 7
and Section 8.

2. PROBLEM FORMULATION
As defined in the ISPD Contest 2011 [13], given a netlist N =

(E, V) with nets E and nodes V , a routability-driven placer is
required to calculate the positions of the movable nodes (cells)
to minimize the total routing overflow and wirelength when the
placement is routed by a given router within a limited amount of
time. The major objective is to minimize the overflow obtained
by the router. The routing information is given as well. We list
the major parameters in Table 1.

3. OVERVIEW OF OUR ALGORITHM
Our placer is developed based on the lower-upper-bound frame-

work in [7]. The two bound computations are invoked alterna-
tively. Figure 1 shows the whole process of our placer. In the
upper-bound computation phase, both cell inflation and net-
based movement will be used after congestion estimation and
followed by a rough legalization. Notice that our congestion es-
timation is always performed after a rough legalization step, so
it will be more accurate and useful. We use cell inflation to
reduce congestion in the horizontal and vertical directions alter-
natively and use net-based movement to reduce congestion in
the direction with higher overflow. Both the cell inflation and
net-based movement steps are incorporated into the flow after
a certain number of iterations (5th and 15th for cell inflation
and net-based movement respectively in our implementation).
The total number of iterations in the global placement phase is
around 32 to 40, regardless of the benchmark size. We found
that with even more iterations will only place the cells more
closely and will cause routability problem.

Figure 2: The congestion estimation of HPWL is too
optimistic. Both congestion maps are for the horizontal
direction (superblue18).

For detailed placement, we use a combination of two kinds
of strategies. The first one is the traditional HPWL-driven ap-
proach [9]. Although only focusing on HPWL can reduce the
routing demand, it may make the placement less routable in
some cases. The other one is congestion-driven, in which we try
to reduce the displacement between the cells and their target
positions calculated to optimize congestion. At the end, we will
return the one with less overflow.

4. ROUTING CONGESTION ESTIMATION
Our congestion estimation is obtained by extending and gen-

eralizing RUDY [11]. RUDY uses the HPWL estimation directly
which is indeed much shorter than the actual wirelength. There-
fore, it will often under-estimate the real routing congestion a
lot as shown in Figure 2(a) as compared with Figure 2(b) that
is obtained from the global router CGrip. To cope with this,
instead of using HPWL directly, multi-pin nets are first decom-
posed into two-pin nets using the rectilinear minimum spanning
tree (RMST) method. Shared edges between subnets of the same
net will be handled in such a way to avoid double counting. The
routing demand is computed in the horizontal and vertical di-
rections separately. We will discuss below the computation of
the horizontal demand DemandH, while the vertical demand
DemandV can be obtained similarly.

The layout is divided into uniform routing tiles whose width
and height are TileSizeX and TileSizeY respectively. Consider a
two-pin net p connecting from (x1, y1) to (x2, y2), the horizontal
wirelength is the width of the bounding box. The DemandH
due to p for each tile overlapping with the bounding box of p is
computed as follows:

DemandH = ConnInterArea
BoundingBoxArea

×WireAreaH

WireAreaH = (max{x1, x2} −min{x1, x2})×WireSpaceH
WireSpaceH = TileSizeY

TotalTracksH

TotalTracksH =
LayerNum∑

i=1

HTrack(i)

(1)
where BoundingBoxArea is the bounding box area of this con-

75

Figure 3: The congestion estimation maps of the hori-
zontal direction (superblue18).

nection, ConnInterArea is the intersection area between the
tile and the bounding box, WireSpaceH is the area of one unit
of wire in the horizontal direction, WireAreaH is the horizontal
wire area of this net which can be obtained by multiplying the
horizontal wirelength byWireSpaceH and TotalTracksH is the
total number of horizontal tracks (counting all metal layers) in
the tile.
The supply of a tile in the horizontal direction SupplyH can

be computed as follows:

SupplyH = TileSizeX × TileSizeY −BlockageH
BlockageH =

∑
i∈Btile

BInterArea(i)×BRatioH(i)

BRatioH(i) =

∑
j∈BlockLayer(i)

HTrack(j)×(1−BlockPorosity)

TotalTracksH

(2)

where Btile is the set of routing blockages overlapped with
the tile, BInterArea(i) is the intersection area between rout-
ing blockage i and the tile, BRatioH(i) is the ratio of horizontal
tracks being occupied by the routing blockage i and BlockageH
is the routing resource occupied by all the routing blockages
overlapped with the tile in the horizontal direction. The level of
horizontal routing congestion CongestionH of the tile can then
be computed as:

CongestionH =
SupplyH −DemandH × dw

SupplyH
(3)

where dw (demand weight, dw > 0) is a variable defined to
control the number of tiles to be inflated. The less the value of
CongestionH, the more congested a tile is. If CongestionH < 0,
the tile is said to be over congested.
As mentioned above, we will handle the shared edges of the

subnets of the same net carefully in order not to double count
some congestion estimation mistakenly. As illustrated by the
example in Figure 4(a), using RMST, this three-pin net will be
decomposed into two 2-pin subnets which are a to b and a to c.
Both subnets will increase the routing demand of tile 1 and the
demand of this net on tile 1 will be counted twice. In order to
estimate more accurately, the demandH of this tile due to this
net will be equal to the maximum demandH of those subnets.
Figure 3 shows the congestion map in the horizontal direction
for superblue18 obtained by our method. We can see that more

Figure 4: An example to show the RMST model will
have larger density estimation than RSMT model.

accurate estimation can be obtained by comparing Figure 3 with
the simple HPWL approach shown in Figure 2 (a).

5. CELL MOVEMENT

5.1 Cell Inflation and Spreading
In cell inflation, we need to address three important issues.

Where should cell inflation be used? What is the inflation ra-
tio? How to spread the cells? Unlike previous works [2][4][10],
we consider these three issues as a whole for the horizontal and
vertical directions separately. By applying our cell inflation in
the horizontal and vertical directions alternatively for several
times (4 times for each direction in our implementation) in each
iteration of global placement, the routing densities in both di-
rections will be alleviated effectively. The following discussion
is based on the horizontal direction while the vertical direction
can be handled similarly.

The cells are inflated according to the values of CongestionH
of the tiles (Section 4). In previous works, if a tile’s routing
supply is less than its routing demand (i.e., CongestionH <
0), the cells in this tile will be inflated. However, if almost
all the tiles are congested, inflating the cells in all the tiles is
helpless to distribute the routing demand evenly all over the
chip. Therefore, we adjust the variable dw in equation 3 to
control the number of tiles to be inflated. If too many tiles
are over-congested, the value of dw can be reduced to decrease
the weighted routing demand in equation 3. The number of
congested tiles whose CongestionH is smaller than zero will
thus decrease. Besides, we use three levels of inflation ratio as
shown in equation 4 where a1 = 0.3, b1 = 0.4, c1 = 0.6 and
a2 = 0, b2 = −0.2, c2 = −0.4.

InflationRatio =

 a1 if CongestionH < a2

b1 if CongestionH < b2
c1 if CongestionH < c2

(4)

After cell inflation, we will spread the cells in those tiles whose
cell density is larger than a certain threshold γ (0 ≤ γ ≤ 1). A
modified rough legalization will be performed to reduce cell
density. In a regular rough legalization step, the clusters of cells
with cell density larger than γ will be expanded in all four direc-
tions (left, down, right, up) until the cell density of the region
is below γ. In this modified legalization step, if we focus on re-
ducing the congestion in the horizontal direction, the expansion
will go more in the vertical direction (up and down). In that
case, the horizontal demand will be distributed more sparsely in
a larger vertical scope. As shown in Figure 5, if the congested
region is expand more in the vertical direction, the horizontal
congestion will be distributed more sparsely. After applying cell

76

Figure 5: An example to show that the irregular expan-
sion strategy is more effective in reducing congestion in
one direction.

inflation in the horizontal and vertical directions alternatively,
the routing densities in both directions will be alleviated effec-
tively. All the cells will then be changed back to their original
sizes after the last rough legalization of the iteration.
We also limit the total inflation area of the cells for each cell

inflation process. A threshold δ is set to limit the total inflation
area. The tiles with CongestionH < 0 will be sorted in an
increasing order of their CongestionH value, and the cells in
the most congested tiles are inflated first until the total inflation
area reaches δ. In our implementation, we set δ as 35% of the
total available area.

5.2 Net-Based Movement
In cell inflation, cells over congested regions will be expanded

and spread to the surrounding. However this approach does not
identify target positions for the cells constructively, and it works
on each cell individually without considering how one whole net
should be moved according to the congestion. To solve these
problems, we devise another effective method called net-based
movement which will compute a target position for each cell and
will consider the movement of a net as a whole.
Our method includes two steps: (1) move the nets’ bounding

boxes away from the congested regions, since it is the nets in-
stead of the cells using the routing resource directly; (2) move
the cells on the nets according to the target positions of the nets.
The following discussion is on reducing the congestion measures
in the horizontal direction while the vertical direction can be
handled similarly.
In order to move a net away from regions with high hori-

zontal congestions, we can change the x or y coordinate of its
bounding box center. We choose to change the y-coordinate
only for horizontal congestion reduction. It is because if the
x-coordinate is not changed, the width of the bounding box of
each net is not modified and the horizontal demand will not be
worsened. This strategy can reduce the horizontal congestion
in a more stable manner. We use NSet(i) to denote the set of
cells on net i. Let the number of cells in both net i and net j
be Share(i, j) = |NSet(i) ∩NSet(j)|. Nets i and j are said to
be associated with each other if Share(i, j) > 0. The larger the
value of Share(i, j), the closer is the relationship between i and
j.
This method is outlined in Algorithm 1. On line 1-4, CenterY (i)

and CH(i) are calculated for net i = 1, 2, . . . , n, where n is the
number of nets, CenterY (i) is the original y-coordinate of the
center of net i and CH(i) is the average CongestionH of all the
tiles overlapped by the bounding box of net i. Line 7-17 shows
that if CH(i) < 0, net i will be moved nearer to those associated
nets j where CH(j) > CH(i). We first find the BestCH which
is the largest CH(j) for all j such that Share(i, j) > 0 as shown
in line 8-13. If BestCH < 0, net i will not be moved; otherwise,

we will move net i according to equation 5:

NewCenterY (i) = CenterY (i) +
∑

Share(i, j) > 0
&CH(j) > CH(i)

Move(i, j)

Move(i, j) = (CenterY (j) − CenterY (i)) × CH(j)−CH(i)
BestCH−CH(i)

× Share(i,j)
|NSet(i)|

(5)
After getting the new centers NewCenterY (i) of all the nets,

each movable cell q = 1, 2, . . . ,m will be moved in the y-direction
according to the new centers of the nets they are on. Suppose
the set of associated nets of cell q is Q. For each net i ∈ Q,
we calculate a candidate position CellY (i) for q according to
the new center NewCenterY (i) by keeping the same relative
position between the cell q and the center of the net’s bounding
box (line 23-24). Now, cell q has a set of candidate position-
s according to the set of associated nets it is on. The range
of all candidate positions is [MinY , MaxY], where MinY =
mini∈Q{CellY (i)} and MaxY = maxi∈Q{CellY (i)} (line 25-
29). LetMidY = (MinY +MaxY)/2. We will then move q with
the smallest displacement into the range [CellY (i1), CellY (i2)],
where CellY (i1) and CellY (i2) are the two candidate position-
s closest to MidY and CellY (i1) ≤ MidY ≤ CellY (i2) (line
31-33).

Algorithm 1 Net-Based Movement

1: for net i=1 to n do
2: Compute CenterY (i) of the bounding box of net i
3: Compute the average horizontal congestion CH(i)
4: end for
5: for net i=1 to n do
6: NewCenterY (i)=CenterY (i)
7: if CH(i) < 0 then
8: BestCH = CH(i)
9: for each net j where Share(i, j) > 0 do
10: if BestCH < CH(i) then
11: BestCH = CH(i)
12: end if
13: end for
14: if BestCH > 0 and BestCH ̸= CH(i) then
15: Update NewCenterY (i) using equation 5
16: end if
17: end if
18: end for
19: for cell q=1 to m do
20: MinY = +∞,MaxY = 0
21: Let Q be the set of associated nets of cell q
22: for each connected net i ∈ Q do
23: OffsetY = CellCoordY (q)− CenterY (i)
24: CellY (i) = OffsetY +NewCenterY (i)
25: if MinY > CellY (i) then
26: MinY = CellY (i)
27: else if MaxY < CellY (i) then
28: MaxY = CellY (i)
29: end if
30: end for
31: MidY = (MinY +MaxY)/2
32: Find i1, i2 ∈ Q, such that CellY (i1) and CellY (i2) are

closest to MidY , and CellY (i1) ≤ MidY ≤ CellY (i2)
33: Move CellCoordY (q) to the closest position in the range

[CellY (i1), CellY (i2)]
34: end for

After changing the positions of the cells, we will call the mod-
ified rough legalization step as described in section 5.1.

77

Figure 6: The cells of superblue12 are placed densely
in HPWL-driven detailed placement. The regions high-
lighted in red rings have high routing congestion.

6. DETAILED PLACEMENT
We use FastPlace-DP [9] for our detailed placement. However,

FastPlace-DP is HPWL-driven and it may increase congestion
and reduce routability. As shown in Figure 6(a), after global
placement, the cells are located quite sparsely in the potential-
ly over-congested regions. However, FastPlace-DP will try to
move cells together (Figure 6(b)) and will very likely increase
the overflow of the global routing step. Therefore, besides using
the HPWL-driven approach, we will also use a congestion-driven
approach. At the end, we will return the result with less over-
flow.
In the congestion-driven detailed placement, the displacement

between the cell and global placement is considered. We have
two steps in the congestion-driven approach. In the first step,
we make use of the result from global placement. When swap-
ping cells to minimize HPWL, the swapping window is around
the target position which is the position obtained by the glob-
al placement. If the HPWL is not improved after a number of
swapping iterations, this step is finished. In the second step, the
target position is calculated by the net-based movement method.
When swapping cells to minimize HPWL, the swapping window
is around the target position. After several swapping iterations
without congestion improvement, the detailed placement will be
finished.

7. EXPERIMENTAL RESULTS
Our implementation is written in C++ and compiled with

g++ 4.1.2. All the benchmarks are run on an Intel Core 2 Duo
Linux workstation with 2.8GHz and 4 GB RAM, using one CPU
core. We use the global router CGrip with the same configu-
ration as in the ISPD 2011 contest to evaluate our placement
result.

7.1 Analysis of Our Placement Method
The global placement phase mainly consists of five parts: Con-

jugate Gradient (CG), rough legalization, congestion estimation,
cell inflation and net-based movement. About 42.9% , 28.5% and
25.4% of the total runtime of the global placement phase is spent
on congestion estimation, CG and rough legalization respective-

Table 2: Runtime for global and detailed placement
Benchmark Global Detailed (s)

(s) HPWL Congestion
superblue18 2558 146 1707
superblue4 4752 332 1682
superblue5 4626 405 1783
superblue1 6525 544 2669
superblue2 6182 362 2416
superblue15 8797 277 1454
superblue10 8321 420 3573
superblue12 7652 991 2666

Avg. - 1.00 5.16

Table 3: Overflow of detailed placement
Benchmark HPWL Congestion
superblue18 60650 38176
superblue4 75540 182962
superblue5 128054 347462
superblue1 90 410
superblue2 936070 730544
superblue15 60222 153566
superblue10 646300 722588
superblue12 1104162 547954

Avg. 1.11 1.00

ly. The processes of cell inflation and net-based movement take
only 0.4% and 2.7% of the total runtime of the global placement
phase respectively.

Figure 7 shows the lower and upper bounds for HPWL, the
inflation area and the sum of congestion estimations in both the
horizontal and the vertical directions at each iteration for the
benchmark superblue18. Since cell inflation is used after the
5th iteration, the HPWL upper-bound is dramatically increased
at the 5th iteration, and then begin to decrease again. The
congestion value is reduced greatly in the first 25 iterations, and
then it is improved slowly. When the congestion is decreased
iteratively, the inflation area is reduced gradually as well.

Table 2 shows the runtime for the global and detailed place-
ment in seconds. We list the runtime of both HPWL-driven
(HPWL) detailed placement, i.e., FastPlace-DP [9], and our
congestion-driven (Congestion) detailed placement (Section 6).

We also use CGrip to calculate the overflow of the placemen-
t results from the two detailed placement approaches, as listed
in Table 3. We can see that the HPWL-driven detailed place-
ment can get a little bit smaller overflow in some benchmarks.
That is because based on the result of global placement, reduc-
ing HPWL can reduce the routing demand. However, the total
overflow of the HPWL-driven approach is 11% more than that of
the congestion-driven approach. In superblue12 and superblue2,
the congestion-driven detailed placement has much smaller over-
flow. It is because the HPWL-driven detailed placement changes
the positions of the cells too much (as shown in Figure 6), mak-
ing the congestion increase dramatically. Therefore, in order to
combine the advantages of both methods, we use HPWL-driven
detailed placement first, then we will check whether the dis-
placement between the detailed placement result and the global
placement result exceeds a certain threshold. If the displace-
ment is too large, we will call our congestion-driven detailed
placement and return the result with less overflow.

78

Figure 7: Lower-upper-bound HPWL, inflation area and overflow at each iterations (superblue18)

Table 4: Comparisons with the results of the ISPD 2011 Contest
Benchmark RippleContest2011 mPL11 SimPLR RADIANT Ripple

Overflow Runtime Overflow Runtime Overflow Runtime Overflow Runtime Overflow Runtime
(seconds) (seconds) (seconds) (seconds) (seconds)

superblue18 460910 11226 25134 2413 50064 2791 364820 3718 38176 6662
superblue4 85526 7631 122842 2560 420738 3083 226092 3019 75540 5094
superblue5 147176 10885 368940 3818 191704 5649 613390 6170 128054 9641
superblue1 108 9915 34660 3573 0 5686 122720 6895 90 7079
superblue2 797898 16887 1403738 4318 1659322 7913 1454226 8611 730544 15958
superblue15 143580 17831 140208 5138 283056 7697 695684 12580 60222 9083
superblue10 1010058 22319 1159416 5046 1311688 12989 616424 12873 646300 8751
superblue12 437676 21390 2201266 6971 415404 10046 3051096 19089 547954 14186

Avg. 1.38 3.49 2.45 1.0 1.95 1.65 3.21 2.16 1.00 2.26

7.2 Comparisons with the Results of the ISPD 2011
Contest

Table 4 lists the overflow result of the placements obtained
by the ISPD 2011 contest participants and Ripple. We run the
router CGrip on the released placement files on our workstation,
and the overflow is reported by the contest evaluation script. We
can see that the total overflow is reduced by 38% compared with
our previoius version, the first place in the ISPD 2011 Contest
(RippleContest2011 in Table 4), and we can get the minimum
overflow in most benchmarks. Although our overflow is not the
best in some benchmarks, our results are very close to the mini-
mum ones. The total runtime of our method is improved by 54%
compared with RippleContest2011. The benchmark superblue1,
superblue4, superblue10 and superblue15 finished after HPWL-
driven detailed placement since the displacement between the
detailed placement result and the global placement result is s-
mall. Other benchmarks use both kinds of detailed placement,
and the global router CGrip is used to evaluate the results from
the two detailed placement approaches. The runtime of the glob-
al router is included in the total runtime.

8. CONCLUSION
Our routability-driven placer is based on the lower-upper-

bound framework for the global placement step. The lower-
bound computation is to reduce the total routing demand by
minimizing HPWL. The upper-bound computation use cell in-
flation and net-based movement to reduce congestion. For de-
tailed placement, we use a combination of two strategies: the
traditional HPWL-driven approach and our congestion-driven
approach. Comparing with our previous placer which is the
winner in the ISPD 2011 Contest, Ripple can further improve

the overflow by 38% while the runtime is reduced by 54%.

9. REFERENCES
[1] C. Alpert, Z. Li, M. Moffitt, G. Nam, J. Roy, and G. Tellez. What

makes a design difficult to route. In ISPD, pages 7–12, 2010.

[2] U. Brenner and A. Rohe. An effective congestion-driven placement
framework. TCAD, 22(4):387–394, 2003.

[3] Y. Chuang, G. Nam, C. Alpert, Y. Chang, J. Roy, and
N. Viswanathan. Design-hierarchy aware mixed-size placement for
routability optimization. In ICCAD, pages 663–668, 2010.

[4] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu, and W. Kao. A
new congestion-driven placement algorithm based on cell inflation.
In ASP-DAC, pages 605–608, 2001.

[5] Z. Jiang, B. Su, and Y. Chang. Routability-driven analytical
placement by net overlapping removal for large-scale mixed-size
designs. In DAC, pages 167–172, 2008.

[6] A. Kahng and Q. Wang. Implementation and extensibility of an
analytic placer. TCAD, 24(5):734–747, 2005.

[7] M. Kim, D. Lee, and I. Markov. SimPL: An Effective Placement
Algorithm. In ICCAD, pages 649–656, 2010.

[8] C. Li, M. Xie, C. Koh, J. Cong, and P. Madden. Routability-driven
placement and white space allocation. TCAD, 26(5):858–871, 2007.

[9] M. Pan, N. Viswanathan, and C. Chu. An efficient and effective
detailed placement algorithm. In ICCAD, pages 48–55, 2005.

[10] J. Roy, N. Viswanathan, G. Nam, C. Alpert, and I. Markov. CRISP:
congestion reduction by iterated spreading during placement. In
ICCAD, pages 357–362, 2009.

[11] P. Spindler and F. Johannes. Fast and accurate routing demand
estimation for efficient routability-driven placement. In DATE,
pages 1226–1231, 2007.

[12] P. Spindler, U. Schlichtmann, and F. Johannes. Kraftwerk2: A fast
force-directed quadratic placement approach using an accurate net
model. TCAD, 27(8):1398–1411, 2008.

[13] N. Viswanathan, C. Alpert, C. Sze, Z. Li, G. Nam, and J. Roy. The
ISPD-2011 routability-driven placement contest and benchmark
suite. In ISPD, pages 141–146, 2011.

[14] X. Yang, B. Choi, and M. Sarrafzadeh. Routability-driven white
space allocation for fixed-die standard-cell placement. TCAD,
22(4):410–419, 2003.

79

