
718 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

On the Construction of Optimal Obstacle-Avoiding
Rectilinear Steiner Minimum Trees

Tao Huang, Liang Li, and Evangeline F. Y. Young

Abstract—This paper presents an efficient method to solve the
obstacle-avoiding rectilinear Steiner tree (OARSMT) problem
optimally. Our work is developed based on the GeoSteiner
approach in which full Steiner trees (FSTs) are first constructed
and then combined into a rectilinear Steiner minimum tree
(RSMT). We modify and extend the algorithm to allow obstacles
in the routing region. For each routing obstacle, we first introduce
four virtual terminals located at its four corners. We then give the
definition of FSTs with blockages and prove that they will follow
some very simple structures. Based on these observations, a two-
phase approach is developed for the construction of OARSMTs.
In the first phase, we generate a set of FSTs with blockages.
In the second phase, the FSTs generated in the first phase are
used to construct an OARSMT. Finally, experiments on several
benchmarks are conducted. Results show that the proposed
method is able to handle problems with hundreds of terminals in
the presence of multiple obstacles, generating an optimal solution
in a reasonable amount of time.

Index Terms—Full Steiner tree, obstacle-avoiding, rectilinear
Steiner minimum tree, routing.

I. Introduction

CONSTRUCTION of rectilinear Steiner minimum tree
(RSMT) is an important problem in very large-scale

integrated circuit (VLSI) physical design. It is useful for both
the detailed and global routing steps, and is important for
congestion, wire length, and timing estimations during the
floorplanning or placement step. The original RSMT problem
assumes no obstacle in the routing region. In today’s VLSI
designs, there can be many routing blockages, like macro cells,
IP blocks, and pre-routed nets. Therefore, the RSMT problem
with blockages, called obstacle-avoiding RSMT (OARSMT)
problem, has become an important problem in practice.

The OARSMT problem has been widely studied in recent
years. Since the problem is NP-complete [1], most of the previ-
ous papers focus on the development of heuristics. Some early
approaches construct an obstacle-free Steiner tree first and then

Manuscript received July 7, 2010; revised October 8, 2010; accepted
November 18, 2010. Date of current version April 20, 2011. This work
was supported in part by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China, under Project 418908.
Preliminary results of this work appeared in the Proceedings of IEEE/ACM
International Conference on Computer-Aided Design, San Jose, CA, Novem-
ber 2009. This paper was recommended by Associate Editor C. J. Alpert.

T. Huang and E. F. Y. Young are with the Department of Computer Science
and Engineering, Chinese University of Hong Kong, Shatin, Hong Kong
(e-mail: thuang@cse.cuhk.edu.hk; fyyoung@cse.cuhk.edu.hk).

L. Li is with the Oracle Research and Development Center Company, Ltd.,
Shenzhen 518057, China (e-mail: liang.li@oracle.com).

Digital Object Identifier 10.1109/TCAD.2010.2098930

replace the edges that overlap with obstacles [2]. These ap-
proaches are simple, but may result in lower-quality solutions.

Nondeterministic approaches are also developed based
on some meta-heuristics. Hu et al. [3] proposed an ant
colony optimization-based local search heuristic, called An-
OARSMan, to handle small-scale OARSMT problems with
complex obstacle shapes. Although An-OARSMan is flexible
in handling complex obstacles, it takes extremely long running
time for large-scale designs.

Some of the recent works also extend the maze routing
method to a multiterminal variant to handle multiterminal
nets. Hentschke et al. [4] presented AMAZE, a fast maze
routing-based algorithm to build Steiner trees. A recent work
on this problem is proposed by Li and Young [5]. In their
paper, multiple paths between the terminals are kept until all
the terminals are reached. A minimum spanning tree (MST)-
based method is then used to create an OARSMT. Although
maze routing-based approaches can provide solutions with
high quality, the space and time complexities are relatively
higher which limit their applications to large-scale problems.

Most of the recent approaches on the OARSMT problem are
graph-based algorithms where an OARSMT is built based on
a connection graph. Hu et al. [6] proposed a 3-step heuristic
called FORst for the OARSMT construction. In the first step,
terminals are partitioned into small subsets. In the second
step, terminals in the same subset are connected. In the final
step, an OARSMT is constructed by combining all the subsets
together. Feng et al. [7] proposed a method to construct
obstacle-avoiding Steiner trees in arbitrary λ-geometry by
Delaunay triangulation. Shen et al. [8] proposed another
connection graph-based approach to solve the problem. An
obstacle-avoiding spanning graph is first constructed and then
transformed into an OARSMT. Lin et al. [9] extended the
approach in [8] by identifying many “essential” edges which
can lead to more desirable solutions in the construction of
the obstacle-avoiding spanning graph. Another recent work
is presented by Long et al. [10]. They proposed an efficient
four-step algorithm to construct an OARSMT. Very recently,
Ajwani et al. [11] presented an algorithm called FOARS, in
which the obstacle-aware version of fast lookup table-based
wire-length estimation is used to construct an OARSMT.

In comparison with heuristics, there has been relatively
less research on exact algorithms for the OARSMT problem.
Maze routing can give optimal solutions to two-terminal nets.
Ganley et al. [12] proposed the concept of escape graph and
proved that there is an optimal solution composed only of

0278-0070/$26.00 c© 2011 IEEE

HUANG et al.: ON THE CONSTRUCTION OF OPTIMAL OBSTACLE-AVOIDING RECTILINEAR STEINER MINIMUM TREES 719

escape segments in the graph. A topology enumeration scheme
is developed for the construction of optimal three-terminal and
four-terminal OARSMTs. Note that by using escape graph, one
can transform the geometric OARSMT problem to the Steiner
tree problem in networks. Optimal solutions can be obtained
using some exact algorithms for the network case [13].

For the RSMT problem, there are ways to find optimal
solutions [15], [16]. A folk theorem states that any optimal
RSMT can be unique partitioned into edge-disjoint full Steiner
trees (FSTs). Based on this theorem, most of the exact algo-
rithms use a two-phase approach, developed by Winter [17],
to construct a RSMT. In the first phase, a sufficient number
of FSTs is computed. In the second phase, a small subset of
the FSTs with minimum total length is found and combined
such that all terminals are interconnected. In the case of an
obstacle-free plane, a FST has a topology, as characterized
by Hwang [18], that consists of a backbone and alternating
incident legs connecting the terminals. These particular shapes
are simple and can be efficiently computed and examined
based on some enumeration schemes [19], [20]. However,
different from the aforementioned case, FSTs in the presence
of obstacles can have various kinds of structures. It is usually
difficult to directly construct FSTs which limits the application
of this two-phase approach to the OARSMT problem.

The aim of this paper is to study the structures of FSTs
when obstacles exist and provide an optimal approach for
the OARSMT problem. Our work is developed based on
GeoSteiner, modified and enhanced to allow non-overlapping
rectangular blockages in the routing region. The contribution
of this paper can be summarized as follows.

1) We propose the introduction of virtual terminals to each
obstacle and prove that, with these virtual terminals,
the structures of FSTs with blockages are the same as
those of FSTs in the absence of obstacles. This provides
theoretical support for using the two-phase approach to
generate OARSMTs.

2) In the FST generation phase, we first develop a virtual
terminal pruning process which can effectively reduce
the number of resulting FSTs. Second, we analyze the
screening tests and point out the differences in dealing
with the existence of virtual terminals. Third, we propose
an efficient method to construct two-terminal FST in the
presence of obstacles.

3) In the FST concatenation phase, we propose a new for-
mulation for the concatenation of FSTs with blockages.
In the branch-and-cut search, we develop new separation
algorithm to adapt to the presence of virtual terminals.

The rest of this paper is organized as follows. In Section II,
we give the problem formulation of the OARSMT problem. In
Section III, we present the definition of the FSTs with block-
ages and a comprehensive study on their possible structures.
In Sections IV and V, we describe the two-phase approach in
detail. Experimental results are shown in Section VI, followed
by our conclusion in Section VII.

II. Problem Formulation

In the OARSMT problem, we are given a set T of terminals
on the 2-D plane and a set O of rectangular obstacles. No

Fig. 1. (a) Shifting and (b) flipping.

Fig. 2. FST structures (a) in the absence and (b) in the presence of obstacles.

Fig. 3. Locations of virtual terminals of an obstacle.

obstacle can overlap with each other, but they can be line-
touched at the boundary. A terminal cannot be located inside
an obstacle, but it can be on the boundary of an obstacle.
The objective of the problem is to give a tree with shortest
length that connects all the terminals, possibly through some
additional points, using only horizontal and vertical lines. This
tree is known as an OARSMT of the problem. No edge on
the OARSMT can intersect with an obstacle, but they can
be point-touched at a corner or line-touched on the boundary
of an obstacle. The OARSMT problem is well known to be
NP-complete.

III. FSTs with Blockages

Before the definition of FSTs, we first define the concept of
equivalent trees as in [18]. Let s be a rectilinear Steiner tree. A
tree s′ is equivalent to s if and only if s′ can be obtained from s

by shifting [Fig. 1(a)] or flipping [Fig. 1(b)] some edges which
have no nodes on them. A FST over a set P of terminals is a
RSMT s of P such that in s and all its equivalent trees, every
terminal t ∈ P is a leaf node. In the absence of obstacles, a
FST has a topology that consists of a backbone and alternating
incident legs connecting the terminals. An example is shown
in Fig. 2(a). However, the structures of FSTs in the presence
of obstacles can be different. An example of a FST over the
same set of terminals in the presence of one obstacle is shown
in Fig. 2(b). The various structures make the construction of
FSTs in the presence of obstacles difficult. In this section, we
aim to show how this problem can be solved by introducing
virtual terminals and the newly defined FSTs.

A. Definition

Given a set T of terminals and a set O of obstacles, we first
add four virtual terminals to the four corners of each obstacle,
as shown in Fig. 3. We use V to denote the set of all virtual

720 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

Fig. 4. Forbidden edges in a FST with blockages.

terminals. These virtual terminals together with the real ones
in T are used to construct the FSTs with blockages defined
in this paper. With virtual terminals added to the obstacles,
a FST with blockages (denoted by s) over a set of terminals
Ts ⊆ (V + T) has the properties as follows:

1) s is an OARSMT over the terminal set Ts;
2) every terminal t ∈ Ts has degree one in s and all its

equivalent trees;
3) all the equivalent trees of s cannot contain the types of

edges as shown in Fig. 4. (Otherwise, we can further
split s into two smaller FSTs at the virtual terminal.)

With the definition, we can easily verify that an OARSMT
is a union of FSTs with blockages. Therefore, it is possible
to construct an OARSMT by the concatenation of FSTs with
blockages. In the following, we will show that the structure
and shape of a FST satisfying the above properties will follow
some very simple forms. For simplicity, we will use FSTs to
denote FSTs with blockages in the rest of this paper.

B. Structures

The notations we are going to use in this section are the
same as in [18]. A vertex can be a node (real terminal or virtual
terminal) or a Steiner point. An edge between two vertices is a
sequence of alternating vertical and horizontal lines and each
turning point is a corner. A line has only one direction but
may contain a number of vertices on it. Vxu(Vxd) denotes the
maximal vertical line at point x which is above (below) x

excluding x itself. Similarly, Hxr (Hxl) denotes the maximal
horizontal line at point x which is on the right (left) of x

excluding x itself. If a line ends at a node and contains no
other vertices, we call it a node line. If it ends at a corner and
contains no vertices, we call it a corner line. In the following
figures for the proofs, we use an empty circle to represent a
Steiner point and an empty square to represent a node.

The steps of proof to derive the structures of the proposed
FSTs are similar to those in [18], but there are obstacles in
the routing region now. In the following, we will present the
proof for Lemma 2 to illustrate the differences when obstacles
exist. The proofs for other lemmas are in Appendix A.

Lemma 1: All Steiner points either have degree three or
degree four [22].

Lemma 2: Let A and B be two adjacent Steiner points in a
FST. Suppose that AB is a horizontal line and both VAu, VBu

exist. Then, |VBu| ≥ |VAu| implies that VAu is a corner line
that ends at a corner turning away from VBu.

Proof: See Fig. 5. Suppose A is to the left of B.
1) VAu contains no node on it, for otherwise we can shift

AB to that node to obtain an equivalent tree in which the node
has degree more than one. If the line AB cannot be shifted
due to some obstacles, we can shift AB to the boundary of the

Fig. 5. Adjacent Steiner points.

Fig. 6. Steiner chain structure.

obstacle obtaining an equivalent tree with forbidden structures
as shown in Fig. 4, a contradiction to the definition of FSTs.

2) No Steiner points on VAu can have a line going right,
for otherwise we can replace AB by extending that line to
meet VBu and reduce the total length. If the line cannot be
extended due to obstacles, an equivalent tree containing the
structures as shown in Fig. 4 can be obtained by shifting AB

to the obstacles.
3) Therefore, the other endpoint of VAu cannot be a Steiner

point since it has no lines going right or upward, and it hence
must be a corner turning left.

4) VAu can have no Steiner point on it, for let C be such
a Steiner point which is nearest to the corner point, then HCr

does not exist and, hence, HCl must exist. We can then shift
the line between point C and the corner point to the left to
reduce the total length. If the line cannot be shifted due to
some obstacles, an equivalent tree containing the structures in
Fig. 4 can be obtained.

Corollary: Suppose VBu contains a vertex, then VAu is a
corner line that ends at a corner turning away from VBu and
|VAu| < |VBu|.

Lemma 3: Suppose Vxu (x is a vertex) is a corner line that
ends at a corner turning left (right), then Hxl (Hxr) does not
exist.

Lemma 4: No Steiner point can have more than one corner
line.

Lemma 5: If s is a FST, the Steiner points in s form a chain.
We call the chain of Steiner points the Steiner chain.

Lemma 6: Suppose s is a FST. Then its Steiner chain cannot
contain the subgraph shown in Fig. 6.

Define a staircase to be a continuous path of alternating
vertical lines and horizontal lines such that their projections
on the vertical and horizontal axes have no overlaps.

Lemma 7: Suppose s is a FST. The Steiner chain of s is
then a staircase.

Lemma 8: Suppose s is a FST. The Steiner chain of s cannot
contain a corner with more than one Steiner point on the two
neighboring lines.

Lemma 9: Suppose s is a FST. If the number of Steiner
points is greater than two, either every vertical line on the
Steiner chain contains more than one Steiner points (except
possibly the first and the last vertical lines) and every horizon-
tal line on the Steiner chain contains no Steiner point except
at the end point, or vice versa.

HUANG et al.: ON THE CONSTRUCTION OF OPTIMAL OBSTACLE-AVOIDING RECTILINEAR STEINER MINIMUM TREES 721

Fig. 7. Three possible tree structures when m = 1. (a) First type of tree
structures when m = 1. (b) Second type of tree structures when m = 1.
(c) Third type of tree structures when m = 1.

Note that the structure of a FST is not affected by 90°
rotation. In the following lemmas and theorems, we assume
that if s is a FST, the corresponding Steiner chain will
consist of a set of vertical lines and adjacent vertical lines
are connected by corners. We label the ith Steiner point on
the chain counting from above by Ai.

Lemma 10: Suppose s is a FST. Every Steiner point on s

must have a horizontal node line and the node lines alternate
in the left-right direction.

Lemma 11: Suppose s is a FST. Then a corner connecting
Ai and Ai+1 can be transferred to one connecting Ai−2 and
Ai−1, or one connecting Ai+2 and Ai+3, regardless of whether
the place it transfers to has a corner or not.

Theorem 1: Suppose s is a FST and let m be the number
of Steiner points. There exists a s′ equivalent to s such that as
follows:

1) if m is odd, the Steiner chain of s′ is a straight line;
2) if m is even, all the Steiner points are on a straight line

except possibly the last one.

To summarize, let s be a FST and let m be the number of
Steiner points. s belongs to one of the three types as follows.

1) m = 1: s is one of the trees as shown in Fig. 7.
2) m > 1 and the Steiner chain is a straight line: the

horizontal node line at the sequence of Steiner points must
alternate in the left-right direction. Hence, each Steiner
point has exactly one horizontal node line except A1 and
Am. The tree structure is shown in Fig. 8(a).

3) m > 1 and the Steiner chain is a straight line except that
the last two Steiner points are connected by a corner:
without loss of generality, we assume that HAml exists.
Then each Steiner point except Am and A1 has exactly
one horizontal line alternate on the left-right direction
and VAmd is a node line. The tree structure is shown in
Fig. 8(b).

As can be observed from the figures, with the introduced
virtual terminals, the structures of FSTs with blockages are
the same as those of FSTs in the absence of obstacles.
This indicates that we can now use the two-phase approach
to construct an OARSMT efficiently. In the first phase, we
generate a sufficient set of FSTs. In the second phase, we
identify and combine a subset of FSTs with minimum total
length such that all real terminals are interconnected.

IV. FST Generation

To grow FSTs of a RSMT, Zachariasen [19] proposed an
efficient algorithm in which some preprocessing information

Fig. 8. Two possible structures when m > 1. (a) Tree structure when m > 1
and the Steiner chain is a straight line. (b) Tree structure when m > 1 and
the Steiner chain is a straight line except that the last two Steiner points are
connected by a corner.

Fig. 9. (a) Escape graph. (b) Reduced escape graph.

is applied to prune away those FSTs that are not required
in any RSMTs. In this paper, we modify this algorithm for
the generation of FSTs with blockages. Our FST generation
algorithm differs from the previous one in the following as-
pects. First, we design a pruning process to reduce the number
virtual terminals and the number of resulting FSTs. Second,
we extend the screening tests to handle virtual terminals and
blockages. Third, we develop an efficient approach to construct
two-terminal FSTs when virtual terminals exist.

A. Pruning of Virtual Terminals

As introduced in the previous section, prior to the imple-
mentation of the algorithm, we will add four virtual terminals
at the four corners of each obstacle. These virtual terminals
together with the real ones are used to construct the FSTs.
However, it is often the case that a fraction of the virtual
terminals can be removed from further consideration, while
still maintaining the optimality of the solution. Therefore, we
will apply pruning on virtual terminals to remove those that
are not necessary.

First, an escape graph for the problem is constructed. The
graph is composed of escape segments that extend from
real terminals and virtual terminals, and end at an obstacle
boundary or the boundary of the whole routing region. An
example is shown in Fig. 9(a). Real terminals are represented
by solid circles and virtual terminals are represented by empty
circles. It has been proved that there is an OARSMT composed
only of segments and vertices in the escape graph. Moreover,
some reduction tests [12], [14] can be applied to eliminate
many vertices from the graph to produce a reduced escape
graph, as shown in Fig. 9(b), while still guaranteeing the
existence of an optimal solution. Therefore, it is sufficient
to consider only the virtual terminals that survive in the
reduced escape graph. Those not in the graph are removed

722 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

from the list to cut down the number of resulting FSTs. In the
example, all the virtual terminals of obstacle b1 and b4 will
be removed. If all four virtual terminals of an obstacle are
deleted, we will also remove the corresponding obstacle as it
does not affect the routing. Empirical studies show that for the
OARSMT problems consist of fewer terminals than obstacles,
this pruning procedure can effectively reduce the number of
virtual terminals as well as the produced FSTs.

B. Generation of FSTs with Three or More Terminals

The structures described in Theorem 1 will be used to
identify FSTs. To reduce the number of resulting FSTs, we
identify some necessary conditions for a FST to be a part of
an OARSMT as in [19]. Most of the conditions in [19] are
applicable to the proposed FSTs after some modifications. In
the following, we will focus on the modifications made when
obstacles and virtual terminals exist.

The bottleneck Steiner distance can be used to eliminate
useless FSTs when obstacles exist. Let OARMST(T) be an
obstacle avoiding rectilinear MST of the point set T and
ti, tj ∈ T be a pair of vertices. The bottleneck Steiner
distance δOARMST (titj) between ti and tj is equal to the length
of the longest edge on the unique path between ti and tj in
OARMST(T). Salowe et al. [15] proposed a theorem stating
that if MST and SMT , respectively, are a MST and a Steiner
minimal tree on a set of vertices T , then δMST (titj) ≥ δSMT (titj)

for any ti, tj ∈ T . It can be easily verified that the property
also holds for OARMST(T) and OARSMT(T). For a FST s

to be part of an OARSMT, we require that δMST (titj) ≥ δs(titj)

for any ti, tj ∈ s ∩ T .
The empty diamond property proposed in [19] states that

no other points of the RSMT can lie in L (u, v), where uv is a
(horizontal or vertical) segment and L (u, v) is an area on the
plane such that all the points in this area are closer to both u

and v than u and v are to each other. However, when there are
obstacles and virtual terminals, the points which cannot lie in
L (u, v) are the real terminals in T only.

The empty corner rectangle property is also proposed
in [19]. Let uw and vw denote two perpendicular segments
sharing a common endpoint w. Then, no other points of the
RSMT can lie in the interior of the smallest axis-aligned rect-
angle containing u and v. However, when there are obstacles
and virtual terminals in the routing region, we only need to
consider real terminals which can be projected on uw and vw

without intersecting with any obstacles.
We also make use of the empty inner rectangle property

proposed in [19]. A FST can be transformed to its corner-
flipped version by shifting segments and flipping corners. The
empty inner rectangle property states that no terminal (real or
virtual) should be located between the backbone of the origin
topology and that of the corner-flip topology.

Based on the above properties, we can generate all the
required FSTs by growing them recursively as in [19].

C. Generation of FSTs with Two Terminals

For those FSTs with exactly two terminals, we will construct
them by the following method. First of all, these FSTs can be

Fig. 10. Eight regions of a terminal.

divided into two types. The first type has its two end points
both in T . The second type has at least one of its end points
in V .

For the first type, we can construct them according to the
following lemma which is proposed by Fößmeier et al. [20].

Lemma 12: Let G = (U, E) be a graph with edges assigned
mutually distinct weights and let U ′ be a subset of U. Let L

be an MST of G and L′ be an MST of G[U ′], the subgraph
of G induced by U ′. Then every edge (u, w) in L where both
u and w are in U ′ will also appear in L′.

This lemma indicates that every two-terminal FST, in the
OARSMT and with its two end points both in T , will also
appear in the OARMST of T . In order to generate all possible
type one two-terminal FSTs, we only need to construct an
OARMST of T and include all the edges in it as candidates. In
order to handle the requirement of mutually distinct weights,
we arrange the edges with the same length by comparing their
positions in the edge array. The one that has a smaller index
is assumed to be “shorter.” Note that this will not affect the
optimality of the generated OARSMT.

For the second type, we will make use of a lemma proposed
by Yao [23]. We know that at least one of the two end points
of the FST under construction is in V and the rectangular area
covered by the two end points is obstacle free (otherwise we
can flip the edge to the boundary of the obstacle to obtain
an equivalent tree with forbidden structures). For each virtual
terminal v ∈ V , we divide its surrounding area into eight
regions Ri for i = 1, . . . , 8, as shown in Fig. 10. In every region
Ri, we find the point t ∈ T that has the shortest Manhattan
distance (dvt) from v and the rectangular area covered by v and
t has no obstacle. Then, the edge connecting v and t is a two-
terminal FST candidate. In this region Ri, we also find those
points u ∈ V with distance dvu ≤ dvt and the rectangular area
covered by v and u is obstacle free. Then, the edge connecting
v and u will also be included as a FST candidate. To verify
the correctness of this approach, we assume on the contrary
that there exist a two-terminal FST in the OARSMT, but not
in our candidate set. Without loss of generality, we use v ∈ V

and w ∈ T + V to denote the two end points of the FST.
Assume that w is in the Rk region of v. Since the FST is not
in our candidate set, there exist a terminal t ∈ T in Rk such
that dvt < dvw. According to [23], we have dwt < dvw, but this
is impossible for otherwise we can delete (v, w) and connect
either (v, t) or (w, t) to build a shorter tree. Therefore, the FST
cannot exist which proves the correctness of our approach.

Based on the above methods, we can find all necessary
two-terminal FSTs. The empty diamond and empty inner
rectangle properties are also used to reduce the number of
two-terminal FSTs.

HUANG et al.: ON THE CONSTRUCTION OF OPTIMAL OBSTACLE-AVOIDING RECTILINEAR STEINER MINIMUM TREES 723

V. FST Concatenation

The second phase of the algorithm is to use the FSTs
generated in the first phase to construct an OARSMT spanning
all real terminals with the minimum total length. In the
construction of RSMTs, Warme [21] found that the FST
concatenation problem is equivalent to the MST problem in
hypergraph and formulated it as an integer program (IP). A
branch-and-cut algorithm is used to solve this problem. In this
section, we will show that the FST concatenation problem in
this paper can also be formulated as an IP and solved by using
the branch-and-cut search. Generally, our FSTs concatenation
phase differs from the previous one in the following aspects.
We modify the IP formulation for FST concatenation and the
separation algorithm in [21] to handle virtual terminals. New
features are introduced to accommodate the presence of virtual
terminals. We also provide a theoretical proof to verify the
correctness of the new separation algorithm.

A. IP Formulation

In the following, let S be the set of all FSTs found. Let T

be the set of all real terminals and V be the set of all virtual
terminals that survive after pruning. Let |T | be the number of
real terminals, |S| be the number of FSTs in S, and |V | be
the number of virtual terminals. Each FST si ∈ S is associated
with a binary variable xi indicating whether si is taken as a
part of the OARSMT. Besides, there are binary variables yi

for i = 1 . . . |V | indicating whether virtual terminal vi ∈ V

is connected in the OARSMT. We use |si| to denote the size
of si, i.e., the number of terminals (including virtual ones)
connected by si, and use li to denote the length of si. The IP
formulation is as follows:

Minimize:
|S|∑

i=1

li × xi (1)

Subject to:
|S|∑

i=1

xi(|si| − 1) = |T | − 1 +
|V |∑

i=1

yi (2)

2yj ≤
∑

i:vj∈si

xi ∀vj ∈ V (3)

4yj ≥
∑

i:vj∈si

xi ∀vj ∈ V (4)

∑

i:si∈(X:T+V−X)

xi ≥ 1

∀X ⊆ T + V and T � X and X ∩ T �= ∅ (5)
∑

i:si∩X �=∅
xi(|si ∩ X| − 1) ≤ |X ∩ T | +

∑

i:vi∈X

yi − 1

∀X ⊂ T + V and X ∩ T �= ∅ and |X| ≥ 2 (6)∑

i:si∩X �=∅
xi(|si ∩ X| − 1) ≤

∑

i:vi∈X

yi − maxi:vi∈X(yi)

∀X ⊆ V and |X| ≥ 2. (7)

The notation (X : T + V − X) in (5) means {si ∈ S :
si ∩ X �= ∅ ∧ si ∩ (T + V − X) �= ∅}. Constraint (2) is the
total degree constraint. It requires the right amount of FSTs

Fig. 11. Pseudocode of the branch-and-cut algorithm.

to construct an OARSMT. Constraints (3) and (4) bound the
degree of any selected virtual terminal to be two, three, or
four. Constraints (5) are the cutset constraints. The constraints
require that a solution should be connected, i.e., for any cut
with partitions X and T + V − X, there must be at least one
selected FST to connect them. We require X ∩ T �= ∅ and
T � X, because we do not need to ensure the connectivity of
the virtual terminals. Constraints (6) and (7) are the subtour
elimination constraints that are used to eliminate cycles. In (6),
we consider those sets X ∩ T �= ∅. Since yi tells whether vi is
selected, |X∩T |+∑

i:vi∈X yi gives the exact number of selected
terminals including virtual ones in X. In (7), we use

∑
i:vi∈X yi

to indicate the number of selected terminals in X. Since it is
possible that the number of selected terminals in X is equal
to zero, we do not simply subtract one from the right-hand
side of the inequality. Instead, the term maxi:vi∈X(yi) is used
to ensure that the inequality is not binding when the number
of selected terminals in X is zero.

B. Branch-and-Cut

The IP described in the above section is solved via a
branch-and-cut framework using lower bounds provided by the
linear programming (LP) relaxation. We adopt the algorithm
proposed by Warme [21] and extend it for solving the IP
formulation of our FST concatenation problem. The pseu-
docode of the algorithm is shown in Fig. 11. In the following,
we will give a brief overview of the algorithm, including
initialization, node processing, and branching, and point out
the differences in the separation algorithm in order to deal
with our formulation. The readers may refer to [21] for more
details.

1) Initialization: Since there are an exponential number of
constraints according to the problem formulation, we handle

724 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

them incrementally by using some separation methods. A
constraint pool is used to keep all the currently processing
constraints of the IP. At the beginning of the algorithm,
the constraint pool is initialized with the total degree (2),
constraints for virtual terminals (3) and (4), all one-terminal
cutset constraints [(5) with |X| = 1], and all two-terminal
subtour elimination constraints [(6) and (7) with |X| = 2].
Besides, an LP tableaux is constructed to store the constraints
(which is a subset of the constraints retained in the constraint
pool) being handled by the LP solver. The initial LP tableaux
consists of all the constraints in the constraint pool except the
two-terminal subtour elimination constraints.

2) Node Processing: The objective of the node processing
procedure is to compute an optimal LP solution over the
current constraint pool. The process begins with solving a
linear relaxation with the constraints in the LP tableaux. If
a solution exists, we will scan the constraint pool and check
for violations. All violated constraints found will be added
to the LP tableaux which is solved again in the next iteration.
This operation terminates when the LP solution satisfies all the
constraints in the pool (LP feasible) or a feasible solution does
not exist (LP infeasible). If the result is LP infeasible or the
objective value of the LP solution exceeds the objective value
of the best-known integral solution, the processing of this node
ends and the node will be deleted. If the objective value of
the LP solution is better than that of the best-known integral
solution, the integrality and connectivity of the LP solution
is checked. If the solution is both integral and connected,
it is saved as the best-known integral solution. A separation
procedure will then be invoked. Note that after obtaining an
optimum over the current pool, slack constraints1 will be
deleted from the LP tableaux (but are retained in the constraint
pool).

3) Separation: The objective of the separation procedure is
to find a set of constraints that is not present in the constraint
pool, but is violated by the current solution. These constraints
will be added to the constraint pool. There are mainly two
sets of constraints to be considered, namely, the cutset con-
straints (5) and the subtour elimination constraints (6) and (7).

The first step in the separation procedure is to find the cuts
(X : T + V − X) with

∑
i:si∈(X:T+V−X) xi = 0 that violate

the cutset constraints (6). We first compute the connected
components D1, D2, D3, . . . , Dk of the solution. Since we do
not need to ensure the connectivity of the virtual terminals, we
require that Di∩T �= ∅, ∀1 ≤ i ≤ k. If k > 1, there exist cutsets
of zero weight. If k < 10, we generate cutsets constraints for
all the cuts induced by the connected components. If k ≥ 10,
we only generate the cutset constraints (Di : T + V − Di) for
1 ≤ i ≤ k. Notice that we do not consider those cuts with
0 <

∑
i:si∈(X:T+V−X) xi < 1 because they are too expensive to

be identified while little improvement in the objective value
can be made.

The second step is to find violations of the subtour elim-
ination constraints (6) and (7). We define a function as

1Slack values of linear constraints are available to be queried from the LP
solver.

Fig. 12. Flow network formulation.

follows:

f (X) = |X ∩ T | +
∑

i:vi∈X

yi −
∑

i:si∩X �=∅
xi(|si ∩ X| − 1). (8)

Then finding violations of constraints (6) is equivalent to
finding an X ⊂ T + V such that X �= ∅ and f (X) < 1. Before
exactly solving this problem, we first apply problem reductions
to speedup the process. In [21], the “congestion level” of a real
terminal btj is defined as follows:

btj =
∑

i:tj∈si

xi. (9)

A real terminal tj is uncongested if btj ≤ 1. In this paper, we
define the “congestion level” of a virtual terminal as follows:

bvj
=

∑

i:vj∈si

xi. (10)

We say that a virtual terminal vj is uncongested if bvj
≤ yj . By

the definition of “congestion level,” we can have the following
lemma.

Lemma 13: If a terminal u is uncongested and f (X∪{u}) <

1, then f (X) ≤ f (X ∪ {u}) < 1.
The proof for the lemma is in Appendix B. According to

Lemma 13, we can eliminate all uncongested terminals while
looking for violations of the subtour elimination constraints.
Since subtour elimination constraints are used to eliminate
cycles, we can further confine our search to within several
biconnected components. We use C1, C2, C3, . . . , Ck to denote
the biconnected components in which every terminal is con-
gested. Now, the problem is reduced to identifying violations
within C1, C2, C3, . . . , Ck. For each component Ci with less
than ten terminals, we will enumerate all subsets X of Ci

checking for violations of (6) and (7). For each remaining
component Ci, we use a deterministic network flow method to
find violations of (6) and (7). The deterministic flow network
G = (N, A) is defined as follows. Let N = {σ} ∪ Y ∪ Z ∪ {τ}
be the set of nodes in the graph, where Y = {si : si ∩ Ci �= ∅},
and Z = {tj : tj ∈ Ci} ∪ {vj : vj ∈ Ci}. Let the arcs
in the graph be A = A1 ∪ A2 ∪ A3, where A1 = {(σ, si)},
A2 = {(si, tj) : tj ∈ si} ∪ {(si, vj) : vj ∈ si}, and
A3 = {(tj, τ) : tj ∈ Ci} ∪ {(vj, τ) : vj ∈ Ci}. Let the arcs
A1 have capacity xi. Let arcs A2 have infinite capacity. Let
arcs (tj, τ) ∈ A3 have capacity btj − 1, and (vj, τ) ∈ A3 have
capacity bvj

−yj . The flow network is shown in Fig. 12. Note

HUANG et al.: ON THE CONSTRUCTION OF OPTIMAL OBSTACLE-AVOIDING RECTILINEAR STEINER MINIMUM TREES 725

TABLE I

Comparison of the FST Generation Phase with and Without the Pruning Process

Test |T | |O| Without Pruning With Pruning FST Pruning Test |T | |O| Without Pruning With Pruning FST Pruning

Cases |V | |S| |V | |S| Reduction (%) Time Cases |V | |S| |V | |S| Reduction (%) Time

IND1 10 32 113 2120 20 75 96.46 <0.01 RT1 40 10 40 160 15263 30 234 98.47 0.05
IND2 10 43 147 494 62 229 53.64 <0.01 RT2 30 50 30 120 6529 80 2539 61.11 0.16
IND3 10 50 163 579 48 140 75.82 0.01 RT3 30 100 30 120 9366 100 8982 4.10 0.42
IND4 25 79 272 12442 79 190 98.47 0.02 RT4 30 100 30 120 3769 96 2496 33.78 0.25
IND5 33 71 249 1193 128 472 60.43 0.01 RT5 30 200 30 120 2837 108 2627 7.40 2.58

RC1 10 10 40 346 24 186 46.24 0.01 RC6 rand 40 100 40 160 6639 152 6273 5.51 0.28
RC2 30 10 40 330 24 280 15.15 0.01 RC7 rand 40 200 40 160 3904 160 3904 0.00 2.19
RC3 50 10 40 324 36 306 5.56 0.01 RC8 rand 30 200 30 120 4214 104 3800 9.82 2.96
RC4 70 10 36 350 36 350 0.00 0.03 RC9 rand 30 200 30 120 3002 112 2728 9.13 2.54
RC5 100 10 40 772 36 761 1.42 0.05 RC10 rand 30 500 30 120 2728 120 2728 0.00 16.12

RC6 40 100 40 160 7153 160 7153 0.00 0.34 RT1 rand 40 10 40 160 148236 32 418 99.72 0.03
RC7 40 200 40 160 4007 152 3858 3.72 1.68 RT2 rand 30 50 30 120 4024 84 1925 52.16 0.17
RC8 30 200 30 120 3397 108 3301 2.83 1.56 RT3 rand 30 100 30 120 3255 92 2558 21.41 0.49
RC9 30 200 30 120 2590 112 2537 2.05 2.60 RT4 rand 30 100 30 120 3828 96 3296 13.90 0.53
RC10 30 500 30 120 4055 116 4041 0.35 13.76 RT5 rand 30 200 30 120 3126 116 3113 0.42 2.21

Average 29.30 1.70

|T | denotes the number of real terminals. |O| denotes the number of obstacles. |V | denotes the number of virtual terminals. |S| denotes the number of FSTs generated. CPU
time is in seconds.

TABLE II

Results of the FST Generation Phase and the FST Concatenation Phase

Test |T | |O| FST Generation FST Concatenation Total Test |T | |O| FST Generation FST Concatenation Total

Cases |S| Time nnode ncons Lopt Time Time Cases |S| Time nnode ncons Lopt Time Time

IND1 10 32 75 0.36 2 219 604 0.10 0.46 RT1 40 10 40 234 0.53 1 1336 1872 0.58 1.11
IND2 10 43 229 0.61 3 813 9500 2.83 3.44 RT2 30 50 30 2539 1.29 3 8329 44 294 43.65 44.94
IND3 10 50 140 0.47 3 615 600 0.84 1.31 RT3 30 100 30 8982 3.90 1 36 718 7580 175.33 179.23
IND4 25 79 190 2.38 1 1085 1086 0.77 3.15 RT4 30 100 30 2496 2.73 1 9261 7825 59.77 62.50
IND5 33 71 472 2.32 1 3076 1341 22.41 24.73 RT5 30 200 30 2627 10.59 1 7713 42879 29.14 39.73

RC1 10 10 186 0.21 4 751 25 980 0.37 0.58 RC6 rand 40 100 40 6273 5.06 2 25 597 76 840 533.17 538.23
RC2 30 10 280 0.27 1 912 41 350 0.28 0.55 RC7 rand 40 200 40 3904 14.17 2 13 311 105 358 139.89 154.06
RC3 50 10 306 0.40 1 1036 54 160 0.18 0.58 RC8 rand 30 200 30 3800 10.09 1 17 674 107 811 374.53 384.62
RC4 70 10 350 0.53 3 1033 59 070 0.57 1.10 RC9 rand 30 200 30 2728 10.44 5 9861 105 875 73.55 83.99
RC5 100 10 761 0.96 1 2117 74 070 1.13 2.09 RC10 rand 30 500 30 2728 76.93 11 15 350 162 470 655.59 732.52

RC6 40 100 40 7153 5.68 2 34 802 76 946 258.04 263.72 RT1 rand 40 10 40 418 0.36 3 1818 1817 1.66 2.02
RC7 40 200 40 3858 12.45 1 13 791 105 956 111.98 124.43 RT2 rand 30 50 30 1925 1.25 3 6804 44 358 22.11 23.36
RC8 30 200 30 3301 11.06 1 13 425 107 833 483.88 494.94 RT3 rand 30 100 30 2558 3.09 1 9071 7595 29.76 32.85
RC9 30 200 30 2537 10.05 2 10 636 106 139 163.55 173.60 RT4 rand 30 100 30 3296 3.25 2 12 017 7681 60.87 64.12
RC10 30 500 30 4041 73.87 4 16 024 163 050 1388.92 1462.79 RT5 rand 30 200 30 3113 10.70 1 10 793 42 821 86.66 97.36

Average 9.20 157.40 166.60

|T | denotes the number of real terminals. |O| denotes the number of obstacles. |S| denotes the number of FSTs generated. nnode denotes the number of branch-and-cut nodes.
ncons denotes the number of constraints. Lopt denotes the OARSMT length. CPU time is in seconds.

that different from the flow network formulation in [21], there
are nodes that represent virtual terminals in our formulation.

We define a source to terminal cut (W : N − W) of G such
that σ ∈ W and τ ∈ (N −W). The capacity of the cut c(W) is
the sum of the capacity of all arcs (a, b) ∈ A such that a ∈ W

and b ∈ (N − W). We have the following theorem.
Theorem 2: Let (W : N −W) be a source to terminal cut of

G that minimize c(W). Let Xm = {u : u ∈ T +V ∧u ∈ N−W}.
Then Xm minimizes f (X).

The proof for the theorem is in Appendix C. This theorem
states that finding an X of Ci that violates (6) can be reduced to
finding a minimum cut on the flow network G. This problem
can be solved in polynomial time. Note that although the above
procedure is not exact in finding violations of constraints (7),
it can still provide good estimations.

4) Branching: If no violation can be found by separation
and the node processing terminates with a fractional solution,

branching on the current node occurs. A branch variable xi

(yj) with non-integral value is selected. Two new nodes are
generated by appending the constraints xi = 0 or xi = 1 (yj = 0
or yj = 1) to the current node. The processing of the current
node terminates. New nodes are selected for processing until
there is no node left in the node list.

VI. Experimental Results

We implement our algorithm based on GeoSteiner-3.1 [24]
and all experiments are conducted on a Sun Blade 2500
workstation with two 1.6 GHz processors and 2 GB memory.
Note that although a dual processor machine is used, our
program runs sequentially on a single processor. There are
totally 20 benchmark circuits. Benchmarks IND1–IND5 are
industrial test cases from Synopsys. Benchmarks RC1–RC10
are adopted from [7]. Benchmarks RT1–RT5 are random test

726 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

TABLE III

Comparison of Some Recent Heuristics Based on the Optimal Solutions

Test Lopt Lin [9] Long [10] Test Lopt Lin [9] Long [10]
Cases H1 D1 (%) T1 H2 D2 (%) T2 Cases H1 D1 (%) T1 H2 D2 (%) T2

IND1 604 632 4.43 <0.01 639 5.48 <0.01 RT1 40 1872 1872 0.00 <0.01 2040 8.24 0.01
IND2 9500 9600 1.04 <0.01 10 000 5.00 <0.01 RT2 30 44 294 45 221 2.05 0.01 45 983 3.67 0.01
IND3 600 613 2.12 <0.01 623 3.69 <0.01 RT3 30 7580 7829 3.18 0.03 7698 1.53 0.01
IND4 1086 1121 3.12 <0.01 1130 3.89 <0.01 RT4 30 7825 8088 3.25 0.02 8055 2.86 0.01
IND5 1341 1364 1.69 <0.01 1379 2.76 <0.01 RT5 30 42 879 44 109 2.79 0.05 43 711 1.90 0.01
RC1 25 980 26 900 3.42 <0.01 26 120 0.54 <0.01 RC6 rand 40 76 840 79 111 2.87 0.02 78 956 2.68 0.01
RC2 41 350 42 210 2.04 <0.01 41 630 0.67 <0.01 RC7 rand 40 105 358 108 446 2.85 0.06 107 159 1.68 0.01
RC3 54 160 55 750 2.85 <0.01 55 010 1.55 <0.01 RC8 rand 30 107 811 111 033 2.90 0.06 110 525 2.46 0.01
RC4 59 070 60 350 2.12 <0.01 59 250 0.30 <0.01 RC9 rand 30 105 875 109 649 3.44 0.06 108 115 2.07 0.01
RC5 74 070 76 330 2.96 0.01 76 240 2.85 <0.01 RC10 rand 30 162 470 168 400 3.52 0.27 165 720 1.96 0.03

RC6 40 76 946 79 118 2.75 0.02 78 805 2.36 0.01 RT1 rand 40 1817 1831 0.76 <0.01 2012 9.69 0.01
RC7 40 105 956 108 948 2.75 0.06 107 913 1.81 0.02 RT2 rand 30 44 358 45 797 3.14 0.01 45 968 3.50 0.01
RC8 30 107 833 110 731 2.62 0.05 111 073 2.92 0.01 RT3 rand 30 7595 7811 2.76 0.02 7726 1.70 0.01
RC9 30 106 139 109 101 2.71 0.05 108 027 1.75 0.02 RT4 rand 30 7681 7930 3.14 0.01 7847 2.12 0.01

RC10 30 163 050 169 200 3.63 0.27 166 070 1.82 0.04 RT5 rand 30 42 821 44 122 2.95 0.02 43 795 2.22 0.01
Average 2.66 0.03 2.85 0.01

Lopt denotes the OARSMT length generated by us. Hi denotes the result of the corresponding heuristic. Di = (Hi − Lopt)/Hi. Ti is the running time of the
corresponding heuristic in seconds.

cases used in [9]. For overlapping obstacles in the test cases,
we dissect them into several rectangular blockages. Note
that [9], [10] are modifying the test cases in the same way
so that the comparison in this paper is fair. RC5–RC10 and
RT1–RT5 are too large to be solved optimally. Therefore, we
will only take some of the blockages in those cases. For RT1,
RC6, and RC7, 40 blockages are taken. For the rest test cases,
30 blockages are taken. In order to clearly demonstrate the
performance of the proposed algorithm, we use two different
ways to select blockages. The first set of new test cases are
generated by taking the first few blockages from the corre-
sponding benchmarks. The set of new test cases are denoted by
“benchmark number,” in which “benchmark” is the original
benchmark and “number” is the number of blockages taken.
The second set of new test cases are generated by taking the
blockages randomly. We use “benchmark rand number” to
denote them.

Table I illustrates the comparison of the FST generation
phase with and without the pruning of virtual terminals. To
show the efficiency of the pruning process, we compare the
number of FSTs generated with and without the pruning
process. On average, a 29.3% reduction on the number of FSTs
can be achieved. The running time of the pruning process is
1.7 s, which is negligible in comparison with the total running
time. We can also observe from the table that the pruning
process is more powerful for the benchmarks with fewer
terminals. Take IND1–IND5 for example, over 50% reduction
can be achieved and the running time is around 0.01 s. For
RT1 40 and RT1 rand 40, we can reduce 98.47% and
99.72% of the FSTs with the pruning process. Since a large
number of nets in VLSI circuits have a small number of
terminals, the pruning process can thus be very effective.

Table II illustrates the results of the proposed algorithm.
For the FST generation phase, the average running time
is 9.2 s. The running time of the FST generation phase is
comparable to the FST concatenation phase for some small
instances. However, for large cases, the FST concatenation
phase dominates the total running time. The average running

Fig. 13. Structure when Vxu is a corner line ended at a left-turn corner and
Hxl exists.

Fig. 14. Five possible structures when a Steiner point has two corner lines.
(a) Case when Hxl exists and ends at a corner turning down. (b) Case when
Vxd exists and ends at a corner turning right. (c) Case when Vxd exists and
ends at a corner turning left. (d) Case when Hxr exists and ends at a corner
turning down. (e) Case when Vxl exists and ends at a corner turning up.

Fig. 15. Three possible structures when a Steiner point is adjacent to more
than two other Steiner points. (a) First type of structures when a Steiner point
is adjacent to more than two other Steiner points. (b) Second type of structures
when a Steiner point is adjacent to more than two other Steiner points.
(c) Third type of structures when a Steiner point is adjacent to more than
two other Steiner points.

time of the second phase is 157.40 s which account for over
90% of the total running time. In the table we also list the
number of constraints and the number of branch-and-cut nodes
in the branch-and-cut search of each test case. As there are
an exponential number of constraints (with respect to the
number of terminals) in the IP formulation, by handling them
incrementally, only a small subset of constraints are required.
In all test cases except RC10 rand 30, the optimal solution
can be achieved within five branch-and-cut nodes. Around half
of the test cases achieve the optimum at the root node without
branching. This indicates that the lower bound provided by

HUANG et al.: ON THE CONSTRUCTION OF OPTIMAL OBSTACLE-AVOIDING RECTILINEAR STEINER MINIMUM TREES 727

the LP relaxation is very tight and the separation procedure
is very efficient in finding violated constraints. The resulting
OARSMT length of each test case is tabulated in the table.

Table III shows the comparison of some recent heuris-
tics [9], [10] based on the optimal solutions generated by us.
The results are obtained by running the executables provided
by the authors. With our optimal method, we can easily
compare the performance of different approaches and see how
far a heuristic solution is away from the optimum.

VII. Conclusion

In this paper, we extended the well-known GeoSteiner
method to solve the OARSMT problem optimally. In the
proposed approach, OARSMTs are constructed by the con-
catenation of FSTs with blockages. Detailed implementation
of the algorithm is presented. Experimental results showed that
our approach can handle problems with hundreds of terminals
in the presence of multiple obstacles, generating an optimal
solution in a reasonable amount of time.

Appendix A

Proofs for Section III

Corollary: Suppose VBu contains a vertex, then VAu is a
corner line that ends at a corner turning away from VBu and
|VAu| < |VBu|.

Proof: By Lemma 2, if |VAu| ≥ |VBu|, VBu must be a
corner line and can have no vertex on it. Therefore, |VAu| <

|VBu|. Again from Lemma 2, VAu is a corner line that ends at
a corner turning away from VBu.

Lemma 3: Suppose Vxu (x is a vertex) is a corner line ends
at a corner turning left (right), then Hxl (Hxr) does not exist.

Proof: See Fig. 13. If Hxl exists, we can shift the line
Vxu to the left and reduce the total length. If the line cannot
be shifted due to some obstacles, the tree will contain the
structures as shown in Fig. 4, a violation of the FST defini-
tion.

Lemma 4: No Steiner point can have more than one corner
line.

Proof: Consider a Steiner point x with two corner lines.
Without loss of generality, we assume Vxu exists and ends at
a corner turning left. The second corner line can be Vxd , Hxl,
or Hxr and ends at a corner turning to two different directions.
The case when Hxr exists and ends at a corner turning up is
equivalent to the case when Hxl exists and ends at a corner
turning down, and thus can be removed. Therefore, there are
totally five possible cases as shown in Fig. 14. Fig. 14(a)
and (e) cannot exist according to Lemma 3. Fig. 14(b) is
impossible because the third line at the Steiner point cannot
exist by Lemma 3. Fig. 14(c) and (d) can be transformed into
Fig. 14(a) and (b) by flipping a corner. If the corner cannot
be flipped due to some obstacles, we can flip the corner to
the boundary of the obstacle to obtain an equivalent tree with
forbidden structures as shown in Fig. 4, a violation of the
definition of FSTs.

Lemma 5: If s is a FST, the Steiner points in s forms a
chain.

Fig. 16. Special structure of one Steiner point with more than two neigh-
boring Steiner points.

Fig. 17. (a) Topology when VAu exists. (b) Topology when HAr exists.

Proof: First of all, if s is a FST, the Steiner points in
s are connected, for otherwise some Steiner points have to
be connected by terminals of degree two or more. Therefore,
we only need to prove that no Steiner point in s is adjacent
to more than two other Steiner points. Suppose the contrary,
and let A be such a Steiner point. Then from Lemma 3 and
Lemma 4, the connection between A and its adjacent Steiner
points must be in one of the three forms as shown in Fig. 15.

First, consider Fig. 15(a) and (b). Suppose HCl exists. Then,
from the corollary of Lemma 2, HCl must be a corner line that
ends at a corner turning up. Similarly, if HCr exists, it is also
a corner line ends at a corner turning up. Since C is a Steiner
point, at least two of the three lines HCl, HCr, and VCu must
exist. However, regardless of which two (or all three) exist,
we end up a contradiction to either Lemma 3 or Lemma 4.

Next, consider Fig. 15(c). The argument on HCl is the same
as that in Fig. 15(a) and (b). If HCr exists and |HCr| ≤ |HAr|,
the argument on HCr is again the same. Thus, we only need
to discuss the case that |HCr| > |HAr| (see Fig. 16).

Let α be the corner on the edge connecting A and D. Shift
AC to α and let the new line meet HCr at β. Now, the tree
contains a Steiner point α that is adjacent to three other Steiner
points β, B, and D in the form of Fig. 15(a), which has already
been shown to be impossible. If AC cannot be shifted due
to some obstacles, we can shift AC to the boundary of the
obstacle and achieve an equivalent tree with forbidden edges
as shown in Fig. 4, a contradiction to the assumption that s is
a FST.

Lemma 6: Suppose s is a FST. Then its Steiner chain cannot
contain the subgraph shown in Fig. 6.

Proof: Suppose HAr exists. Then from the corollary of
Lemma 2, HAr is a corner line. Since HAr and VAu cannot
both exist by Lemma 3, HAl must exists for A is a Steiner
point. If HAr exists, we can simply shift AB to αβ, as shown in
Fig. 17(b), and obtain a similar structure as Fig. 17(a). There-
fore, in the following, we can just consider the case when VAu

exists.
From Lemma 3, HAl cannot be a corner line. Besides, HAl

cannot contain any Steiner points. If HAl contains a Steiner
point S, VAu cannot contain any Steiner points by Lemma 5.

728 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

Fig. 18. Topology when VBd exists.

Fig. 19. Structure of the Steiner chain when it bends back.

If VAu is a corner line, it must be a corner turning right by
Lemma 3. We can flip the corner and repeat the operation as
shown in Fig. 17(b). Therefore, we can assume without loss
of generality that VAu is a node line. Since S is a Steiner
point, two of the lines HSl, VSu, and VSd must exist. By the
corollary of Lemma 2, VSu and VSd must be corner lines
and the corners must turn away from AB. As a result, by
Lemma 3 and Lemma 4, HAl cannot contain any Steiner point.
Moreover, HAl cannot contain more than one node for the
tree is a FST. Therefore, HAl is a node line. By symmetry,
VCd exists and is a node line. Since B is a Steiner point, at
least one of the lines HBl or VBd exists. We first assume that
VBd exists and VBl does not exist. Since VCd contains a vertex
(see Fig. 18), by the corollary of Lemma 2, VBd must be a
corner line that ends at a corner (denoted by β) turning left
and connects to a node b by Lemma 5. But this is impossible,
for otherwise we can shift BC to βα to obtain a tree in
which both HAl and Hβl are node lines, a contradiction to
Lemma 2. If the line cannot be shifted due to some obstacles,
the tree or its equivalent will contain the structures as shown
in Fig. 4, an absurdity. Similarly, HBl cannot exist. As a result,
B cannot be a Steiner point which is contradictory to the
assumption.

Lemma 7: Suppose s is a FST. The Steiner chain of s is
then a staircase.

Proof: Suppose that the Steiner chain bends back as
shown in Fig. 19, where A and B are Steiner points that are
closest to the turning points α and β. There must be at least
two Steiner points on αβ, for otherwise we can shift αβ to the
left and reduce the total length. If the line cannot be shifted
due to some obstacles, the tree will contain the structures as
shown in Fig. 4. From Lemma 6, neither α nor β can be a
Steiner point. From Lemma 3 and Lemma 5, the horizontal
line of any Steiner point on αβ must be a node line and the first
one below Aα must be a line going right. From the corollary
of Lemma 2, the adjacent Steiner points on αβ cannot have
horizontal lines going in the same direction. Therefore, αβ

must have more left lines (including Aα and Bβ) than right
lines, which implies that we can shift αβ to the left and reduce
the total length, an absurdity.

Lemma 8: Suppose s is a FST. The Steiner chain of s cannot
contain a corner with more than one Steiner points on the two
neighboring lines.

Fig. 20. Corner with more than one Steiner point on each line.

Fig. 21. Possible structure of the Steiner chain.

Proof: Suppose to the contrary that s contains the sub-
graph shown in Fig. 20.

From Lemma 3, VCu does not exist. Thus, VCd exists and is
a node line by Lemma 3 and Lemma 5. Suppose VDd exists.
Then from the corollary of Lemma 2, VDd is a corner line. As
a result, HDr does not exist by Lemma 3. Therefore, VDd and
HDr cannot both exist, and hence VDu must exist and is a node
line by Lemma 3 and Lemma 6. Flip the corner α between
B and C to form a new corner β. If the corner cannot be
flipped due to obstacles, we can flip it to the boundary of the
obstacle to obtain a tree with edges as shown in Fig. 4. If
|VDu| ≤ |Cβ|, we can shift DC to the node on VDu and obtain
an tree in which a node has degree 2. If the line cannot be
shifted, the tree will contain the structures as shown in Fig. 4.
If |VDu| > |Cβ|, we can shift CD to β making β a Steiner
point. But the induced subgraph between ABβ cannot exist by
Lemma 6. Again, the line can be shifted, or else it cannot be
a part of a FST.

Lemma 9: Suppose s is a FST. If the number of Steiner
points is greater than two, either every vertical line on the
Steiner chain contains more than one Steiner points (except
possibly the first and the last vertical lines) and every horizon-
tal line on the Steiner chain contains no Steiner point except
at the end point, or vice versa.

Proof: By Lemma 4, a Steiner point cannot have two
corner lines. Hence, at least two of the first three Steiner
points (counting from either end) are collinear. Without loss
of generality, suppose the first collinearity occurs on a vertical
line. Let A be the first Steiner point (if any) not on the
vertical line. Then A is connected to its preceding Steiner point
through a corner as shown in Fig. 21 by Lemma 6. Let B be
the Steiner point (if any) succeeding A. Then A and B must
be on the same vertical line, for otherwise either Lemma 8
is contradicted (if A and B are on the same horizontal line),
or Lemma 4 is contradicted for A has two corner lines (if
A and B are connected through a corner). If there are more
Steiner points after B, we repeat the above argument to prove
Lemma 9.

Lemma 10: Suppose s is a FST. Every Steiner point on s

must have a horizontal node line and the node lines alternate
in the left-right direction.

Proof: Note that a horizontal line not on the Steiner chain
cannot contain any Steiner points, nor can it contain more than

HUANG et al.: ON THE CONSTRUCTION OF OPTIMAL OBSTACLE-AVOIDING RECTILINEAR STEINER MINIMUM TREES 729

Fig. 22. Graph when Ai and Ai+1 are connected by corner.

one node since s is a FST. Therefore, it suffices to show that
there exists a horizontal line and it cannot be a corner line.

1) If the Steiner point is connected to its preceding Steiner
point through a corner (A in Fig. 21), the third line of
the Steiner point cannot be a vertical line according to
Lemma 3. Therefore, the third line must be horizontal
and it cannot be a corner line by Lemma 4.

2) If the Steiner point is on the vertical line of the Steiner
chain (B in Fig. 21), the third line must be horizontal and
it cannot be a corner line by Lemma 3.

By the corollary of Lemma 2, two adjacent Steiner points on
the same line cannot have node lines on the same side. For
the Steiner points connected through corner, it is also easy to
prove this (Lemma 3). Hence, if s is a FST, the node line on
the Steiner chain must alternate in the left-right direction.

Lemma 11: Suppose s is a FST. Then a corner connecting
Ai and Ai+1 can be transferred to one connecting Ai−2 and
Ai−1, or one connecting Ai+2 and Ai+3, regardless of whether
the place it transfers to has a corner or not.

Proof: From Lemma 9 and Lemma 10, when Ai and Ai+1

are connected by a corner, the graph must be the one given
in Fig. 22. Here ai denotes a node and β is either a Steiner
point, a node, or a corner.

Necessarily |ai+2Ai+2| > |αAi+1|, since otherwise we can
shift Ai+1Ai+2 to ai+2 to obtain a tree in which the node ai+2 has
degree more than one. Now, shift Ai+1Ai+2 to α and suppose
this line meets ai+2Ai+2 at γ . If the line cannot be shifted, the
tree will contain the structures as shown in Fig. 4. Now, α

and γ replace Ai+1 and Ai+2 as Steiner points. We can flip
the corner Ai+2 between γ and β. Then the corner connecting
Ai and Ai+1 is transferred to one connecting Ai+2 and Ai+3. If
the corner Ai+2 cannot be flipped due to some obstacles, the
tree or its equivalent will contain forbidden edges as shown
in Fig. 4. Similarly, we can use the same method to transfer
the corner connecting Ai and Ai+1 to one connecting Ai−2 and
Ai−1. Note that if Ai+3 does not exist, i.e., β is either a node or
a corner turning right to connect a node, the above operation
eliminates the corner between Ai and Ai+1.

Theorem 1: Suppose s is a FST and let m be the number of
Steiner points. There exists a s′ equivalent to s such as follows:

1) if m is odd, the Steiner chain of s′ is a straight line;
2) if m is even, all the Steiner points are on a straight line

except possibly the last one.

Proof: By pushing the corners along the direction accord-
ing to Lemma 11, there will be at most one corner connecting
the last two Steiner points. If m is odd, the corner can be
eliminated.

Appendix B

Proof for Lemma 13

Lemma 13: If a terminal u is uncongested and f (X ∪ {u})
< 1, then f (X) ≤ f (X ∪ {u}) < 1.

Proof: Let

A = {si ∈ S : |si ∩ X| ≥ 1 and u ∈ si} and
B = {si ∈ S : |si ∩ X| ≥ 1 and u /∈ si}.

Then

f (X ∪ {u}) − f (X) = |(X ∪ {u}) ∩ T |
+

∑

i:vi∈X∪{u}
yi −

∑

i:si∈A

|si ∩ X|xi

−
∑

i:si∈B

(|si ∩ X| − 1)xi

−|X ∩ T |−
∑

i:vi∈X

yi+
∑

i:si∈A

(|si ∩ X|−1)xi

+
∑

i:si∈B

(|si ∩ X| − 1)xi.

If u is a real terminal, then

f (X ∪ {u}) − f (X) = |X ∩ T | + 1 −
∑

i:si∈A

|si ∩ X|xi

−|X ∩ T | +
∑

i:si∈A

|si ∩ X|xi −
∑

i:si∈A

xi

= 1 −
∑

i:si∈A

xi ≥ 1 − bu ≥ 0.

If u is a virtual terminal and its index is k, then

f (X ∪ {u}) − f (X) = |X ∩ T | + yk

−
∑

i:si∈A

|si ∩ X|xi − |X ∩ T |

+
∑

i:si∈A

|si ∩ X|xi −
∑

i:si∈A

xi

= yk −
∑

i:si∈A

xi ≥ yk − bu ≥ 0.

In conclusion, we have f (X) ≤ f (X ∪ {u}) < 1.

Appendix C

Proof for Theorem 2

Theorem 2: Let (W : N −W) be a source to terminal cut of
G that minimize c(W). Let Xm = {u : u ∈ T +V ∧u ∈ N−W}.
Then Xm minimizes f (X).

Proof: Let W = {σ}∪ I ∪J be such a minimum cut of G,
where I ⊆ Y and J ⊆ Z. According to [21], I is completely
determined by J .

Let wtj = 1 if tj ∈ W and wtj = 0 otherwise. Let wvj
= 1 if

vj ∈ W and wvj
= 0 otherwise. Then c(W) can be written as

c(W) =
∑

i:si∈S

⎛

⎝1 −
∏

j:tj∈si

wtj

∏

j:vj∈V

wvj

⎞

⎠ xi +
∑

j:tj∈T

(btj − 1)wtj

+
∑

j:vj∈V

(bvj
− yj)wvj

730 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

=
∑

i:si∈S

⎛

⎝−xi

∏

j:tj∈si

wtj

∏

j:vj∈si

wvj

⎞

⎠ +
∑

j:tj∈T

(btj − 1)wtj

+
∑

j:vj∈V

(bvj
− yj)wvj

+
∑

i:si∈S

xi.

Note that the last term in the equation does not depend on
wtj or wvj

, and, therefore, is a constant. Now consider the
function f (X). Let ztj = 1 if tj ∈ X and ztj = 0 otherwise. Let
zvj

= 1 if vj ∈ X and zvj
= 0 otherwise. Let z̄tj = 1 − ztj and

z̄vj
= 1 − zvj

be the complementary variables. We can rewrite
f (X) as

f (X)

= |X ∩ T | +
∑

i:vi∈X

yi −
∑

i:si∩X �=∅
xi(|si ∩ X| − 1)

=
∑

j:tj∈T

ztj +
∑

j:vj∈V

zvj
yj

−
∑

i:si∈S

⎡

⎣

⎛

⎝
∑

j:tj∈si

ztj +
∑

j:vj∈si

zvj

⎞

⎠ − 1

+
∏

j:tj∈si

(1 − ztj)
∏

j:vj∈si

(1 − zvj
)

⎤

⎦ xi

=
∑

j:tj∈T

(1 − z̄tj) +
∑

j:vj∈V

(1 − z̄vj
)yj

−
∑

i:si∈S

⎡

⎣

⎛

⎝
∑

j:tj∈si

(1 − z̄tj) +
∑

j:vj∈si

(1 − z̄vj
)

⎞

⎠

−1 +
∏

j:tj∈si

z̄tj

∏

j:vj∈si

z̄vj

⎤

⎦ xi

= |T | −
∑

j:tj∈T

z̄tj +
∑

j:vj∈V

yj −
∑

j:vj∈V

z̄vj
yj

−
∑

i:si∈S

⎛

⎝|si| −
∑

j:tj∈si

z̄tj −
∑

j:vj∈si

z̄vj

−1 +
∏

j:tj∈si

z̄tj

∏

j:vj∈si

z̄vj

⎞

⎠ xi

= |T | −
∑

j:tj∈T

z̄tj +
∑

j:vj∈V

yj −
∑

j:vj∈V

z̄vj
yj −

∑

i:si∈S

(|si| − 1)xi

+
∑

i:si∈S

⎛

⎝xi

∑

j:tj∈si

z̄tj

⎞

⎠ +
∑

i:si∈S

⎛

⎝xi

∑

j:vj∈si

z̄vj

⎞

⎠

−
∑

i:si∈S

⎛

⎝xi

∏

j:tj∈si

z̄tj

∏

j:vj∈si

z̄vj

⎞

⎠

= |T | −
∑

j:tj∈T

z̄tj +
∑

j:vj∈V

yj −
∑

j:vj∈V

z̄vj
yj −

∑

i:si∈S

(|si| − 1)xi

+
∑

j:tj∈T

z̄tj btj +
∑

j:vj∈V

z̄vj
bvj

−
∑

i:si∈S

⎛

⎝xi

∏

j:tj∈si

z̄tj

∏

j:vj∈si

z̄vj

⎞

⎠

=
∑

i:si∈S

⎛

⎝−xi

∏

j:tj∈si

z̄tj

∏

j:vj∈si

z̄vj

⎞

⎠ +
∑

j:tj∈T

z̄tj

(
btj − 1

)

+
∑

j:vj∈V

z̄vj

(
bvj

− yj

) −
∑

i:si∈S

(|si| − 1)xi +
∑

j:vj∈V

yj + |T |.

The last three terms do not depend on z̄tj or z̄vj
, and,

therefore, are constants. By setting z̄tj = wtj and z̄vj
= wvj

,
we can see that c(W) and f (X) differ only by a constant.
Therefore, minimizing c(W) is equivalent to minimizing f (X).
Let (W : N − W) be a source to terminal cut of G such that
c(W) is minimized, then Xm = {u : u ∈ T + V ∧ u ∈ N − W}
is a minimum of f (X).

References

[1] M. Garey and D. Johnson, “The rectilinear Steiner tree problem is NP-
complete,” SIAM J. Appl. Math., 1977, pp. 826–834.

[2] Y. Yang, Q. Zhu, T. Jing, X. Hong, and Y. Wang, “Rectilinear Steiner
minimal tree among obstacles,” in Proc. IEEE ASICCON, Oct. 2003,
pp. 348–351.

[3] Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan, “An-OARSMan:
Obstacle-avoiding routing tree construction with good length perfor-
mance,” in Proc. ASP-DAC, 2005, pp. 7–12.

[4] R. Hentschke, J. Narasimham, M. Johann, and R. Reis, “Maze routing
Steiner trees with effective critical sink optimization,” in Proc. Int. Symp.
Phys. Des., 2007, pp. 135–142.

[5] L. Li and E. F. Y. Young, “Obstacle-avoiding rectilinear Steiner tree
construction,” in Proc. Int. Conf. Comput.-Aided Des., 2008, pp. 523–
528.

[6] Y. Hu, T. Jing, X. Hong, Y. Yang, G. Yu, X. Hu, and G. Yan, “FORst:
A 3-step heuristic for obstacle-avoiding rectilinear Steiner minimal tree
construction,” J. Inform. Computat. Sci., 2004, pp. 107–116.

[7] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan, “An O(n log n)
algorithm for obstacle-avoiding routing tree construction in the λ-
geometry plane,” in Proc. Int. Symp. Phys. Des., 2006, pp. 48–55.

[8] Z. Shen, C. Chu, and Y. Li, “Efficient rectilinear Steiner tree construction
with rectilinear blockages,” in Proc. ICCD, 2005, pp. 38–44.

[9] C. W. Lin, S. Y. Chen, C. F. Li, Y. W. Chang, and C. L. Yang, “Efficient
obstacle-avoiding rectilinear Steiner tree construction,” in Proc. Int.
Symp. Phys. Des., 2007, pp. 380–385.

[10] J. Y. Long, H. Zhou, and S. O. Memik, “EBOARST: An efficient edge-
based obstacle-avoiding rectilinear Steiner tree construction algorithm,”
IEEE Trans. Comput.-Aided Des., vol. 27, no. 12, pp. 2169–2182, Dec.
2008.

[11] G. Ajwani, C. Chu, and W. K. Mak, “FOARS: FLUTE based obstacle-
avoiding rectilinear Steiner tree construction,” in Proc. Int. Symp. Phys.
Des., 2010, pp. 27–34.

[12] J. L. Ganley and J. P. Cohoon, “Routing a multi-terminal critical net:
Steiner tree construction in the presence of obstacles,” in Proc. IEEE
ISCAS, May–Jun. 1994, pp. 113–116.

[13] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem.
Amsterdam, The Netherlands: North-Holland, 1992.

[14] Y. Y. Yang and O. Wing, “Optimal and suboptimal solution algorithms
for the wiring problem,” in Proc. IEEE Int. Symp. Circuit Theory, Apr.
1972, pp. 154–158.

[15] J. S. Salowe and D. M. Warme, “Thirty-five point rectilinear Steiner
minimal trees in a day,” Networks, vol. 25, no. 2, pp. 69–87,
1995.

[16] D. M. Warme, P. Winter, and M. Zachariasen, “Exact algorithms for
plane Steiner tree problems: A computational study,” in Advances in
Steiner Trees, D. Z. Du, J. M. Smith, and J. H. Rubinstein, Eds. Boston,
MA: Kluwer, 2000, pp. 81–116.

[17] P. Winter, “An algorithm for the Steiner problem in the Euclidean plane,”
Networks, vol. 15, no. 3, pp. 323–345, 1985.

[18] F. K. Hwang, “On Steiner minimal trees with rectilinear distance,” in
Proc. SIAM J. Appl. Math., vol. 30, no. 1, pp. 104–114, 1976.

[19] M. Zachariasen, “Rectilinear full Steiner tree generation,” Networks, vol.
33, no. 2, pp. 125–143, 1999.

[20] U. Fößmeier and M. Kaufmann, “On exact solutions for the rectilinear
Steiner tree problem part I: Theoretical results,” Algorithmica, vol. 26,
no. 1, pp. 68–99, 2000.

HUANG et al.: ON THE CONSTRUCTION OF OPTIMAL OBSTACLE-AVOIDING RECTILINEAR STEINER MINIMUM TREES 731

[21] D. M. Warme, “Spanning trees in hypergraphs with applications to
Steiner trees,” Ph.D. thesis, Dept. Comput. Sci., Univ. Virginia, Char-
lottesville, 1998.

[22] M. Hanan, “On Steiner’s problem with rectilinear distance,” in Proc.
SIAM J. Appl. Math., vol. 14. 1966, pp. 255–265.

[23] A. C. C. Yao, “On constructing minimum spanning trees in k-
dimensional spaces and related problems,” SIAM J. Comput., vol. 11,
no. 4, pp. 721–736, 1982.

[24] GeoSteiner: Software for Computing Steiner Trees [Online]. Available:
http://www.diku.dk/geosteiner

Tao Huang received the B.E. and M.E. degrees in
electronic engineering from Sun Yat-sen University,
Guangzhou, China, in 2007 and 2009, respectively.
He is currently pursuing the Ph.D. degree from the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, Hong
Kong.

His current research interests include computer-
aided design of very large-scale integrated circuits,
physical design, interconnect optimization, and com-
binatorial optimization.

Liang Li received the Bachelors degree from the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, and the Masters degree from the
Chinese University of Hong Kong, Shatin, Hong
Kong.

He is currently with Oracle Research and Develop-
ment Center Company, Ltd., Shenzhen, China. His
current research interests include very large-scale in-
tegrated circuits computer-aided design, algorithms,
and combinatorial optimization. He focuses on rout-
ing problems, especially the problem in the presence

of obstacles.

Evangeline F. Y. Young received the B.S. and
M.Phil. degrees in computer science from the Chi-
nese University of Hong Kong (CUHK), Shatin,
Hong Kong, and the Ph.D. degree from the Uni-
versity of Texas at Austin, Austin, in 1999.

Currently, she is an Associate Professor with the
Department of Computer Science and Engineering in
CUHK. Her current research interests include algo-
rithms and computer-aided design of very large-scale
integrated circuits. She is now working actively on
floorplanning, placement, routing, and algorithmic

designs.
Dr. Young has served on the technical program committees of several major

conferences including ICCAD, ASP-DAC, ISPD, and GLSVLSI, and has also
served on the Editorial Board of the IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

