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Twin Binary Sequences: A Nonredundant
Representation for General Nonslicing Floorplan

Evangeline F. Y. Young, Chris C. N. Chu, and Zion Cien Shen

Abstract—The efficiency and effectiveness of many floorplan- A. Previous Works

ning methods depend very much on the representation of the geo- . .
metrical relationship between the modules. A good representation The problem of floorplan representation has been studied ex-

can shorten the searching process so that more accurate estima-t€nsively. There are three types of floorplans: slicing, mosaic,
tions on area and interconnect costs can be performed. Nonslicing and nonslicing. A slicing floorplan is a floorplan that can be

floorplan is the most general kind of floorplan that is commonly  gbtained by recursively cutting a rectangle into two by using a
used. Unfortunately, there is not yet any complete and nonredun- yariical or horizontal line. Normalized polish expression [12]

dant topological representation for nonslicing structure. . - !
In this paper, we propose the first representation of this kind. 'S the most popular method to represent slicing floorplan. This

Like some previous work (Zhouet al. 2001), we have also made use fepresentation can describe any slicing structure with no redun-
of mosaic floorplan as an intermediate step. However, instead of dancy. An upper bound on its solution spac®is!23" /n'-).

including a more than sufficient number of extra dummy blocks  For general floorplan that is not necessarily slicing, there was
in the set of modules (that will increase the size of the solution , afficient representation other than the constraint graphs until

space significantly), our representation allows us to insert aexact . S ;
number of irreducible empty rooms$o a mosaic floorplan such that the sequence pair (SP) [7] and the bounded-sliceline grid (BSG)

everynonslicing floorplan can be obtained uniquely fromone and  [8] appeared in the mid-1990s. The SP representation has been
only one mosaic floorplan. The size of the solution space is only widely used because of its simplicity. Unfortunately, there are

O(n!2°"/n'-®), which is the size without empty room insertion, g |ot of redundancies in these representations. The size of the
but every nonslicing floorplan can be generated uniquely and effi- solution space of SP i@l!)g and that of BSG iSL!C(nQ.n).
ciently in linear time without a.ny redund-ant representat.lon. This drawback has restricted the applicability of these methods

[Index Terms—Computer-aided design, floorplanning, non- inlarge-scale problemé)-tree [4] andB*-tree [1] are later pro-
slicing, representation, very large scale integration. posed to represent compacted (admissible) nonslicing floorplan.

They have a very small solution space(f!2%" /n'-®) and can
|. INTRODUCTION give afloorplan in linear time. However, they describe only par-

tial topological information and module dimensions are needed

LOORPLAN design is a major step in the physical desi% give a floorplan exactly. The representation is not unique,

th cyqltg of veryéla;]ge scaltfe mtegtjraftmn ((jVII‘SI) cwcw:]s: 0 pla nd a single)-tree orB*-tree representation, depending on the
€ posilions and shapes of a Set ot modules on a chip 1N Orily 16 dimensions, can lead to more than one floorplan with

FO opiimize the CII’C_UI'[ performa_mcg. A.‘S technology MOVESR odules of different topological relationships with each other.
into the deep-submicron era, circuit sizes and complexmesln [5], a new type of floorplan is proposed called mosaic
are growing rapidly, and floorplanning has become ever moﬁSorpIaﬁ. A mosaic floorplan is similar to a general non-

!mportant tha}n b'efo.re. Area m|n|m{zat|on used to_ be the moﬁfcing floorplan except that it does not have any unoccupied
important objective in floorplan design, but today, interconnegt [Fig. 1(a)] and there is ncrossing cutin the floorplan

issues like delay, total wirelength, congestion, and routabili ?éig. 1(b)]. A representation called corner block list (CBL) is

Pa\t/e n:s}ea?l beclome_ the m;lljor goal fierOPt'm'T?'onMU roposed to represent mosaic floorplan. This representation
ortunately, floorplanning problems are NrF-complete. Vary,g 5 relatively small solution space 6f(n!2")t and the

floorplhanners der:nplqyt.metr_]rcr)]ds of];. perturbaugnsﬁwnp rando e complexity to realize a floorplan from its representation
searches and neurisucs. 1he efliciency and electiveness, Olinaar However, some corner block lists do not correspond
these kinds of methods depend very much on the representa{g)rbny floorplan. As a remedy to the weakness that some

of the geometrlcal relationship betwe_en the modules. A go 8nslicing structures cannot be represented [e.g., Fig. 1(a)],
representation can shorten the searching process and allows is extended by including dummy blocks of zero area in the

realization (;)f tthe roorpI?n sc; that rEore afccura(tje estimatiogs; ot modules. In order to represent an all nonslicing structure,
on area and interconnect costs can be periormed. O(n?) of such dummy blocks are used but this has increased
the size of the solution space significantly [14]. In [10], a new
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Fig. 1. Structures that cannot be represented in a mosaic floorplan. 0 10 1
b,
mosaic floorplan, which is later enhanced in [15] by including labeling = 100101 labeling = 011010

empty rooms. Itis also proved in [15] that the number of empty
rooms required is upper bounded#by- |/4n — 1] wheren is  Fig. 2. An example of a TBT.
the number of modules.

B. Our Contributions B
Although the problem of floorplan representation has beq A

studied extensively, and numerous floorplan representatic Clp ©) (@/\®

have been proposed in recent years, it is still practically use F

and theoretically interesting to find a complete (i.e., evel E ¢ .

nonslicing floorplan can be represented) and nonredund: labe]ing;oll()] labelingiloolo

topological representation for general nonslicing structure.
In this paper, we will present such a representation, the twhig- 3. Building a TBT from a mosaic packing.
binary sequences (TBS). This will mark the first of this kind.
Like some previous work [14], we have made use of the mosaitere Treg is the set of binary trees with nodes, and (b)
floorplan as an intermediate step to represent a nonslicing strigcthe labeling of a binary trek obtained as follows. Starting
ture. However, instead of including an extra number of dumnwith an empty sequence, we perform an inorder traversal of the
blocks in the set of modules, the representation allows ustteed. When a node with no left child is reached, we will add
insert an exact number afeducible empty room# a mosaic a bit 0 to the sequence, and when a node with no right child is
floorplan such that every nonslicing structure can be generaie@ched, we will add a bit 1 to the sequence. The first 0 and the
uniquely and nonredundantly. Besides, the representation ¢t 1 will be omitted ©¢ is the complement of obtained by
give a floorplan efficiently in linear time. We have studied thénterchanging all the Os and 1s @&. An example of a TBT is
relationship between mosaic and nonslicing floorplan and hagieown in Fig. 2
proved that the number of empty rooms needed to be insertednstead of using an arbitrary pair of trees (which may not
into a mosaic floorplan to obtain a nonslicing structure is tightlye twin binary to each other) directly, we used four-tuple:
bounded byd(n) wheren is the number of modules. (7, a, 3, ) called TBS to represent a mosaic floorplan with
In Section II, we define twin binary sequences (TBS), anghodules wherer is a permutation of the module namesis a
show how a floorplan can be constructed from this represent@quence of, — 1 bits, andj3 and3’ are sequences of bits.
tion in linear time. In Section Ill, we show how this representarhe properties of these bit sequences will be described in de-
tion can be used to describe nonslicing structure with the heils in Section II-B. This four-tuple can be one-to-one mapped
of a fast empty room insertion process. We also present sotgea pair of binary trees; andt, such thatt; andt, must be
interesting results on the relationship between mosaic and gefin binary to each other and they together represent a mosaic
eral floorplan. In Sections IV and V, we discuss our floorplannéorplan uniquely. Most importantly, we are then able to insert
based on simulated annealing and the experimental results @ty rooms ta; andt, at the right places to give a nonslicing
shown. floorplan. We proved that every nonslicing structure can be ob-
tained by this method from one and only one mosaic floorplan.
Il. TBS REPRESENTATION In order to motivate the idea of our new representation, we will

In the paper [13], Yaoet al. first suggest that twin binary first show how a TBT can be obtained from a mosaic floorplan

trees (TBT) can be used to represent mosaic floorplan. THEySection II-A.

have shown a one-to-one mapping between mosaic floorplan

and TBT. We have made use of TBT in our representation. Re- F1om Floorplan to TBT

call that the definition of TBT comes originally from the paper Given a mosaic floorplaF’, we can obtain a pair of TBT

[3] as follows: t; andt, by traveling along the slicelines df. An example
Definition 1: The set of TBT with nodesTBT,, C Tree, x is shown in Fig. 3. To construet, we start from the module
Tree, is the set at the lower left corner and travel upward (left subtree) and to

. the right (right subtree). Whenever the lower left corner of an-
TBT,, = {(b1,b2)|b1,b2 € Tree, andO(b1) = ©°(b2)} other moduler is reached, a node labeleavill be inserted into

2Together with the upper-bound result in [15], the tight bound can be furthg?e trge and the proces_s will be repeated st_a_rting from module
improved to©®(n — 2y/n). 2 until all the modules in the floorplan are visited. The ttge
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can be built similarly by starting from the module at the upper
right corner and travel downward (right subtree) and to the left m;
(left subtree). Similarly, whenever the upper right corner of an-
other moduley is reached, a node labelgdvill be inserted into ™ F
the tree and the process will be repeated starting fgommtil

all of the modules are visited. The paper [13] has shown that
the pair of trees built in this way must be twin binary to each

other, and there is a one-to-one mapping between mosaic floor- b;=0 b=1
plan and TBT. We observed that the inorder traversal of the two (a) (b)

binary trees constructed by the above method must be the SaMLs  proof of Observation 1 (only if part).

Let us look at the example in Fig. 3. We can see that the inorder

traversals of both; andt, are ABCFDE We have proved the (@) and (C)O(t1) = 10(t}), O(ts) = 00(t})

5), and the inorder
following observation that helps in defining the TBS represety, ersal oft, (») is the same as that obtained by appending
tation.

in front of the inorder traversal df (¢,). Similarly, in case (b)

Observation 1: A pair of binary tree€; and¢, can be con- and (d),0(t,) = 00(#;), O(t2) = 16(t}), and the inorder tra-
structed from a mosaic floorplan by the above method if aRgrsal oft1(t,) is the same as that obtained by appendinin
only if: 1) they are twin binary to each other, i.€)(#1) = front of the inorder traversal af (t,). Thereforet; andt, also
©°¢(t2); and 2) their inorder traversals are the same. satisfy conditions (1) and (2).

Proof: (if part) This part can be proved by induction on (only if part) Again, this part is proved by induction. The base
the number of modules in the floorplan. The base case occuese occurs when there is only one node in the pair of binary
when there is only one module in the floorplan and conditiorieees. If both conditions (1) and (2) are true (note that condition
(1) and (2) follow trivially. Assume that these conditions are tru@) must be true since there is only one node in the trees and
when there are not more than> 1 modules in the floorplan. their labelings are both empty), their nodes are labeled the same
Consider a floorplar#” with k& + 1 modules. Let the pair of bi- and they correspond to a packing with only one module. As-
nary trees constructed frodi by the above method big and sume that this statement is true for any pair of trees with 1
to. Consider the module: at the upper left corner af. There nodes, i.e., inorder traversal of lengtrand labeling of length
are only four possible configurations for the positiomofn F©  k — 1. Consider a pair of trees;(andts) with inorder traversal
as shown in Fig. 4. In each case, létbe the floorplan obtained m ms ... myy1, and labelingshibs ... b, and by, bo, ..., by.
by sliding modulem out of F' by moving the thickened slice- There are two cases as shown in Fig. 5 according to the value of
line in the direction shown. Let, and¢, be the pair of binary the bitb;. In both cases, the inorder traversalms . .. my11,
trees constructed frof’ by the above method. Since floorplarand the bit sequencésbs ... b, andbs, bs, ... b, will corre-

F’ has onlyk modules¢} andt,, satisfy conditions (1) and (2) spond to a floorplarF” according to the hypothesis. We can
according to the hypothesis, i.€@(t]) = ©¢(t}), and their in- obtain a floorplanF’ from F’ by putting the moduler, on the
order traversals are the same. From Fig. 4, we can see that in cage [case (a)] or at the top [case (bH. will correspond to a

©

Fig. 4. Proof of Observation 1 (if part).
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sequencer and directional bit sequenggto correspond to a
binary tree.
Lemma 1: For any binary tree, its labeling sequencand
directional bit sequenceé must satisfy conditions (1) and (2).
Proof: Given a binary treet, the bit sequence
Bra1fBs ... a,_10, is the inorder traversal of the extended
treet’ of ¢ (with the internal nodes labeled by their directional

treet fr’g:gﬁd bits). To verify condition (1), notice that each internal node of
0 1 t’ has two children, one is labeled by zero and the other one
is labeled by one. We assume that the root is labeled by zero.
Fig. 6. Example of an extended tree. Therefore, condition (1) must be satisfied. To verify condition

(2), notice that for any two children having the same parent, the
pair of trees with inorder traversat,m; ... my41, and label- child labeled zero is always visited first in the inorder traversal.
iNgs b1b ... b, andbibs ... by. We can choose between casd herefore, condition (2) must be satisfied. a
(a) and (b) depending on the valuelgf Therefore, this only if ~Lemma 2: For any binary sequencesof n — 1 bits and
statement is also true when there &re 1 nodes in the pair of Of n bits satisfying conditions (1) and (2), there exists a unique
trees. [0 binary treet such that the labeling sequencetd$ « and the

If we extend a treg by adding a left child of bit O to every directional bit sequence dfis /3.
node (except the leftmost node) that has no left child and by Proof: The uniqueness can be proved by induction on the
adding a right child of bit 1 to every node (except the rightmogtumber of nodes. The claim is trivially true when there is only
node) that has no right child, the tree obtained is calleé>an One node, i.e., when = 1. Assume that the claim holds when
tendedtree oft. An example of an extended tree is shown ithe number of nodes is at masti.e., whenn < k. Consider
Fig. 6. Notice that the inorder traversal of the extended tree ofhe case whem = k + 1. Given a pair of binary sequences
will be mya1moas . . . a_1m, Wheremims ... m, isthein- & = aiaz...ap andp = p1 ... Br4+1, We can reduce the
order traversal of anda; as . . . a,,—1 is the labeling of.. Ob-  problem to the case with or less nodes as follows. First of all,
servation 1 can be restated as follows. we append a bityy = 0 in front of o and a bitoy4; = 1 at the

Observation 2: A pair of binary treeg; and¢, can be con- €nd ofa. Then there exists at least onsuch thaty;_1 = 0
structed from a mosaic floorplan by the above method if afiid; = 1. This is a place for a leaf node where the leaf is
only if the inorder traversal of their extended trees are the sa@igher a left (when3; = 0) or a right (whens; = 1) child of

except that all the bits are complemented. its parent. We usé to denote the set of all such locations, i.e.,
S={j1<i<k+1)N(xi—1 =0)N(a; = 1)}. Let
B. Definition of TBS be the binary sequence obtained franby replacinga; 1 «;

) ) ) by g; for all i € S, andg’ be the binary sequence obtained
From observation 1, we know that a pair of binary trées from 3 by deletingg; for all i € S. Notice that the first bit

andt, arevalid (i.e., corresponding to a packing) if and only ifof ,/ must be zero and the last bit must be one, i.e., we can
their labelings are complement of each other and their inordgfite o/ asoa”’1. According to the induction hypothesis, there
traversals are the same. However, the labeling and the inorggists a unique binary tre¢ such that the labeling sequence of
traversal are not sufficient to identify a unique pairtefand /s o and the directional bit sequence #fis 3’. The treet
t>. Given a permutation of module namesand a labelingv,  for the original pair of binary sequences= ajas. .. ap_;
there can be more than one valid pairstpfand?, such that angg = g,3,... 8, can be constructed uniquely frothby
their inorder traversals are and©(t1) = ©°(f2) = «. In jnserting a leaf to the position of bjt; in ¢ for all i € S.
order to identify a pair of trees uniquely, we need two additiongherefore, the uniqueness still holds whes & + 1. 0

bit sequenceg and/3’ for ¢, andi,, respectively, such thatthe  Now, we can define the TBS representation. A TB®r n
ith bitin 5 andf’ tells whether theth module inr is the left  moqules is a four-tuple:

child (when the bit is 0) or the right child (when the bit is 1)

of its parent int; andt,, respectively. These bits are called the

directional bits If modulek is the root of a tree, its directional _ /
. . . S_(ﬂ-?a?ﬂ‘//})

bit will be assigned to zero.

Fo_r a b_mary tree, !ts labeling sequence = a;a ... “n-1 " \wherer is a permutation of the modules, bothx and3, anda*
and its directional bit sequenge = 3, . .. f#, must satisfy (the complement of)) and/3’ satisfy conditions (1) and (2). We
the following conditions. have proved the following two theorems that show a one-to-one
1) Inthe bit sequenc8 B . . . an—1/3,, the number of 0S mapping between TBT and mosaic floorplan.
is one more than the number of 1s. Theorem 1:The mapping between TBS and TBT is
2) For any prefix of the bit sequengdai0s...an—16., one-to-one.
the number of Os is more than or equal to the number of  proof: Given a pair of TBT, we can construct one unique
1s. TBS according to the definition in Section II-B. On the other
We proved the following lemmas which show that conditionsand, if we are given a TBS = (7, «a, (3, '), according to
(1) and (2) are necessary and sufficient for a pair of labelinggmma 2, there exists a unique binary tr¢€) such that the
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Fig. 7. Simple example of constructing a floorplan from its TBS. Fig. 8. Proof of Theorem 3.

labeling sequence aft’) is a(a*) and the directional bit se- sponding [ bit not deleted yet) will be
quence oft(t') is f(3'). Since®(t) = ©°(¢'), t and¢’ are  lying on the left boundary of P. Add
twin binary. We can then label their nodes according to the inmodule =; to P from the left, pushing
order traversatk. This is the unique pair of TBT and#’ corre-  those modules in S to the right.

sponding tos. Therefore, the mapping between TBS and TBT. Delete  Bit+1,Bit2,...,0r from [.

is one-to-one. O 8 If (w=1):

Theorem 2: The mapping between TBS and mosaic floorS. Find the smallest kst i< k<mn and
plan is one-to-one. Br =1

Proof: The one-to-one mapping between TBS and md-0. Note that the set S of modules
saic floorplan follows from Theorem 1 and the proof in paperr;y1,mito,..., 7, (those with their corre-
[13] that the mapping between TBT and mosaic floorplan issponding /3 bit not deleted yet) will
one-to-one. O  be lying on the top boundary of P. Add
module w; to P from above, pushing those

C. From TBS to Floorplan modules in S down.

1) Algorithm for Floorplan Realizationin ordertorealizea 11.  Delete  Bi.y,Bi,s,..., 5, from [

floorplan from its TBS representation efficiently, we devised afind

algorithm that only needs to scan the sequences once from right

to left to construct the packing. We will construct the floorplan 2) Proof of Correctness:The correctness of the above algo-
by inserting the modules one after another following thge- rithm on floorplan realization can be proved by the following
quence in the reversed order. A simple example illustrating thgnma and theorem.

steps of the algorithm is given in Fig. 7. At the beginning, we Lemma 3: In the for-loop of the above algorithm, when we
will put the last module of the sequence, i.e., modulg, into  scan to a poini wherel < i < n — 1 anda; = 0(a; = 1),
the packingP. We will then insert the other modules one aftethe corresponding node; in ¢;(¢2) has a right childr; and
another. The next module to be considered aftds 7, = F.  all the nodes irt, wheret is the subtree of; (¢,) rooted atr,
Sinceny = 0, we will look atthe sequengeand find the closest have been scanned immediately beforen addition, any node
bit 1 on the right of3,, i.e.,35. We will then add modul&” into 7, € ¢ wherek # j andg), = 1(3, = 1) will have its 3(3')

P from the left pushingD (sincea; = D) to the right as shown hit deleted.

in Fig. 7(b) and delete bi; from . The next module to be Proof: W.l.o.g., we only prove the case whap= 0. The
considered afteF’ ist3 = C. Sinceas = 1, we will look atthe case wheny; = 1 can be proved similarly. The proof can be
sequence’ and find the closest bit 1 on the right8f, i.e.,5;. done by induction ori. The base case is whén= n — 1. If
We will then add modul€’ into P from above pushing’ (since «,,_; = 0, 7,,_; must have a right child in;, according to the
a4 = E) down as shown in Fig. 7(c) and delete Bitfrom 5.  definition of TBS. Lett be the right subtree of,_; int;. Since
These steps repeat until the whole sequenteprocessed and we are performing the inorder traversal in the reversed order, the

a complete floorplan is obtained. nodes int must have been scanned immediately before; . In
this base case, there is only one n¢dg) in ¢ which is the right
Algorithm TBStoFloorplan child of r,,_; andg,, = 1. Therefore, the statement is true for
Input: TBS s = (ma,p,03) this base case.
Output: Packing P corresponding to s Assume that the statement is true whien p for somel <
Begin p < n — 1. Consider the case wheén=p — 1. If a,_; = 0,
1. Append « with bit “1,” ie., a, = 1. similarly, 7,,_, must have aright child; in ¢;, according to the
2. Initially, we have only module T, Iin definition of TBS. Lett be the subtree of; rooted atr;. Since
P. we are performing the inorder traversal in the reversed order, the
3. For i=n—-1 down to i=1: nodes int must have been scanned immediately befgye; .
4. If (a; =0): Let them ber,, mpt1, ..., Tp+m—1, Wherem is the size oft.
5. Find the smallest k st i< k<mn and (Notethatp < j < p+ m — 1.) If there is any noder;, in ¢
Br = 1. wherek # j andfg;, = 1, Br must have been deleted when the
6. Note that the set S of modules scan reaches,_;. This is because, i, = 1, 7 is the right

Titl, Tit2,---, Tk (those with their corre- child of its parentr; in ¢; andr; must also be in. According to
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Fig. 9. Proof of Theorem 3.

the inductive hypothesis, when we scarrfpwe will find that betweenB andA in the inorder sequeneeare in the left subtree
a; = 0 (sincem; has a right childry in t;) andm;, will be the of B in t;. After scanning pas8, if there is ann;, = 0 where

only node in the right subtree af in ¢; such thaf3;, = 1 atthat 1 < k < j, we will only delete thosé bits up to and including
moment. Since the nodes in the right subtree;ofill be lying  3;, wherer; is the right child ofr, according to Lemma 3.
immediately in front ofr; in the reversed inorder traversal, weThus, the value of; will not affect the first: — 1 steps of the for
will delete all thegs bits up to and including,.. Therefore, when loop. That means, when we readhthe intermediate floorplan
we scan tor,_, any noder;, € ¢t wherek # j andg, = 1 will  obtained is the same d§. At A, sincea; = 0, according to

have itsg bit deleted. O the above lemmal3 = «; will be the only module in the left
Theorem 3: The algorithm TBStoFloorplan can convert TBSsubtree ofA in ¢; such thai3; = 1. Therefore, we will delete
to its corresponding floorplan correctly. all the 3 bits up to and including®; and insert modulet to £

Proof. Again, the proof can be done by induction on thé&om the left, pushing to the right all the modules from the upper
number of modules. The base case occurs when there are dettiycorner of F; down to and including modul&. We will get
two modules in the packing. There can only be two differettack the correct packing. Therefore, the statement is also true
mosaic packings with two modules, one with the two moduleghen there are + 1 modules in the packing. O
lying side by side and the other one with the two modules piling
up vertically. It is easy to show that the algorithm is correct iR. Size of Solution Space

both situations. The TBS representation is a complete and nonredundant

Assume that the algorithm is correct when theresaraod-  representation for mosaic floorplan. Thus, the number of
ules in the floorplan for some > 2. Consider the case whengifferent TBS configurations should give the Baxter number
there aren + 1 modules. W.l.0.g., we assume that= 0. The [13]. The Baxter number can be written analytically as a
case wher; = 1 can be proved similarly. Since; = 0, complicated summation [13, eq. (3.1)]. However, there is no
the upper left moduled = 7 has a right childB = 7; in  known simple closed-form expression for the Baxter number.
t1 and A should be packed in one of the two ways shown ifh the following, an upper bound on the number of different
Fig. 8 in the floorplanF’. Assume that the TBS of' is s = TBS configurations (i.e., on the Baxter number) is presented.
(m,c, B, ) wherer = w1, 73, ..., Tpy1, 0 = @1, 02,...,an,  Consider a TBS(r, o, 81, 2) for n modules.a and 3,
B = Pi,f2....But1, @andB = By, B5,..., B,41. Consider uniquely specify a rooted ordered binary tree. Thus, the number
sliding moduleA out of the floorplanf” (Fig. 9) in the direction of combinations ofx and 3, is given by the Catalan number.
shown to obtain a floorplad; with » modules. Note that the Since the number of combinations feris n!, the number of
TBS s, for Fy can be obtained fromby changing3; fromone  combinations for3, is upper-bounded by)(2"), the Catalan
to zero and removing, a1, 41, andg; from 7, a, 3, andf’,  number is upper-bounded b§(22"/n'?), the number of
respectively. Sincé’; has onlyn modules, the algorithm can different TBS configurations is bounded BY(n!23" /n'-5).
construct the floorplar; correctly froms;, according to the
inductive hypothesis. IIl. EXTENSION TO GENERAL FLOORPLAN

Consider the sequence of operations of the algorithm.on ) .
The firstn — 1 steps of the for loop will be the same as thaf EMPty Rooms in Mosaic Floorplan
for s1. The two sequences of operations are the same althougl\ TBS s represents a mosaic floorpldh Now, we want to
B; is changed from one to zero because all of the modules lyiimgsert an exact number of empty rooms at the right places in
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A
=N ~=__ X
|| reducible T . || irreducible
empty room empty room
(a) (b) Fig. 12. Proof of Lemma 4.
Fig. 10. Examples of reducible and irreducible empty rooms.
A A A
B B :
— irreducible X X X
empty room :
@ (b)
The four T-junctions at the Fig. 13. Proof of Lemma 5.

corners of an irreducible empty
room form a wheel structure

follows. In both cases, we are able to reduce the number of ir-
reducible empty rooms by one. By repeating the above process,
we will either end up with only one irreducible empty room that
F to obtain a corresponding nonslicing floorpl&h such that must satisfy the condition, or the situation that every remaining
every nonslicing floorplan can be generated by this method frarreducible empty room does not share a T-junction with each
one mosaic floorplan nonredundantly. There are two kinds efher. O
empty rooms. One is resulted because a big room is assigned
to a small module. This kind of empty room is callediucible
empty roomAn example is shown in Fig. 10(a). Another kin
of empty room is calledrreducible empty roonand is defined
as follows. In this section, we will show how a nonslicing floorpldfi
Definition 2: An irreducible empty room is an empty roomcan be constructed from a mosaic floorplaiby inserting some
that cannot be removed by merging with another room in tleeducible empty rooms at the right placedinFor simplicity,
packing. we will make use of TBT for explanation. That means, given a
An example of an irreducible empty room is shown imosaic floorplanF’ represented by a TB#; andt,, we want to
Fig. 10(b). We observed that an irreducible empty room musisert the minimal number of empty rooms (representedby
be ofwheelshape and its fouadjacent roomgthe rooms that to the trees appropriately so that they will correspond to a valid
share a T-junction at one of its corners) must not be irreducibienslicing floorplanF’, and the method should be such that
empty rooms themselves. every nonslicing floorplan can be constructed by this method
Lemma 4: The T-junctions at the four corners of an irreuniquely from one and only one mosaic floorplan. To construct
ducible empty room must form a wheel structure (Fig. 11). a nonslicing floorplan from a mosaic floorplan, we only need to
Proof: If an empty roomX does not form a wheel struc- consider those irreducible empty rooms, because all reducible
ture, there is at least one slicing cut (Fig. 12) on one of its foempty rooms can be removed by merging with some neigh-
sides. By removing this slicing cut, we can metgewith the boring rooms. From Lemma 4, we know that an irreducible
room on the other side of the slicing cut (room A in Fig. 12) andmpty room must be of the shape of a wheel, so its structure
X can be removed. O in the TBT must be of the form as shown in Fig. 14. In our
Lemma 5: The adjacent rooms at the four T-junctions of aapproach, we will use the following mappidd,. to create irre-
irreducible empty room must not be irreducible empty roontgucible empty rooms from a sliceline structure.
themselves. Definition 3: The mappingM, will map a vertical (hori-
Proof: W.l.o.g., we consider anirreducible empty rodfm zontal) sliceline with one T-junction on each side to an irre-
of clockwise wheel shape and assume that its adjacent rbonducible empty room of anticlockwise (clockwise) wheel shape
sharing withX the T-junction at its upper left corner is also ar{Fig. 15).
irreducible empty room (Fig. 13). Thethimust be an anticlock- It is not difficult to prove the uniqueness of this mapping as
wise wheel. There are two cases: 1) If widt) > width(S), stated in the next Lemma:
X can be merged wittd; [Fig. 13(a)] to form a new empty Lemma 6: Every nonslicing floorplan can be mapped /.
room. This empty roonX + A, is reducible and can be removedrom one and only one mosaic floorplan.
by combining with the modules on the right hand side (labeled Proof: Given a nonslicing floorplarF’, each of its irre-
B) and 2) If width A) < width(S), A can be merged witlk;  ducible empty rooms must form a wheel structure, sharing its
[Fig. 13(b)] to form a new empty room and a similar argumeribur corners with four different modules. Each of them can only

Fig. 11. Wheel structure.

. Mapping Between Mosaic Floorplan and General
onslicing Floorplan
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A D @ (a) @ (&)
Bl x|p Al X |C & — ® \_. ®
C B (B) /.\

ZanN Fig. 16. Only two ways to insetX into a tree.
X) X ®®
® & § &
AN
t1 ty t1 ty

(@) (b)

Fig. 14. Tree structure of an irreducible empty room.
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\ One of them will be matched
t to tq ty with the X in the first sequence
@ ty th
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® The first X is chosen. The second X is chosen.

(©

Fig. 17. Simple example of constructing a nonslicing floorplan from a mosaic
floorplan.

Fig. 15. Mapping between mosaic floorplan and nonslicing floorplan.

be created from one slicing structure as described in the map-

ping M. It is thus obvious that the floorplaf’ can only be rectly. According to Observation 2, a pair of TBT are valid (cor-

mapped from one unigue mosaic structure. [0 respond to a packing) if and only if the inorder traversal of their
From Lemma 5, we know that the adjacent rooms of an iextended trees are equivalent except that all the bits are reversed.

reducible empty room must be occupied. Therefore, if we wahherefore, in order to find out those valids, we will write

to insertX's into the TBT¢; andt, of a mosaic floorplan, the down the inorder traversals of the extended treeg @fndt)

X's must be inserted between some module nodes as showarid try to match th&'s. The matching is not difficult since there

Fig. 16. Given this observation, we will first insert as maXig must be an equal number afs between any two neighboring

as possible (i.en — 1) into t; andt, to obtain another pair of module names [Fig. 17(c)]. We may need to make a choice when

treest] andt,. An example is shown in Fig. 17(b). Now, thethere are more than oés between two modules. For example,

most difficult task is to select thos¥'s that are inserted cor-in Fig. 17(c), there is oneX betweenC and D in thefirst
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TBS
nm:. EtiADBC FG

o: 10010101
B: 00101101

Tree t:

(F)
(m) (©)
® &
(B)
©®©

Fig. 18. Example of searching the last module in the right subtree.of

Search the last module in the right subtree of i by
counting the number of 1 and 0 in the bit sequence
B, o, B o ..untlwe reach module C which

Kk ~ =~
satisfies the equation: +o. =2
i=zi+(lBJ =

Fig. 19.

sequence and there are t(cs in the second sequence. In this
case, we can match one pair®¥t. There are two choices from
the second sequence, and they will correspond to different non-
slicing structures as shown in Fig. 17(c). Every matching will
correspond to a valid floorplan, and each nonslicing floorplan
can be constructed uniquely by this method from one and only
one mosaic floorplan.

C. Inserting Empty Rooms Directly on TBS

In our implementation, we do not need to build the trees
explicitly to insert empty rooms. We can scan the TBS
(m,a,3,") once to find out all the positions of th€s in the Fig. 20.
inorder traversals af; andt, after insertion. This is possible be-
cause of the following observation. ConsiderXannserted at a
node positiond in a tree. IfA has a left subtre® [Fig. 16(a)],
this insertedX will appear just before the left subtree dfin
the inorder traversal of . Similarly, if A has a right childB
[Fig. 16(b)], this insertedX will appear just after the right sub-
tree of A in the inorder traversal of . A simple algorithm can
be used to break down the subtree structure of a tree and find
out all the positions of th&'s in the sequences after insertion il"l:i 1
linear time. The details of the algorithm are as follows. g-o%

We scan the TBS from left to right and assume that= 1.

If a; = 0, moduler; has a right subtree ifh according to the
definition of TBS. By the observation above, we only need to

find the position of the last modulgr;.) in the right subtree of

m; in t1 from the TBS, and then insert oné just afterm;, in

the inorder traversal of;. In addition, we will assign 1 as the
labeling bit of the inserted. Note that the right subtree af

can be taken as a binary tree except that the directional bit of the
root is 1, not 0 as usual. In addition;, = 1. Thus, we obtain Fig. 22.
the modified conditions for the right subtreemfas follows:

a) In the bit sequenced;yicit1Piy2 - .. ar—1frak, the

number of 1s is two more than the number of Os.

b) For any proper prefix of the bit sequence

Biv1®it1Piva - . . ap—1Prax, the number of 1s is less
than or equal to the number of Os plus 1.
Based on the above conditions, we can count the number o

and 1s from3; 1 anda;1 until we reach the moduley. It is
not difficult to find 7, by the following mathematical form:

Tree t1

cjo
®®
®©
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TBS
GFADBCm E

o: 10010101
B: 00001111

Tt:

Search the first module in the left subtree of i by
counting the number of 1 and 0 in the bit sequence
B. o B @ ..until we reach module A which
satisfies the equation: B+a,,)=-

q jg{fﬁﬁ @ )=-2

Example of searching the first module in the left subtree, of

D Left-Rotate(T,B)

C D E

Right-Rotate and Left-Rotate for a binary search tree.

Right-Rotate(T,A)

E

Left-Rotate(T,B)

c 1

0

Modified red-black rotations when subti®as 0 or 1.

E

where we define

fz=1
ifx=0"

L
-1,

-

A simple example is shown in Fig. 18. After we insert.dnat
odule ;, the inorder traversal of the extended becomes
m;0A0D1B0C1X1F0G. Note that the inserted appears
just after the last module (i.e., modul8 of the right subtree of
T in ty.

The labeling bit for the inserted is 1.

If a; = 1, moduler; has aright subtree i according to the
k definition of TBS. Similarly, we can insert aki at; directly

> (Bi+aj) =2

j=it1

1)

by searching the last module of the right subtree;af ¢,. The
algorithm is exactly the same as above.
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\ \

(m)
D\ Left-Rotate(T, ;) o
Case 2
/C\/D\

A

Case 1
O : No Change
: Fli from 1 to 0) andR (fi Oto1l
ﬁ’ 1pﬁA( om 1 to 0) an Bc(rom 01)
B :NoChange

Left-Rotate(T, T;)

A

o : FlipQ; (from 0to 1)

Case 3

B : Flip BA (from 1 to 0)
B :1f B;:O, flip ﬁ;‘ (from 0 to 1)
else, ﬂipﬁ: (fromOto 1)
©

Fig. 23. Four cases of Left-Rotat&", 7;) ont;.

&A ‘@

Ol : No Change

B :FiipB (from 10 0) andf, (from 0 to 1)
B :No Change

\

(b)

})\ Left-Rotate(T, T;) /< @

Case 4

: FlipQ; (from O to 1)

=

: FllpBi (from 1 to 0)

B :1f B,=0, flip8, (from O to 1)

else, ﬂipﬁ: (from O to 1)
(@

Now we consider the case that has a left subtree in the the left subtree of; in ¢5. The algorithm is exactly the same as
TBT. If ;1 = 1, m; has a left subtree in,. According to above.
the observation above, we only need to find the position of the After we inserted all the possibl&'s, we obtain the inorder

first module(m,) in the left subtree ofr; in ¢; from the TBS,
and insert on&X just beforer,, in the inorder traversal df,. In
addition, we assign 0 as the labeling bit of the inseiXedNote

traversals of the tree$ andt/, are obtained. Matching can then
be done as described in Section 1lI-C.

that the left subtree of; in ¢, is exactly a general binary tree.D. Tight Bound on the Number of Irreducible Empty Rooms

In addition,a,_; = 0. We thus obtain the modified conditions

for the left subtree ofr; as follows:

a) Inthe bitsequeng® _ a;_o8;_o;_3...aBrar_1,the
number of Os is two more than the number of 1s.

b) For any proper prefix of the bit

/BL 106G — 2131 2003 .
less than or equal to the number of 1s plus 1.

In order to describe nonslicing structure by a mosaic floorplan
representation, some previous works [14], [15] include dummy
blocks of zero area in the set of modules. The method described
in Section 1I-C is very efficient but it is applicable to the TBS

Sequencgepresentation only. In general, we only need to have extra
- g frag—1, the number of 0s is qummy blocks in order to represent all nonslicing structures

by a mosaic floorplan representation. We have proved an upper

Based on the above conditions, we can count the number dhéund ofn. — 1 and a lower bound of —2,/7+ 1 on the number

and 1 fromg;_; anda;_» until we reach the module,. It is
not difficult to find 75, by the following mathematical form:

k

2,84-001 —2.

)

Another simple example is shown in Fig. 19. After we insert an

X atmoduler;, the inorder traversal of the extendgdecomes
G1F0X0A0D1B0C1m;0E. Note that the inserted appears
just before the first module (i.e., modul® of the left subtree
of 7; in ¢;. The labeling bit for the inserted is 0.

If «;_1 = 0, moduler; has a left subtree ity. Similarly, we

can insert anX at ; directly by searching the first module inirreducible empty rooms.

of irreducible empty rooms in a general nonslicing floorplan.
(An example with 49 modules and 36 irreducible empty rooms
is shown in Fig. 20). It means that — 1 dummy blocks are
needed and we cannot use much less.

Theorem 4: In a nonslicing floorplarP, there can be at most
n — 1 irreducible empty rooms.
Proof: According to Lemma 5, the adjacent rooms of an
irreducible empty room i® must be occupied. Therefore, each
irreducible empty room will take up four corners of some oc-
cupied rooms. Since there are omlyoccupied rooms in total
and the four corners of the chip cannot be used, there are only
4n — 4 corners to be used. Therefore, there are at mostl
|
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t1 t2 Floorplan TABLE |
AREA MINIMIZATION
n @ m,
MCNC TBS (with X) TBS (no X)

benchmark | % Dead- Run- | % Dead- Run- (s)

TC:
@ @ space time (s) space time (s)

T
apte 1.89 0.86 1.30 0.73
@ Xerox 2.17 1.30 2.46 1.20
T hp 2.10 0.76 222 0.63
@ ®) © ami33a | 305 126 | 405 098
Fig. 24. Proof of Lemma 7. ami49a 4.05 2.55 4.38 2.08

playout 6.20 2.58 7.60 1.09

Theorem 5: There exists a nonslicing floorplan of n» mod-
ules andn — 24/n + 1 irreducible empty rooms.
Proof: A floorplan withn — 2\/n + 1 irreducible empty TABLE I
rooms can be constructed similarly to the example in Fig. 20. Let AREA AND WIRELENGTH MINIMIZATION
k be the number of modules along each edge (for the exam )
in Fig. 20,k = 7), number of modSIea = kQ%n((j number of TBS (with X) TBS @ X)
emptyrooms= (k- 1)2=(y/n—-1)2=n—-2y/n+1. O MCNC | % Dead- Wire- Run- | % Dead- Wire- Run-

benchmark | space length time(s) | space length time (s)

IV. FLOORPLAN OPTIMIZATION BY SIMULATED ANNEALING apte 179 12652  0.89 345 13267 0.62
Simulated annealing is used to search for a good TBS. T xerox 264 14937 1.36 441 14738 1.22
temperature is set to 1:5610° initially and is lowered at a con- hp 1.32 4246 073 3.43 4292 061

stant rate of 0.95 to 0.97 until it is belowsd10~'°. The number
of iterations at one temperature step is 30. In every iteration
the annealing process, we will modify the TBS by one of th ami49a 940 29668  2.60 10.82 30256  2.14
following four kinds of moves: playout 519 2373 250 632 2265 1.08
M1: Swap two modules im.
M2: Change the width and height of a module.
M3: Rotation based oy . are both equal t6’ BD AF in Fig. 21). The operation of left ro-
M4: Rotation based om,. tation is similar. Both Left-Rotate and Right-Rotate rurifl )

We design the moves such that all TBSs are reachable.tifie. When we apply red-black tree rotations on our TBT, the
Lemma 7, we prove that Starting from any TBS, we can gener@ﬂébtl’EED in Fig. 21 should not be 1 or 0. In the case that sub-
any other TBS with the same sequence by applying one ortree D is 1 or 0, we modify the red-black rotations as shown
more moves from the sdtM 3, M4}. Since we can swap anyin Fig. 22, whereD is designated to 0 or 1 after Right-Rotate
two modules in ther sequence by move M1 and M2 change§l’; A) or Left-Rotate(T, B).
the dimensions of a module, all TBSs are reachable by applying=or the moves M3 and M4, we randomly pick one modtjle
moves from the sefM1, M2, M3, M4}. In addition, we will fromm, and checky;. If a; = 0, 7; has a right child irt; and
make sure that the sequences obtained after each move is a valid has a left child inf,. We can then use move M3 to apply
TBS [i.e., satisfying conditions (1) and (2)]. Left-Rotate(7’, 7;) ont; or use move M4 to apply Right-Rotate

For move M1, we only exchange the module names in twd' mi+1) Ont. They are similar to each other and one of them
randomly selected rooms. For move M2, we change the widtfill be randomly picked and applied. W.l.0.g., we present the
and height of a module within the given limits of its aspeddetails of Left-Rotaté 7", ;) on¢; according to the following
ratio. Obviously, both move M1 and M2 takéX1) time. For four cases shown in Fig. 23(a)—(d) simplicity, we use lefte€’
move M3 and M4, we borrow and modify the idea of rotationgdnd D to represent the root of each subtree.
in red—black tree [2]. A red-black tree is a binary search tree.Case 1)3; = 0 and the right child ofr; has a left child.

The rotation in a red-black tree is an operation that changes th&€ase 2)3; = 1 and the right child ofr; has a left child.
tree structure locally while preserving the inorder traversal of Case 3)3; = 0 and the right child ofr; has no left child.
the tree. Two kinds of rotations, Right-Rrotate and Left-Rotate, Case 4)3; = 1 and the right child ofr; has no left child.
are defined originally in [2] (Fig. 21)A and B represent two  For Case 1, after left rotation of modute, the only change
nodes.C, D and F represent arbitrary subtrees. Right-Rotati ¢, is the directional bits of moduld andC, so we only need
(T, A) transforms the left tree structure to the right tree strute flip 84 and S¢. Because the labeling sequeneeloes not
ture, while keeping the inorder traversal of the tree unchangellange, we do not need to updateThus, we keep’ the same
(e.g., the inorder traversal of the tree before and after rotatias before. Case 2 is similar to Case 1. For Case 3, doond

ami33a 8.41 6078 1.30 7.25 6488 1.02
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TABLE Il
COMPARISONSWITH ECBL AND ENHANCED (Q-SEQUENCES

MCNC Total ECBL [14]* Enhanced Q-seq [15]? TBS

benchmark | area Area  Runtime (s) | Area  Runtime (s) | Area Runtime (s)
apte 46.56 || 45.933 3(3) 46.92  0.35(0.59) | 47.44 0.86(4.33)
Xerox 19.35 || 19.91 3(3) 19.93 3.6 (6.05) 19.78 1.3 (6.54)
hp 8.30 || 8.918 11 (11) 9.03 3.5(5.88) 848  0.76 (3.82)
ami33 1.16 1.192 73 (73) 1.194 40(67.2) 1.196  1.26 (6.34)
ami49 354 || 36.70 117 (117) | 36.75  57(95.76) | 36.89 2.55(12.83)

! Using Sun Sparc20 machine ? Using Sun Ultra60 workstation > Negative deadspace

TABLE IV
COMPARISONSWITH OTHER REPRESENTATIONS FORNONSLICING FLOORPLAN

MCNC Fast-SP [11]! Enhanced O-tree [9]? B*-tree [1]! TCG [6]?

benchmark || Area Runtime (s) | Area Runtime (s) | Area Runtime(s) | Area Runtime (s)
apte 46.92 1(0.61) | 46.92 11(11) 46.92 7 (4.29) 46.92 1(1)
Xerox 19.80 14 (8.58) | 20.21 38 (38) 19.83  25(15.33) | 19.83 18 (18)
hp 8947  6(3.68) 9.16 19 (19) 8.947 55(33.72) | 8.947 20 (20)
ami33 1.205 20(12.26) | 1.242  119(119) 1.27  3417(2095) | 1.20 306 (306)
ami49 36.5 31(19.00) | 37.73 406 (406) 36.8 4752(2913) | 36.77 434 (434)

1 Using Sun Ultral machine ? Using Sun Ultra60 machine

the directional bit of modulel are flipped after left rotation of is a left-going chain and, is a right-going chain can thus be
moduler;. In order to maintain conditions (1) and (2), we neettansformed into any other arbitrary TBT by applying at most
to updatet, by flipping one directional bit of3’ from 0 to 1. n — 1 right rotations by move M3. Therefore, at m@st — 2
Note thatr; is the left child ofA in ¢2. Thus, if 3, is 0, we will moves are sufficient to convert a TBS to any other arbitrary TBS
flip B/, from O to 1. Otherwise, we will fligg; from O to 1. Case with the samer sequence. We design move M4 as a symmetric
4 is similar to Case 3. Actually, updatirtg in case 3 and 4 is move to M3. O
exactly the Right-Rotatél’, A) ont, in case 3 and 4.

If «; = 1, m; has aright child i, andn;; has a left child
in ¢;. We can thus use move M4 to apply Left-Rotéfer;) on
to or use move M3 to apply Right-Rotat&, 7, 1) ont;. One All experiments are carried out on a PC with 1400 MHz Intel
of them will be randomly picked and applied. The algorithm oKeon Processor and 256 Mb Memory. Simulated annealing as
right rotation is similar to that of left rotation. stated in Section IV is used to search for a good TBS.

In move M3 and M4, ifa does not change, we only need to We test our algorithm using TBS with empty room insertion
update one tree and each move takés) time. If « changes, we on six MCNC benchmarks. Besides, we also run the algorithm
need to update both trees (i.e., apply two rotations). Therefovath empty room insertion disabled. In other words, only mo-
both move M3 and M4 také&(1) time in practice. saic floorplan can be generated. For each case, two objective

Lemma 7: Starting from any TBS, we can generate any othdéunctions are considered. The first is to minimize area only. The
TBS with the samer sequence by applying one or more movesecond is to minimize a weighted sum of area and wirelength.
from the set{ M3, M4} The weights are set such that the costs of area and wirelength are

Proof: We observe that at most— 1 left rotations suffice approximately equal. Because of the stochastic nature of simu-
to transform any arbitrary.-node binary tree into a left-going lated annealing, for each experiment, ten runs are performed and
chain [2]. Given a TBT, w.l.0.g., we can apply at mast- 1  the result of the best run is reported. The results for area mini-
left rotations by move M3. The binary tree will become a mization is listed in Table I. The results for area and wirelength
left-going chain [Fig. 24(a)]. Since move M3 always results iminimization is listed in Table II.

a TBT, the binary treé; must also be transformed into a right- As the results show, our floorplanner can produce
going chain [Fig. 24(b)]. The corresponding floorplan is showhigh-quality floorplans in a very short runtime. We also
in Fig. 24(c). notice that empty room insertion is very effective in reducing

Noticing that any left rotation in move M3 has its reversethe floorplan area. If empty room insertion is disabled, the

rotation which is the right rotation, am-node TBT where; deadspace is worse for all but two cases. The deadspace is

V. EXPERIMENTAL RESULTS
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32.84% more on average. However, with empty room insertionj1]
the floorplanner is about 40.8% slower.

In Table Ill, we compare our results with ECBL [14] and [12]
the enhanced)-sequences [15]. Notice that ECBL is run on
Sun Sparc20 (248 MHz) while Enhancédseq is run on Sun  [13]
Ultra60 (360 MHz). We found that the scaling factors for the[14]
speeds of the three machines are 1:1.68:5.03. The runtimes
reported in brackets in Table Il are the scaled runtimes. WE]'S]
can see that the run time of TBS is much faster, althoug
the performance of all three of them in area optimization are
similar. We also compared TBS with those representations
designed for nonslicing structure. The performance of Fast-SP
[11], Enhanced)-tree [9], B*-tree [1] and TCG [6] are shown
in Table IV. Notice that Fast-SP and*-tree are run on Sun
Ultral (166 MHz) while Enhanced-tree and TCG are run
on Sun Sparc20 (248 MHz), and the scaling factors for the
speeds are 0.613:1. Again, the runtimes reported in bracket:
Table IV are the scaled runtimes. We can see that TBS has ag.,
out-performed the other representations in terms of runtime
while the packing quality in terms of area is similar. TBS i

thus a more desirable representation since its fast computat‘;fgarithmS and comput

allows us to handle very large circuits and to embed more
interconnect optimization issues in the floorplanning process.
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