800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

[14] J.A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. lyengar, “Tranbility of the soft modules can be fully exploited to give a tight packing
sition fault simulation,1EEE Des. Testvol. 4, pp. 32-38, Apr. 1987. pased on an efficient shape curve computational technique [9], [11].
[15] J. Richman and K. R. Bowden, “The modem fault dictionary,PC. |+ ha5 peen shown mathematically that a tight packing is achievable
Int. Test Conf.Sept. 1985, pp. 696—702.
[16] P. G. Ryan, S. Rawat, and W. K. Fuchs, “Two-stage fault location,” ikL4] for slicing floorplan if the modules are flexible in shape. Slicing
Proc. Int. Test ConfOct. 1991, pp. 963-968. floorplan has another advantageous feature: we can find the topolog-
ical structure of the packing efficiently without knowing the module
dimensions. This feature is good for handling placement constraints in
general because we can check and fix the constraints given the topo-
logical information.
We have also made used of this feature to handle rectilinear blocks.

On Extending Slicing Floorplan to Handle L/T-Shaped Because of the recent advance in the semiconductor manufacturing

Modules and Abutment Constraints technology, new packaging schemes such as multichip modules
(MCMs) and integrated circuit components often have their shapes
F. Y. Young, M. D. F. Wong, and Hannah H. Yang more complex than a simple rectangle. A lot of works have been

reported on placement of rectilinear blocks [1]-[8], [10], [12], [13],
o) but none of them can handle rectilinear blocks with soft modules

Abstract—in floorplanning, it is common that a designer wants 10 efficiently. Slicing floorplan is well known to be effective in handling

have certain modules abutting with one another in the final packing. ft dul Iti t obvi h L T-sh d dul b
The problem of controlling the relative positions of an arbitrary number Soit modules. 1t Is not obvious how 3 _or -shaped moadules Can_ e
of modules in floorplan design is nontrivial. Slicing floorplan has an handled because of the nature of slicing floorplan that the regions
advantageous feature in which the topological structure of the packing can inside must be rectangular in shape. In our work, we treat an L-

be found without knowing the module dimensions. This feature is good or T-shaped module like a rectangular one, but it Wi expanded

for handling placement constraints in general. In this paper, we make use : . ; ; ;
of it to solve the abutment problem in the presence of L- and T-shaped to its original shapes when being packed. Again, we will explore

modules. This is done by a procedure which explores the topological the topological structure of the packing and expand the modules
structure of the packing and finds the neighborhood relationship between accordingly.

every pair of modules in linear time. Our main contribution is a method Our main contribution is a method that can handle abutment con-
that can handle abutment constraints in the presence of L- or T-shaped gyraints in the presence of L- or T-shaped modules in such a way that
modules in such a way that the shape flexibility of the soft modules can the sh flexibility of th ft dul till be full loited t
still be fully exploited to obtain a tight packing. We tested our floorplanner e s ape_ exibil y or the soft modules can stll be u y exploited to
with some benchmark data and the results are promising. obtain a tight packing. We tested our floorplanner using some bench-
mark data. The experiments give very promising results. The rest of the
paper is organized as follows. We will first define the problem formally
in Section Il. Section |1l describes our method to handle abutment con-
straints with L- and T-shaped modules. Experimental results will be
|. INTRODUCTION given in Section IV.

Index Terms—Abutment constraints, floorplanning, rectilinear-shaped
modules, slicing floorplan.

Floorplanning is an important step in physical design of VLSI cir-
cuits. It is the problem of placing a set of circuit modules on a chip to
optimize the circuit performance. Besides optimizing the packing area
and interconnect cost, it is common that the designers will want to im-We consider three kinds of modulé$ = Mz U M, U M7, where
pose some placement constraints on the final packing for different poi, is a set of rectangular module&{,, is a set of L-shaped mod-
poses. For example, a designer may want to have several logic modules, and}r is a set of T-shaped modules. A rectangular module
in a circuit to abut one after another to favor the transmission of dataa rectangle oheight(A) andwidth w(A). Theaspect ratioof A
between them. This abutment problem is common in practice, but fés\defined asi(A)/w(A). A rectangular module can either hard or
floorplanning algorithms can handle it. The problem of controlling theoft The height and width of a hard module are fixed, but the module
relative positions of an arbitrary number of modules in floorplan desigs free to rotate. The shape of a soft module can be changed as long
is nontrivial. as the area remains a constant and the aspect ratio is within a given

One objective of our work is to handle abutment constraints in floorange. An L-shaped modulB [see Fig. 1(a)] consists of two rectan-
planning. Our work is based on a particular type of floorplan callegular submodule®3; and B,, wherew(B;) andw(B-) are aligned
slicing floorplan. A slicing floorplan is one that can be obtained by reand’(B;) > h(B>). A T-shaped modul€’ [see Fig. 1(b)] consists of
cursively cutting a rectangle into two parts by either a vertical line ortAree rectangular submodulés, C:, andCs, wherew(C1), w(C>),
horizontal line. There are several advantages of using slicing floorplamd « (C3) are aligned and(C) > max{h(C2),h(C3)}. We as-

First, focusing only on slicing floorplan significantly reduces the seardume that all the T- and L-shaped modules are hard modules.

space, which in turn leads to a faster runtime. Second, the shape flexitn general, two moduled andB are said to be abutting horizontally
(see Fig. 2), denoted bif abut(A, B), if a vertical boundanf. 4 of
moduleA and a vertical boundarf s of moduleB abut such thak 4

Il. PROBLEM DEFINITION

Manuscript received March 28, 2000; revised November 18, 2000. This papey.« ; ;
was recommended by Associate Editor C.-K. Cheng. P&)s immediately on the left of 5 and the length of the abutment is

F. Y. Young is with the Department of Computer Science and Engineerir@t l€@stmin{len(L.1),len(Lp)}, wherelen(L 1) is the length off. 4
the Chinese University of Hong Kong, New Territories, Hong Kong (e-maindlen (L) is the length off. 5. The abutment in the vertical direction
fyyoung@cse.cuhk.edu.hk). _ ~ is defined similarly.
f’\'I{I. D.F. tVXO”?. IS "&"'tht.the&e?g;tlrgegts‘: (Comp_tl’_ter ch]ces,t the U”c'j"e)rs'ty A floorplan forn modules is a dissection of a rectangle by horizontal
° H‘.a)l(—la.SangliJss\;\?iih tfellnnytel Corporation, H‘v?llg]batlnlr'o‘fvgnRg97‘::L52'él‘.J Sga:ki—;éiland vertical lines inta: nonoverlapping regions such that e_aCh reglc_)n
hyang@ichips.intel.com). must be large enough to accommodate the module assigned to it. A

Publisher Item Identifier S 0278-0070(01)03538-2. packingis a nonoverlap placement of all the moduledin A feasible

0278-0070/01$10.00 © 2001 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 801

G
" B, B b —
1: By jhy hd C, L C, |h3
w1 W2 w2 W . w3 @) (b)
(@ (b)
i Fig. 3. Shuffling modules to obtain a feasible packing. (a) Botand D are
Fig. 1. (a) L-shaped module and (b) T-shaped module. right neighbors of A. (b) A and B abut horizontally.
Pl—l 3 H |c|g
A F Expand D
P4 w2 py i’ hannteiinsfty
]
A x B |n2
(b)
P5
i Fig. 4. Example of module expansiab.is L-shaped. (a) Initial packing. (b)
P2 Pé Packing obtained after expanding modiile

La = (P3, P6) Lg = (P4, P5)
Habut(A, B) if and only if x >= min{hl, h2}

Fig. 2. Abutment example.

packingis a packing such that all the abutment constraints are satisfied
and the widths and heights of all the soft modules are consistent with F
their aspect ratio constraints and area constraints. Our objective is tc C E
construct a feasible packing to minimize A + AW, whereA is the D
total area of the packing}” is an estimation of the interconnect cost,

and) is a user-specified constant that controls the relative importance ,
of A andW in the cost function. We require that the aspect ratio of the X : 00 known neighbor in that direction
final packing is between two given numbers;;, andr .. (@ (b)

Fig. 5. Abutment between modules. (a) Packing corresponding to expression
Ill. SLICING FLOORPLAN AB+ CDE + F +* G + H+*. (b) Neighborhood information.

A slicing floorplan can be represented by an oriented rooted binary
tree called a slicing tree. Each internal node of the tree is labeled bgwery pair of modules. This is possible because the operatasd
* or a + operator, corresponding to a vertical or a horizontal cut, reé-in a Polish expression have orientations, e43+, means thati
spectively. Each leaf corresponds to a basic module and is labeledidpelow B and A B* means thatd is on the left of B. We will scan
a number from 1 te. No dimensional information on the position ofthe expression once to mark the left, right, top, and bottom neighbors of
each cut is specified in the slicing tree. If we traverse a slicing tree évery module. Fig. 5 shows a simple example in which the neighbors of
postorder, we obtainBolish expressiorA Polish expression is said to every module are marked in a table after this step. We will then shuffle
be normalizedif there is no consecutive *'s of’s in the sequence. It the modules to satisfy as many abutment constraints as possible. Please
is proved in [12] that there is a 1:1 correspondence between the setefér to Fig. 3 as an example. In this example, module constrained
normalized Polish expressions of lengilh — 1 and the set of slicing to abut with moduleB horizontally, i.e.,Habut(A, B), but this con-
floorplans withn modules. Our method is developed based on the simstraint is violated in the original packing [see Fig. 3(a)]. After finding
ulated annealing algorithm in [12]. In [12], the set of all normalizethe neighborhood information between all pairs of modules, we will
Polish expressions is used as the solution space. In order to searclsthsfle B with a closest right neighbor of, i.e., moduleD in this ex-
solution space efficiently, they defined three types of moves (M1, Mample, to obtain a similar packing [see Fig. 3(b)], which satisfies the
and M3) to transform a Polish expression into another. They can mal@nstraint. After this shuffling step, the abutting modules will stay to-
use of the flexibility of the soft modules to select the “best” floorplagether unless some later moves break them apart.
among all those represented by the same slicing structures. This is dongfter fixing the abutment constraints, we widxpandthe L- or
by carrying out an efficient shape curve computation whenever a PoliBtshaped modules into their original shapes. This is done by modi-
expression is examined. The cost functionlig- A1V, whereA is the fying the Polish expression to embed the submodules of the rectilinear

total packing area and’ is the interconnect cost. blocks in such a way that the relative positions between all the modules
in the original Polish expression are preserved. Please refer to Fig. 4
IV. OUR APPROACH as an example. In this example, modiiles L-shaped and the initial

packing is shown in Fig. 4(a). We will expard to its original shape
before computing the total area and interconnect cost. The packing

The algorithmMain below outlines our method. In each step offter expansion is shown in Fig. 4(b). After expansion, we can do the
the annealing process, we consider a particular Polish expression.dhape curve computation as usual to obtain the total area of the final
will scan the expression once to find out the topological structure borplan and the flexibility of the soft modules can be fully exploited.
the packing and, in particular, the neighborhood relationship betwedfe will describe the steps in details in the following sections.

A. Overview

802 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

Algorithm Main
Input: The size, shape and interconnection of a set
of modules M = My;UM; UMy, where My is A A ¢
a set of rectangular modules, M; is a set F
of L-shaped modules and Mz is a set of
T-shaped modules; a set of horizontal abut- B
ment constraints and a set of vertical abut-
ment constraints. (b)
Output: A feasible packing of the modules in M Fig. 6. Shuffling modules to fix violated abutment constraints. (a) Initial
1. Initialization. packing. (b) Packing obtained after shuffling modilenith moduleF'.
2. Repeat:
3. Transform the Polish expression agla o a. Lla;] = Rlas] = Tlau] = Blag] = a;
4 Scan « to find the neighbors of every module. 3. Push «;.
5. Modify « to «y.. by shuffing modules to fix the 4. If «; is a * operator:
violated abutment constraints. 5. Pop Y. Pop X.
4. Expand the L- or T-shaped modules in Qnow 6. If R[X] or L[Y] has only one module:
to obtain a new Polish expression 8. 7. Habut[A, B] is true for all A € R[X] and
5. Calculate the total area and interconnect cost B e LY,
of the floorplan represented by 3. 8. Else:
6. Decide whether to accept Onew- If Y€S, (ol = Opew. 0. Habut[A,, B;] and Habut[A,, B;] are true
7. Until Cost < k. where A; and A, are the top and bottom
modules in R[X] resp., and B, and B, are
B. Handling Abutment Constraints the top and bottom modules in L[Y] resp.
10. R[] = R[Y], Lla,] = L[X],
1) Finding the Neighbors of a ModuleWe can find the neighbors Tle:] = T[X] + T[Y], Blaw] = B[X]+ B[Y].
of a module from the Polish expression because the operators in {he Push a;.
expression have orientations, e. 43+ means thatl isbelowB and 12, |t o, is a + operator:
AB* means that4 is on the left of B. These topological relation- 13 Pop Y. Pop X.
ships are independent of the dimensions of the modules. For example, It T[X] or B[Y] has only one module:
Fig. 5 is a packing corresponding to the expressid® + CDE + 15, Vabut[A, B] is true for all A€ T[X] and
F +*G + H + *. We can tell from the Polish expression the neigh- B € BY);
borhood relationship as shown in Fig. 5(b). This information can hg; Else:
obtained by scanning the expression once and update the table when- Vabut[A,, B;] and Vabut[A,,B.] are true
ever an operator is seen, i.e., when two subfloorplans are combined where A, and A, are the left and right
by either a+ operator (vertical cut) or a * operator (horizontal cut). modules in T[X], resp., and B, and B,
The algorithmNeighborbelow outlines the step to find this neighbor- are the left and right modules in B[Y],
hood information. Notice that the variablé$X], R[X], T[X], and resp.
B[X] denote the set of modules lying along the left boundary, righg Tlew] = T[Y], Blew] = B[X],
boundary, top boundary, and bottom boundary of a subfloorlan Rloi] = R[X] + R[Y], Lloi] = L[X]+ L[Y].
Consider combining two subfloorplans andY horizontally as in 19 Push a;.

XY™ If both R[X] and L[Y] have more than one modules, the top
module in R[X] will abut horizontally with the top module iL[Y]
and the bottom module iR[X] will abut horizontally with the bottom
module inL[Y]. We will explain using the example in Fig. 5. When
we combine the subfloorplan containingand B and the subfloor-
plan containing”', D, E, F, G, andH by the * operator, we know that

B will abut with H horizontally and4 will abut with C' horizontally. shown in Fig. 6(a). We will then try to mouE to the top ofB or move

Notice that we do not know whethéf will abut with 4, B, or both B}P the bottom off". In the first caseB has two neighbors at the top:

2?)?%%8.2:2 Sa': (Zﬁlrr)]en:tfzonttotﬂéhaebdkrrr:](eer:]sgnrls':qf tg‘ib?O:glej’sf \?/ € WEndD. SinceF is closer taD than toC' in the Polish expression, we
indi yrhing u u '9. - TOWEVEL I\ vill shuffle £ andD in order to fix this violated constraint. In general,

either Z[X] or L[Y'] has only one module, every moduleMiX] will o' yment constraifitabut (X, ') is violated, we willfirst try to
abut with every module i.[Y] horizontally. For example, in Fig. 5, ,, N ;

hen we combine the subfloorplan containificand the subfloorolan moveY to the top ofX by shuffling}” with the closest top neighbor of
W W ! u P i u P X in the Polish expression. If it is failed, e.g., all the top neighbors of

. N ; i
containingD), E'and " by the* operator, we know tht will abut with X are fixed in position, we will try to mové& to the bottom oft” by

D, B andF hgrlzontally. Similarly, we can derive the vertical nelgh'shufflingX with the closest bottom neighbor ®f. The procedure for
borhood relationship from thé¢ operator.

abutment in the horizontal direction is defined similarly. Notice that
we will not shuffle the modules back to their original positions if an

2) Shuffling Modules to Fix Violated Abutment Constraintéa
Polish expression does not satisfy all the abutment constraints, we can
fix it as much as possible by shuffling the modules. An example is
shown in Fig. 6. In this example, assume that modllis required to
abut with F" vertically, i.e.,Vabut(B, F'), but it is violated initially as

Algorithm Neighbor expression is accepted, i.e., the constrained modules will stay together

Input: A Polish expression 0= Qg ... Oy unless some later moves break them apart.

Output: For each module A, find the modules abut- It is possible that some constraints are still violated after all the pos-
ting with A in all four directions. sible shufflings. We include a penalty term in the total cost to penalize

1. For i=11t 2n-—1: the violated constraints. All violations will be eliminated as the an-

2. If «a; is a module name: nealing process proceeds in most of the cases.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 803

If "1” is part of a module
on the right.

2
If “1" is part of a module
at the top.

3 ®

OR ®
1
L\

If "1" is part of a module
on the right.

4 ™

A
[al1]

If 1" is part of a module
at the top.

Fig. 7. Expansion of an L-shaped module.

C. Handling L- and T-Shaped Modules

Instead of partitioning into rectangular submodules, L- and T-shaped
modules are treated as single modules in the annealing process. They
will be expandedo their original shapes when being packed and the
expansions are dependent on their topological positions in the original
Polish expression. After calculating the total area and interconnect cost,
they are treated as single modules again in the floorplan transformation. 3

1) Expansion of L-Shaped Module€onsider an L-shaped module
X in a Polish expression. We will expand it into its submodules;
andX, by modifying the expression according to the relative position
of X in «. There are four different cases as shown in Fig. 7. The subtree
labeled “1” can either be a basic module or a subtree of modules. We
are trying to pack modules into the unoccupied area of the L-shaped 4
modules. The L-shaped module is oriented differently in different cases
S0 as to preserve as much as possible the relative position between all
the other modules in the original Polish expression.

2) Expansion of T-Shaped ModuleSimilar to an L-shaped
module, we will expand a T-shaped moduleinto its submodules
X, Xz, and X5 by modifying the Polish expressiom according Fig. 9. Expansion of a T-shaped module, which is a left child.
to the relative position ofX in «. There are two different cases,
depending on the sibling of X in the slicing tree. Ifu is an internal 3) Expansion Order: The result of the expansion will depend on
node and the two children subtrees:ofare not parts of the same the order in which the modules are expanded. An example is shown in
module, we will pack the submodules &F with the children subtrees Fig. 11. Assume that both moduleandB in the figure are L-shaped.
of u as shown in Figs. 8 and 9. The subtree labeled “1” or “2” caBxpandingB followed by A will give us the packing in (a), while ex-
either be a basic module or a subtree of modules. Again, we gr@nding in the reverse order will give us the packing in (b). If the order
trying to pack modules into the two unoccupied areas of the T-shagsdot defined well, we may need to scan the Polish expression once
modules, which is oriented differently in different cases to preserve s each L- or T-shaped module and this will be very time consuming.
much as possible the relative positions between all the other modulesour implementation, we will first expand the T-shaped modules.
in the original Polish expression. i is a single basic module or This requires scanning the expression twice. The first scan expands all
the two children subtrees af belong to the same module (so wethe T-shaped modules that are right children, and the second scan ex-
cannot pack them apart as shown in Figs. 8 and 9), we will l&bel pands all the T-shaped modules that are left children. The degenerated
as adegenerated’-shaped module, which will be expanded into itsT-shaped modules are labeled on the way. After these two scans, any
submodules as described in Fig. 10. T-shaped module will either be expanded or labeled as degenerated.

804 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

Suppose A is T-shaped and B is L-shaped

I£“1" is part of a module
at the top.

oR %R Fig. 12. Example of the expansion step.
4 bk)\

modules and My is a set of T-shaped modules.

Output: A Polish expression 3 with all the modules
14 is atof a modue in M; and My expanded to their corre-
PR sponding submodules.
& 1. Scan o« from left to right and generate a new
/N — OR Polish expression T
2. For. any T-shaped module X that is a right
child:
3. If the sibling v of X is an internal node and
! the two children subtrees of w are not parts
If"1" is part of a module
at the top. of one module:
. . 4. Expand X as described in Fig. 8
Fig. 10. Expansion of a degenerated T-shaped module. 5. Else:
6. Label X as a degenerated T-shaped module.
ExpandB| B 7. Scan «; from left to right and generate a new
Polish expression s
an‘éﬂﬁﬁthif A B 8. For any T-shaped module X that is a left child:
ped- 9. If the sibling v of X is an internal node and
AlB| 4 the two children subtrees of u are not parts
of one module:
10. Expand X as described in Fig. 9;
11. Else:
Expand A 12. Label X as a degenerated T-shaped module.
13. Scan «g from left to right and generate a new
Polish expression asg:

14. For any L-shaped module or degenerated
Fig. 11. Example demonstrating the effect of the expansion order. (a) Packing T-shaped module X that is a right child:
obtained by expanding followed by A. (b) Packing obtained by expandirg

followed by B 15. If X is an L-shaped module:

16. Expand X as in case 1-2 of Fig. 7;
Else:
Expand X as in case 1-2 of Fig. 10.
Scan a3 from left to right and generate a new
Polish expression 3:
For any L-shaped module or degenerated
T-shaped module X that is a left child:
If X is an L-shaped module:
Expand X as in case 3-4 of Fig. 7;
Else:
Expand X as in case 3-4 of Fig. 10.
ut 3.

We will then expand the remaining L-shaped modules and the deg o
erated T-shaped modules. This also requires scanning the expres%c')n
twice. The first scan expands all the L-shaped modules or degenerated
T-shaped modules that are right children and the second scan expands
those that are left children. The algorithm is described by the algorithm’
Expansiorbelow. We need to scan the expression four times in tot

An example of expansion is shown in Fig. 12. In this example, modulg’
A is T-shaped and modulg is L-shapedA is expanded first because ..’
it is a T-shaped module and a right child. After that, we should expang’
the T-shaped modules that are left children followed by the L-shapgg outp
modules that are right children, but there is none of them. Finally, we

will expand B, which is an L-shaped module and a left child.
D. Time Complexity

Algorithm Expansion We need to scan the Polish expression once to find the neighbors
Input: A Polish expression a of a set of modules of every module. This take®(rn) time, wheren is total number of
M = MgU M, UMz, where Mpg is a set of modules. Then shuffling modules to fix violated abutment constraints

rectangular modules, M; is a set of L-shaped takes anothe©(nq) time, whereq is the total number of abutment

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

TABLE 1
C RESULTS OFCONTROL EXPERIMENTS WITHOUT ANY CONSTRAINT
S NOR L/T-SHAPED MODULE
A D Data Set | n | %Deadspace | Time(s)
i ami33a | 33 0.59 77.89
TR ami49a | 49 0.42 174.94
X o playout | 62 1.72 413.61
B
Fig. 13. Penalty for violation of an abutment constraint. s
¥ LE L
TABLE | | u #
RESULTS OF TESTING ABUTMENT CONSTRAINTS w) .r i
WITH RECTANGULAR MODULES = 18 2 s = n
Data Set | n | #Constraints | %Deadspace Time(s) #Violation " 5 - i "
ami33a | 33 12 3.62 (0.75) | 84.98 (79.45) 0 (0)
amid9a | 49 12 2.02 (0.94) | 164.51 (136.36) | 0.2 (0) i e o ™ &
playout | 62 12 2.93 (1.49) | 453.32 (432.69) | 1.4 (0) n
n
I T iy A8
. . - . v 1
constraints. Notice that this is only a worst-case analysis. Usually, we i R
do not need to scan all the modules once to find the closest module tc -.-
shuffle with and the average time taken is jodty + n). To expand ' i '
all the L- and T-shaped modules, we need to scan the expression fou B
times and it take®)(n) time. Therefore, the total time taken in each -
iteration of the annealing process to handle the abutment constraints s . = |
and rectilinear blocks i€ (ng) in the worst case an@(n + ¢) on the 2] i
|

average.

. Fig. 14. Result packing of ami49. Modules 1, 2, 15, 20, and 25; 3, 41, 42, and
E. Moves and Cost Function 43 are required to abut horizontally. Modules 25, 8, 10, 12, and 3; 43 and 44 are

We use the same set of moves (M1, M2, and M3) as in [12]. The Céggmred to abut vertically. All constraints are satisfied.
function is defined ast + AW + D, whereA is the total packing
area obtained from the shape curve at the root of the slicingifreis,
a half perimeter estimation of the interconnect cost, Brid a penalty 1 B

term for the violated abutment constraints. If an abutment constraint
between two modules are violated, the corresponding penalty term is
computed as the manhattan distance that one of the two module centel
needs to be moved in order to make them abut. An example is showr
in Fig. 13. In this example, supposkand B are constrained to abut
horizontally, i.e.,Habut(A, B), but this constraint is violated and its
corresponding penalty ter® will be = + y, wherer is the distance
between the right boundary cf and the left boundary aB andy is 3 et
the vertical distance between the centerd aindB. The penalty term -
is computed similarly in the case of L- or T-shaped modules by just
considering the largest submodules in the rectilinear blotlemd~ u
are constants which control the relative importance of the three terms.
A is usually set such that the area term and the interconnect term are
approximately balanced. We usually setarge to ensure that all the
abutment constraints can be satisfied. §

V. EXPERIMENTAL RESULTS Fig. 15. Result packing of playout. Modules 1, 2, 50, 4, 5, 6, and 14 are

We tested our floorplanner with some benchmark data: ami38duired to abut horizontally and modules 8, 9, 10, 4, 11, 12, and 13 are required
ami49, and playout. In all the data, the rectangular modules are Stgfflbut vertically. Ten out of the 12 abutment constraints are satisfied.
modules with aspect ratios lying between 0.25 and 4.0 and the L-
or T-shaped modules are hard modules. For each experiment, ditkfive testings for each benchmark data, each testing with a different
starting temperature is decided such that an acceptance ratio is 16@%of abutment constraints. The abutment constraints we imposed are
at the beginning. The temperature is lowered at a constant rate asdally that chains of four to five modules are required to abut hori-
the number of iterations in one temperature step is proportional zontally or vertically. The averaged result for each benchmark data is
the number of modules. All the experiments were carried out onsaown in Table I. (The best values are shown in brackets.) We can com-
143-MHz UltraSPARC workstation. pare these results with Table Il, which shows the results of the control

We did two sets of experiments, one set with only rectangular moexperiments in which there is no abutment constraint nor L/T-shaped
ules and the other set with L- d or T-shaped modules. In the first set, medule in the data sets. We can see from the tables that our method

806 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

TABLE Il
RESULTS OFTESTING ABUTMENT CONSTRAINTS WITHL- AND T-SHAPED MODULES

Data Set | n | #Constraints | #L-Blocks | #T-Blocks | %Deadspace Time(s) #Violation
It-ami33a | 33 12 2 1 5.20 (3.79) 78.49 (70.43) 1 (0)
It-ami49%a | 49 12 3 2 5.38 (2.64) | 294.34 (276.26) 1 (0)
It-playout | 62 12 3 3 3.91 (2.90) | 807.89 (532.34) 1.4 (1)

Fig. 16. Result packing of It-ami49. Modules 1, 2, 15, 20, 25, 8, and 10 aFég. 18. Result packing of a randomly generated example without abutment
required to abut horizontally and modules 10, 12, 3, 41, 42, 43, and 44 aanstraint. There are 100 modules, six of which are L-shaped and four of which
required to abut vertically. 11 out of the 12 abutment constraints are satisfiedre T-shaped.

- L -
o o -I - B
]
1" "
ia
L] L] -
| "'_ L] i o
-
]
=
W

It-ami33, It-ami49, and It-playout. Again, we did five testings for each
data, imposing different abutment constraints on the modules for each
testing. Table Ill summarizes the results. Figs. 16 and 17 show two re-
sult packings. The rectangular modules are white in color, the L-shaped
modules are light gray, and the T-shaped modules are dark gray. Fig. 18
shows a result packing of a randomly generated example without any
abutment constraint. It has 100 modules in total with four T-shaped
modules and six L-shaped modules.

VI. CONCLUDING REMARKS

We devised a method that can handle abutment constraints in the
presence of L- or T-shaped modules in such a way that the shape
flexibility of the soft modules can be fully exploited to obtain a tight
packing. We made use of an advantageous feature in slicing floorplan
to exploit the topological structure of a packing without knowing the
module dimensions. We tested our floorplanner with some benchmark
data and the results are good. However, our method can only handle
L- and T-shaped modules. It is interesting to extend it to handle
arbitrarily shaped rectilinear modules, but the expansion process of
which will be quite complicated.

REFERENCES

Fig. 17. Result packing of It-playout. Modules 1, 2, and 15; 8 and 9; 12, 13, 117 3. pufour, R. McBride, P. Zhang, and C. K. Cheng, “A building block

14 and 15 are required to abut horizontally. Modules 9, 10, 11 and 12; 20, 17

placement tool,” inProc. IEEE Asia South Pacific Design Automation

and 48; 18 and 19 are required to abut vertically. 11 out of 12 of the abutment ot jan. 1997 pp. 271-276.

constraints are satisfied.

[2] K. Fujiyoshi and H. Murata, “Arbitrary convex and concave rectilinear
block packing using sequence-pair,’Rroc. Int. Symp. Physical Design

can handle abutment constraints efficiently. Figs. 14 and 15 show two__ APr- 1999, pp. 103-110.

result packings.

[3] M. Kang and W. W. M. Dai, “General floorplanning with L-shaped,
T-shaped and soft blocks based on bounded slicing grid structure,” in

In the second set of experiments, we modified the benchmark data proc. IEEE Asia South Pacific Design Automation Cpddin. 1997, pp.
by changing some modules to L- or T-shaped. We called these data 265-270.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

(4]

(5]

(6]

(7]

(8]

M. Z. W. Kang and W. W. M. Dai, “Topology constrainted rectilinear
block packing,” inProc. Int. Symp. Physical Desigépr. 1998, pp.
179-186.

M. Z. Kang and W. W.-M. Dai, “Arbitrary rectilinear block packing
based on sequence pair,”froc. IEEE Int. Conf. Computer-Aided De-
sign Nov. 1998, pp. 259-266.

T. C. Lee, “A bounded 2D contour searching algorithm for floorplan
design with arbitrarily shaped rectilinear and soft modules,Pioc.
30th ACM/IEEE Design Automation Confune 1993, pp. 525-530.

S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications,Pioc. IEEE Int.
Conf. Computer-Aided Desighov. 1996, pp. 484-491.

S. Nakatake, M. Furuya, and Y. Kajitani, “Module placement on

9]
(20]

(11]

[12]

[13]

BSG-structure with preplaced modules and rectilinear modules,” in[14]

Proc. IEEE Asia South Pacific Design Automation Coddin. 1998, pp.
571-576.

807

R. H. J. M. Otten, “Efficient floorplan optimization,” iRroc. IEEE Int.
Conf. Computer Desigri983, pp. 499-502.

K. Sakanushi, S. Nakatake, and Y. Kajitani, “The Multi-BSG: Stochastic
approach to an optimal packing of convex-rectilinear blocks Pioc.
IEEE Int. Conf. Computer-Aided DesigNov. 1998, pp. 267-274.

L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,”Inform. Contro| vol. 59, pp. 91-101, 1983.

D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,”
in Proc. 23rd ACM/IEEE Design Automation Caondune 1986, pp.
101-107.

J. Xu, P.-N. Guo, and C. -K. Cheng, “Rectilinear block placement using
sequence-pair,” irProc. Int. Symp. Physical Desigipr. 1998, pp.
173-178.

F. Y. Young and D. F. Wong, “How good are slicing floorplangdffégr.
VLSI J, vol. 23, no. 1, pp. 61-73, Oct. 1997.

