
Local Clock Skew Minimization Using Blockage-aware Mixed Tree-Mesh Clock Network

Linfu Xiao, Zigang Xiao, Zaichen Qian, Yan Jiang, Tao Huang, Haitong Tian and Evangeline F.Y. Young

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

email: {lfxiao, zgxiao, zcqian, yjiang, thuang, httian, fyyoung}@cse.cuhk.edu.hk

Abstract— Clock network construction is one key problem
in high performance VLSI design. Reducing the clock skew
variation is one of the most important objectives during clock
network synthesis. Local clock skew (LCS) is the clock skew
between any two sinks with distance less than or equal to a
given threshold. It is defined in the ISPD 2010 High Performance
Clock Network Synthesis Contest [1], and it is a novel criterion
that captures process variation effects on a clock network. In
this paper, we propose a hybrid method that creates a mesh
upon a tree topology. Total wire and buffer capacitance is
minimized under the LCS and slew constraints. In our method,
a clock mesh will be built first according to the positions and
capacitance of the sinks. A top-level tree is then built to drive
the mesh. A blockage-aware routing method is used during the
tree construction. Experimental results show our efficiency and
the solution generated by our approach can satisfy the LCS
constraint of all the benchmarks in the contest [1], with a fair
capacitance usage.

I. INTRODUCTION

A. Clock Network Synthesis

Clock network construction is one of the most important re-

search topics in industrial and academic communities. Among

the possible objectives including power, signal slew, nominal

skew and wire length, the nominal skew is a crucial one

because it directly relates to the maximum frequency of the

circuit. The unwanted clock skew may be caused by variations

like buffer manufacturing variation, power-ground noise, etc.

and contributes to a large portion of the nominal skew. Robust

clock network that is less sensitive to process variation is

highly desired.

B. Previous Works

In the literature, the approaches to this clock network

synthesis problem can be classified into two categories, i.e.,

clock tree and clock mesh. An example of a clock tree and a

mesh structure is given in Fig. 1(a) and Fig 1(b) respectively.

Clock tree is a traditional method that is commonly used

in commercial tools. Basic methods include H-tree [2], the

Method of Means and Medians (MMM) [3], Path Length

Balancing method (PLB) [4] and Deferred Merge Embedding

(DME). DME was first introduced in [5], [6], [7], and there

have been some variants of DME devised like Planar-DME [8].

This type of clock distribution has the advantages of low power

consumption and shorter wire length, as well as simplicity of

analysis, implementation and simulation. However, it is prone

to have clock skew when variation exists. Clock mesh on

the other hand, provides better tolerance due to the existence

of multiple paths from the clock source to the sinks [9].

Nevertheless, significantly higher wire area will be consumed

in a clock mesh, which leads to a higher power dissipation. The

authors of [10] and [11] proposed some methods to analyze

the characteristics of a mesh network. Venkataraman et al.

proposed a combinatorial algorithm in [9] to optimize a clock

mesh to trade-off between power and tolerance to process

variation.

(a) (b)

Fig. 1. (a) Tree structure clock network. (b) Mesh structure clock network.

Hybrid structure that combines tree and mesh also exists,

e.g., [12], [13], [14]. This type of structure is a compromise

between tree and mesh, but the mixed structure makes the

analysis extremely difficult. Apart from tree and mesh style

networks, a technique named link insertion [15], [16] is also

developed and can be used in the aforementioned structures,

which will change a clock tree to a non-tree structure. By using

this technique, cross links will be inserted between unbalanced

sinks in order to reduce their skew.

C. Local Clock Skew

To promote the clock network research, a clock network

synthesis contest [1] is launched recently that focuses on the

process variation issue. In this contest, Local Clock Skew

(LCS) is defined as the clock skew between any two sinks

with a distance less than or equal to a given threshold (e.g.,

600nm) [1]. Let si and sj be two clock sinks. T (si) denotes

the clock arrival time of si and MHT (si, sj) denotes the

Manhattan distance between two points si and sj . L is a given

threshold. We have:

LCS = max
MHT (si,sj)6L

{ |T (si) − T (sj) | } (1)

In the contest, LCS inevitably exists because of the variation

in buffers and wires. It is considered to be a more practical

metric to be optimized, as nearby points on a chip are the

primary ones that are susceptible to short-path errors caused

by clock skew [12], and it is also being used in industry [17].

D. Our Contributions

In this paper, we propose a blockage-aware mixed tree-mesh

clock network to reduce local clock skew caused by process

variation. In our framework, an irregular mesh will first be

generated according to the positions and capacitance of the

sinks. A set of grid points are then generated and distributed in

the layout region. The sinks and the corresponding nearest grid

point will be connected using a rectilinear minimum spanning

tree. Grid links are inserted between grid points so as to reduce

the skew caused by process variation. We will treat these grid

points as sinks in our extended-DME algorithm to build a

balance tree. Our method is fast and scalable to handle large

data set and tight LCS constraint. Besides, we provide some

analysis for the proposed mixed tree-mesh clock network.

TABLE I

COMPARISON BETWEEN TWO APPROACHES

Mean Stdv∗ Max #Violations

Method (a) 16.77 3.64 24.19 50

Method (b) 4.45 1.09 6.88 0

∗Standard deviation.

The remainder of this paper is organized as follows. Sec-

tion II gives a detailed description and formulation of the

problem. Section III introduces our approach. An analysis of

the mixed tree-mesh structure will be given in Section IV.

Section V reports the experimental result and comparison. Our

conclusion is drawn in Section VI.

II. PROBLEM FORMULATION

A. Clock Network Synthesis Problem

In this paper, the problem is modeled based on the speci-

fication of the ISPD 2010 High Performance Clock Network

Synthesis Contest [1]. A formal description of the problem is

given as follows: The inputs are (1) a W × H layout region,

(2) a set of n sinks and m blockages and (3) a library of

buffers and wires. Details can be found in [1]. We want to

obtain a clock network with non-inversed output that satisfies

all the constraints, while minimize the total buffer and wire

capacitance. The constraints are (1) a Local Clock Skew limit

L within a threshold distance D and (2) a slew limit T .

Besides, we assume that buffers cannot be placed on a

blockage. However, routing can be done over a blockage.

An open source circuit simulator, ng-spice, will be used to

simulate the constructed clock distribution network. Note that

Monte Carlo simulations will be conducted to evaluate a clock

network under different buffer Vdds and wire variations.

B. Effects of Hypothetical Parallel Buffers

In the contest [1], buffers are allowed to be added in parallel

at the same place. Besides, on-chip variations upon wires and

buffers are assumed to be independent. In particular, there

will be a +/-7.5% variation of the supply voltage for each

buffer independently. Hence, one can utilize parallel buffers

to cancel out the process variation effects. We verify our

statement by performing an experiment. In this experiment,

the layout region contains 16 × 16 evenly distributed sinks.

An H-tree will be generated first, and the buffer locations in

the tree are also computed. Then, we add buffers in the two

following ways to construct two different clock trees. For each

buffer location:

(a) Only one type-1 buffer will be added.

(b) Ten type-2 buffers will be connected in parallel to provide

similar driving strength as one type-1 buffer.

After the trees are constructed, fifty simulations will be

performed for each of them. As shown in Table I, method (a)

obtained a 4x times worse average LCS and 3x times worse

standard deviation comparing with method (b). At the same

time, method (a) exceeds the LCS constraint in all simulations,

while method (b) can always satisfy the constraint. This

demonstrates the effects of parallel buffers in this problem.

However, parallel buffers and variation independence are im-

practical and inaccurate. Correlation usually exists between

Fig. 2. Overview of our approach.

closely placed buffers after fabrication. Their electronic char-

acteristics tend to be similar and dependent on each other. In

our proposed approach, we will add only one buffer at any

specific location.

III. BLOCKAGE-AWARE TREE-MESH CLOCK NETWORK

CONSTRUCTION

A. Overview of Our Methodology

Our clock network construction is divided into two

stages (Fig. 2). The first stage is Congestion Driven Mesh

Network Construction. According to the congestion and ca-

pacitance information of the sinks, a set of grid points will be

generated and distributed across the layout region. For each

grid point, a minimum spanning tree (MST) will be constructed

to connect the nearby sinks to it. Grid links are then inserted

systematically between selected grid points to increase the

stability of the network. A top-level tree is then utilized to

drive the grid points after the sinks are attached to the grid

points. Instead of the original sinks, the grid points will be

viewed as new sinks in the second stage of tree construction.

An extended DME algorithm that uses a minimum weight

matching in pair selection is used to build a tree structure.

During this stage, a blockage-aware routing is performed. Here

we adopt a blockage-aware scheme rather than a blockage-

avoiding scheme. In particular, we allow a route to cross a

blockage, as long as the buffers can be placed correctly outside

the blockage and the slew limit is not violated. This strategy is

more sophisticated than just avoiding the blockages, and can

provide us a more flexible routing solution. In the following

sections, each component of our algorithm will be presented.

B. Congestion Driven Mesh Network Construction

At this stage, we want to generate a set of grid points to

form a mesh. This step will be done recursively. Initially, a

coarse mesh will be constructed. It will be recursively divided

according to the distribution of the sink capacitance. We call

each individual rectangle in the mesh a room, and the corners

of the rooms grid points. A room in the mesh will be divided

recursively into 2× 2 if the estimated total capacitance of the

sinks and wires inside is larger than a threshold. The division

step repeats until the capacitance estimation is small enough

in each room, or there is only one sink in each room. After

this division step, the corners of the rooms will be used as

grid points and sinks will be connected to their nearest grid

points. To reduce wire length, a rectilinear minimum spanning

tree will be used to connect a grid point with its nearby sinks.

(a)

(b)

Fig. 3. (a) An example of connectivity. (b) An example of a shortest path
between X and Y generated by our method.

At last, grid links will be inserted between horizontally or

vertically adjacent grid points to form the final mesh.

C. Top-level Tree Construction

At this stage, grid points generated in the previous stage

will be treated as sinks and they are the leaves of the DME

tree. The capacitance of each of these sinks is the sum of the

capacitance contributed by all the original sinks connected to

it and the corresponding wires. An extended-DME algorithm

follows to build a top-level tree to drive these grid points.

It contains a bottom-up blockage-aware merging phase and a

top-down embedding phase. In the bottom-up merging step,

pairs of sinks will be selected to merge. A merging segment

will be created for each pair, and the merging point will be

viewed as a sink at the next level. We call the nodes in a

DME tree the DME nodes. We will denote a DME node by

a segment XY , where X and Y are its endpoints meaning

that the actual location of the DME node can be anywhere on

the segment. For the pair selection step, a minimum weight

matching algorithm (see Section III-C.4) is used to minimize

the total wire length at each level of the tree. After the

topology of the tree is computed, a top-down embedding is

performed to finalize the actual position of each tree node.

Elmore delay model is used to calculate the buffer locations

and merging point. During this phase, buffers will be inserted

regularly to prevent slew degradation. Note that due to the

existence of blockages, several parts of a merging segment

may locate inside a blockage. Those parts inside a blockage

will be removed to avoid inserting buffers on the blockage. In

the following sub-sections, we will explain our modification

over the original DME algorithm in detail.

1) Blockage-aware Routing: we will introduce our routing

method first. In our approach, buffers will be inserted in the

top-level clock tree regularly in order to maintain a valid slew

and they cannot overlap with the blockages. Here we will use a

dynamic blockage-sink rectilinear graph G to perform routing.

The vertex set V of the graph G consists of the current sinks,

the corners of the blockages and the merging points (internal

nodes of the clock tree). A connectivity test will then be

performed to determine the edge set E in G. The connectivity

of two vertices is defined as follows:

(a)

(b) (c)

(d) (e)

Fig. 4. An example of blockage-aware merging.

Definition 1 (Connectivity of two vertices): Let u, v be

two vertices in G. We say that u and v are connected if there

exists a zero-bend or a one-bend rectilinear path p between u
and v satisfying:

• p is not blocked by any blockage, or

• p is blocked by some blockages b1, b2, . . . , bn horizon-

tally/vertically, but the width/height of the blockages are

smaller than the buffer insertion distance.
The edge weight between u, v equals to the length of p. An

example is given in Fig. 3(a). Suppose that the buffer insertion

distance is K. The sinks (A,B), (A,C), (E, D) are connected,

while sinks (B,C) is disconnected. Then, a rectilinear shortest

path between any two points can be obtained from G by

applying a shortest path algorithm (e.g., Dijkstra) on it. A

typical shortest path constructed by our method is illustrated

in Fig. 3(b) in which X − Z1 − Z2 − Y is the path.
2) Blockage-aware Merging and Embedding: We propose

a concept of buffer segment that is similar to the merging

segment to provide alternative insertion places for buffers. A

buffer segment of a DME node n is a set of possible buffer

locations that have the same Manhattan distance from n. This

idea is inspired and extended from a previous work [18]. We

consider this buffer segment as early as in the merging stage.

By doing this, more valid insertion places can be found for

a buffer even when the wire is routed over some blockages.

Although this buffer segment approach may also encounter

cases in which a segment locates inside a blockage completely,

the mark-and-reroute method can be used to resolve this

problem. We define Rectilinear Shortest Path between two

segments as follows:
Definition 2 (Rectilinear shortest path (RSP)): For two

lines AB and CD, the rectilinear shortest path between them

are the rectilinear shortest path between two nearest points in

AB and CD respectively, and denoted as RSP (AB,CD).
In the following, we illustrate our merging algorithm by

giving an example. In Fig. 4(b), two DME nodes AB and CD
are selected for merging. The rectilinear shortest path between

them is then computed as RSP (AB,CD) = B − E − C,

where E is an intermediate blockage corner node. Let l be

the length of this path. In order to compute the merging

segment and buffer segments, the balance point and buffer

points will be determined first. This will be discussed in

Section III-C.3. In this example, three buffers will be inserted

and we assume that the distances between these buffer and

balance points are as shown in Fig. 4(a), where M is the

balance point, and P1, P2 and P3 are the buffer points. A

merging segment m corresponding to M and three buffer

segments b1, b2 and b3 corresponding to P1, P2 and P3 will

be computed. A forward and reverse two-way computation is

used to determine these segments. The forward one computes

the segment candidates for b1, b2 and mf , while the reverse

one computes the segment candidates for b3 and mr. The

result of the forward and reverse computation is shown in

Fig. 4(c) and Fig. 4(d) respectively. The solid lines are buffer

or merge segment candidates, while the dash lines are those

parts removed because of the blockages. Because in forward

direction (AB−mf), we do not consider the blockages within

CD − mr path, and vice versa. Hence, a longest intersection

between {mf1,mf2} and {mr1,mr2} is then computed to

determine the final m. Finally, We trace back to select all the

buffer segments for b1, b2 and b3 (see Fig. 4(e)).

Embedding is then performed to decide the actual locations

of the merging points in their corresponding merging seg-

ments, and the actual buffer locations in their corresponding

buffer segments. This step is the same as in the original DME

algorithm.

3) Buffer Insertion: During the merging step, balance

point and buffer locations will be computed. The buffers will

be added regularly in our top-level clock tree to maintain

the slew within the limit. The buffer insertion distance is

determined empirically. Based on the Elmore delay model,

we use a trial-and-error method to determine the number of

buffers. In particular, the number of buffers will be enumerated

iteratively. Furthermore, as mentioned in Section II-B, we will

add only one buffer at each buffer location in order to be more

practical.

4) Minimum Weight Matching: During the merging phase,

to decide the topology of the DME tree, a graph will be

constructed at each level of the tree for matching. All the

current DME nodes existing in the layout region will be

represented as vertices in this graph. The edge weight is

computed as follows:

w(e) = MHT (i, j) +

s

|(ti + capi · RB) − (tj + capj · RB)|

αwβw

(2)

where ti and capi are the downstream delay and capacitance of

node i, RB is the output resistance of a buffer, αw and βw are

the unit wire resistance and capacitance of a wire. Note that

there is no LCS constraint for two sinks that have a distance

greater than D. Hence we will set the weight of this edge ∞.

Under this scheme, the topology resulted will be a forest that

contains multiple DME trees. We will then use an obstacle-

avoiding rectilinear Steiner minimum tree (SMT) [19] to

connect the roots of all these trees with the clock source.

IV. ANALYSIS

In this section, we will provide some analysis for the

proposed mixed tree-mesh clock network. Our goal is to

understand more how a mesh structure can help to reduce the

skew. The analysis is based on the benchmark ispd10cns01 [1].

A 33×33 mesh is used for the analysis. We use both ng-spice

0

20

40

0

20

40
820

830

840

850

860

XY

d
e
la

y
(p

s
)

Nominal skew 32.370ps
Local skew 18.260ps

(a)

 ! !! !!!

"

#

 $

 %

$!

$"

$#

&$

!
"

#
$

 ! $

 %&'()*+ ,-./

 0&1*+ ,-./

(b)

Fig. 5. (a) The delay map of the pure tree. (b) The relationship between r

and the local clock skew.

and the computational method proposed in [20] to compute

delays.

Fig. 5(a) shows the delay map of the pure tree, i.e., the

top-level tree without mesh. Fig. 6 shows the delay maps

of the proposed mixed tree-mesh network with one grid link

inserted between each pair of adjacent grid points. The sub-

figure on the left is obtained by simulation while the one on

the right is obtained by the computational model. Comparing

these three figures, we can see that the clock skew can be

reduced significantly by using the proposed mixed tree-mesh

network.

0

20

40

0

20

40
820

830

840

850

860

XY

d
el

ay
(p

s)

Nominal skew 22.738ps
Local skew 7.106ps

(a)

0

20

40

0

20

40
820

830

840

850

860

XY

d
el

ay
(p

s)

Nominal skew 22.810ps
Local skew 6.402ps

(b)

Fig. 6. (a) Delay map of the network with one link (simulation). (b) Delay
map of the network with one link (computation).

We can also see by comparing the two sub-figures in

Fig. 6 that the results of the ng-spice simulation are very

similar to the results of the recursive computational model.

The correlation coefficients between the two delay results are

over 0.98, which indicate that the computational model in [20]

can describe the empirical delay values fairly accurately.

Therefore, we can make use of this model to further analyze

the mixed tree-mesh network. By setting different values to the

grid link resistance r, we can derive the relationship between

the grid link resistance and the local clock skew as shown in

Fig. 5(b). We can observe that the LCS is almost proportional

to the exponential of r. By adding more links in parallel or

using a finer mesh, we are able to achieve a better local clock

skew because the grid link resistance is reduced.

V. EXPERIMENTAL RESULT

The proposed algorithm is implemented in C. The experi-

ment is carried out on an 3.20GHz Intel CPU Linux worksta-

tion with 2GB memory. Benchmarks from the contest [1] are

used to evaluate the solution quality. Monte Carlo simulation

provided in the evaluation script in the contest is performed to

simulate the process variation on Vdd and the wire variations.

Our solution for each benchmark will be simulated for a

TABLE II

COMPARISON ON RUNNING TIME, LCS AND CAPACITANCE

B.N.†
Our Approach (no parallel buffers) Contango (1st place, tree, 30 type-2 buffers in parallel)

CPU(s)‡ Mean 95% Max Cap‡ Inv-c Tree-c Mesh-c CPU(s)‡ Mean 95% Max Cap‡ Inv-c Tree-c

01 675/1.0 5.07 7.23 9.43 1168104/1.0 530035 146227 472920 12015/17.8 5.16 7.01 10.11 198337/0.2 117782 61633

02 2140/1.0 5.43 7.35 8.99 2099811/1.0 847435 239661 973495 25006/11.7 5.58 7.34 9.24 375863/0.2 227869 108775

03 21/1.0 2.89 3.95 4.23 93965/1.0 49335 16881 9060 3840/182.9 3.03 4.18 5.04 55861/0.6 31097 6615

04 22/1.0 5.27 7.25 7.64 125333/1.0 65090 31102 16795 6075/276.1 3.26 4.46 6.06 71843/0.6 40326 19170

05 10/1.0 4.34 7.27 9.40 74084/1.0 39100 19409 10349 1383/138.3 25.19 26.91∗ 25.58 35496/0.5 19891 10378

06 46/1.0 5.75 6.79 8.04 87390/1.0 45080 20250 9485 545/11.8 23.93 24.63∗ 25.22 45719/0.5 25824 7319

07 27/1.0 4.18 5.97 6.67 128351/1.0 65665 28653 15935 2351/87.1 3.41 4.58 5.61 72664/0.6 40326 14239

08 18/1.0 3.58 5.37 6.62 97421/1.0 50255 21512 12609 682/37.9 11.54 12.71∗ 13.66 51515/0.5 29779 8692

CNSRouter (2nd place, mesh+tree, 4 type-1 buffers in parallel) NTUclock (3rd place, tree, 20 type-2 buffers in parallel)

01 20/0.030 5.27 7.32 10.74 841207/0.7 489095 333190 - 15/0.022 6.71 8.66∗ 11.14 293887/0.3 159434 115532

02 81/0.038 6.27 8.33∗ 10.83 1E+06/0.5 819375 594334 - 176/0.082 8.27 10.73∗ 14.44 832483/0.4 558234 235029

03 8/0.381 1.43 2.70 3.55 162570/1.7 81995 62427 - 6/0.286 6.82 8.63∗ 10.27 167062/1.8 104629 44284

04 32/1.455 2.83 3.98 5.74 277151/2.2 177215 87590 - 58/2.636 7.45 9.55∗ 11.36 325206/2.6 181649 131211

05 7/0.70 2.88 4.38 6.51 175580/2.4 120635 49719 - 11/1.10 5.30 6.98 9.79 130389/1.8 65156 60006

06 11/0.239 12.38 14.03∗ 15.12 133312/1.5 83375 37361 - 10/0.217 406.9 416.62∗ 421.29 2E+06/22.9 98619 1465951

07 45/1.667 12.39 15.74∗ 19.62 309242/2.4 201135 90009 - 66/2.444 6.17 8.12∗ 11.29 295597/2.3 130046 127453

08 19/1.05 6.15 7.33 9.21 222786/2.3 147315 62427 - 7/0.389 5.94 7.64∗ 9.05 165883/1.7 42484 110355

†Benchmark name. To save space, we use ‘01’ for ispdcns01, and so on. ‡The right part is a normalized value. ∗LCS violation.

hundred times, except for the first two benchmarks, which

will only be simulated for seventy times because of the long

simulation time due to their huge sizes. Comparison is made

between the clock network generated by our approach and the

three winning teams in the contest.
The benchmark details are available in [1]. Table II shows

the comparison of the CPU time, statistics on LCS and load

capacitance. Note that our solutions employ only one buffer

at any specific location. Our algorithm is very efficient and

can generate a solution within one minute, except for the two

largest cases. For the LCS comparison, note that the contest

uses the 95th percentile of the simulation results as the metric

to evaluate the worst local clock skew. The ‘95%’, mean and

max of LCSs are also shown in the table (in ps). It can be seen

that the solutions generated by our approach can satisfy the

LCS constraints for all benchmarks, while none of the winning

teams can route successfully for all. The total capacitance

(cap), inverter capacitance (inv-c), tree capacitance (tree-c) and

mesh capacitance (mesh-c) are also given in Table II. Our

approach uses on average a capacitance of almost 2x that of

the team Contango, which has the lowest capacitance usage

among all three teams. Our result is reasonable because we

use a mixed tree-mesh structure instead of just one single tree.

Besides, unlike other methods, we did not employ any parallel

buffers to cancel out the variation effects.

VI. CONCLUSION

We presented a blockage-aware mixed tree-mesh clock

network construction algorithm in this paper. The clock distri-

bution network generated by our method is very robust against

process variation in minimizing the local clock skew (LCS).

The proposed method is scalable and can handle large data

sets and tight LCS constraints. By changing the granularity of

the mesh or adding more grid links in parallel, the LCS can

be further reduced. According to the experimental result, our

approach is superior in terms of running time and can satisfy

the local skew constraints for all benchmarks.

REFERENCES

[1] ISPD 2010 high performance clock network synthesis con-
test. ACM SIGDA and Intel Corporation. [Online]. Available:
http://www.sigda.org/ispd/contests/10/ispd10cns.html

[2] H. Bakoglu, J. Walker, and J. Meindl, A symmetric clock distribution tree and
optimized high-speed interconnects for reduced clock skew in ULSI and WSI
circuits, Proc. IEEE Int. Conf. Computer Design, 1986, pp. 118–122.

[3] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, Clock routing for high-performance
ics. DAC 90: Proceedings of the 27th ACM/IEEE Design Automation Conference.
ACM, 1990.

[4] A. Kahng, J. Cong, and G. Robins, High-performance clock routing based on
recursive geometric matching, DAC ’91: Proceedings of the 28th ACM/IEEE Design
Automation Conference. 1991, pp. 322–327.

[5] K. Boese and A. Kahng, Zero-skew clock routing trees with minimum wirelength,
ASIC Conference and Exhibit, 1992., Proceedings of Fifth Annual IEEE Interna-
tional, 1992.

[6] T. Chao, J. Ho, and Y. Hsu, Zero skew clock net routing, Proceedings of the 29th
ACM/IEEE Design Automation Conference. IEEE Computer Society Press, 1992,
p.523.

[7] M. Edahiro, Minimum skew and minimum path length routing in VLSI layout
design,NEC research & development, vol. 32, no. 4, pp. 569–575, 1991.

[8] A. Kahng and C. Tsao, Planar-DME: A single-layer zero-skew clock tree router,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
1996.

[9] G. Venkataraman, Z. Feng, J. Hu, and P. Li, Combinatorial algorithms for fast clock
mesh optimization, ICCAD ’06: Proceedings of the 2006 IEEE/ACM international
conference on Computer-aided design, 2006, pp. 563–567.

[10] H. Chen, C. Yeh, G. Wilke, S. Reddy, H. Nguyen, W. Walker and R. Murgai A
sliding window scheme for accurate clock mesh analysis, Proceedings of the 2005
IEEE/ACM International conference on Computer-aided design, 2005.

[11] X. Ye, P. Li, M. Zhao, R. Panda and J. Hu Analysis of large clock meshes via
harmonic-weighted model order reduction and port sliding, Proceedings of the 2007
IEEE/ACM international conference on Computer-aided design, 2007.

[12] P. Restle, T. McNamara, D. Webber, P. Camporese, K. Eng, K. Jenkins, D. Allen,
M. Rohn, M. Quaranta, D. Boerstler, et al., A clock distribution network for
microprocessors, IEEE Journal of Solid-State Circuits, vol. 36, no. 5, pp. 792–
799, 2001.

[13] H. Su and S. S. Sapatnekar, Hybrid structured clock network construction,
Proceedings of the 2001 IEEE/ACM international conference on Computer-aided
design. 2001.

[14] M. Mori, H. Chen, B. Yao, and C.-K. Cheng, A multiple level network approach
for clock skew minimization with process variations,ASP-DAC ’04: Proceedings of
the 2004 Asia and South Pacific Design Automation Conference, 2004, pp. 263–268.

[15] A. Rajaram, J. Hu, and R. Mahapatra, Reducing clock skew variability via cross
links, DAC ’04: Proceedings of the 41st annual Design Automation Conference,
2004, pp. 18–23.

[16] J.-S. Yang, A. Rajaram, N. Shi, J. Chen, and D. Z. Pan, Sensitivity based link
insertion for variation tolerant clock network synthesis, ISQED ’07: Proceedings of
the 8th International Symposium on Quality Electronic Design, 2007, pp. 398–403.

[17] C. Sze, ISPD 2010 high performance clock network synthesis contest: benchmark
suite and results, Proceedings of the 19th international symposium on Physical
design, 2010.

[18] X.-W. Shih, C.-C. Cheng, Y.-K. Ho, and Y.-W. Chang, Blockage-avoiding buffered
clock-tree synthesis for clock latency-range and skew minimization, Design
Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, 2010.

[19] L. Li and Evangeline F.Y. Young, Generation of optimal obstacle-avoiding
rectilinear Steiner minimum tree, Proceedings of the 2009 International Conference
on Computer-Aided Design, 2009.

[20] P. Chan and K. Karplus, Computing signal delay in general RC networks by

tree/link partitioning, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 9, no. 8, pp. 898–902, 1990.

