
Design Automation with Efficient
Compilation on Hardware Accelerators

BAI, Yang

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

July 2024

Thesis Assessment Committee

Professor XU Hong (Chair)

Professor YU Bei (Thesis Supervisor)

Professor SHAO Zili (Thesis Co-Supervisor)

Professor LO Chi Lik Eric (Committee Member)

Professor WANG Wei (External Examiner)

Abstract

Acquiring high-performance tensor programs for machine learning applications on

diverse hardware platforms poses substantial challenges. Current methods often rely

on vendor-provided libraries or manual search policies with limited optimization ca-

pabilities, which either necessitate extensive engineering efforts or have a restricted

search space. Moreover, the limitations of transistor scaling demand the develop-

ment of domain-specific hardware acceleration. However, constructing specialized

accelerators and compilation stacks for application acceleration requires significant

engineering expertise. The aim of this dissertation is to tackle these challenges

by elevating the compiler to a first-class citizen and integrating tensor program

generation, hardware acceleration, and design automation. Firstly, it explores the

compiler’s potential in automatically generating computation graphs and tensor

programs. Furthermore, it investigates the compiler’s ability to efficiently facilitate

knowledge transfer between hardware platforms through transfer learning. More-

over, it harnesses the power of pipelining between data movement and computation

through automatic compilation pass optimization. Ultimately, a unified compilation

interface is devised to achieve collaborative optimization between the hardware and

software design spaces, enabling end-to-end optimization for high-performance

tensor programs and hardware acceleration.

iii

摘要

為機器學習應用程式在不同硬體平臺上獲得高效能的張量程序,提出了很大的挑戰.

目前的方法經常依賴廠商提供的庫或手動搜索政策, 但其優化能力有限, 這要麼需要

龐大的工程工作,或搜索空間受限制. 此外,電晶體規模的限制需要開發特定領域的硬

體加速. 然而, 建構專用加速器與編譯堆疊以加速應用, 需要大量的工程專長. 本論文

的目標是通過提升編譯器為第一優先級,並將張量程式產生,硬體加速與設計,自動化

整合來解決這些挑戰. 首先, 它探討編譯器在自動產生計算圖與張量程式的潛力. 此

外,它研究編譯器在不同硬體平臺之間有效地知識傳遞的能力.而且,它利用管線處理

資料移動與計算來最大化效能,通過自動編譯通過優化. 最終,一個統一的編譯接口被

設計出來, 實現硬體與軟體設計空間之間的協同優化, 從而實現張量程式和硬體加速

的端對端優化.

iv

Contents

Abstract . iii
List of Tables . ix
List of Figures . xi
Acknowledgments . xvi

1 Introduction 1
1.1 Goal: Automatic Generation of Programs and Hardware Acceleration 3
1.2 Main Contributions . 4
1.3 Produced Publications . 8
1.4 Dissertation Outline . 11

2 Background and Related Work 15
2.1 Transformer-based Model Architecture 15
2.2 GPU Architecture and Programming Model 18
2.3 Machine Learning Compilation . 20
2.4 Performance Model . 21
2.5 Multi-level Pipelining Optimization 23
2.6 Domain-Specific Accelerator . 24
2.7 MLIR Compilation Infrastructure . 30
2.8 Programmable Spatial Accelerator . 32
2.9 Computation on Spatial Accelerator 34
2.10 Complex Hardware and Software Interfaces 36
2.11 Hardware-Software Co-design Framework 37

3 GTCO: Graph and Tensor Co-Design for Transformers on GPUs 39
3.1 Motivation . 39
3.2 System Overview . 43
3.3 Problem Formulation . 45
3.4 Workflow of GTCO . 47

v

3.4.1 Dynamic Programming-based Operator Fusion 47
3.4.2 Subgraph Scheduler . 49
3.4.3 Program Sampler . 51
3.4.4 Performance Tuner . 54

3.5 Hardware Abstraction and Mapping on Tensor Cores 56
3.5.1 Domain Specific Accelerators on GPU 56
3.5.2 Standard Attention Implementation on CUDA Cores 58
3.5.3 Register-Level Abstraction . 59
3.5.4 Auto-Scheduling on Tensor Cores 61

3.6 Evaluation . 64
3.6.1 Experimental Setup . 64
3.6.2 End-to-End Performance . 66
3.6.3 Subgraph Benchmark . 69
3.6.4 Graph Partition and Tuning Time 71

3.7 Summary . 73

4 ATFormer: A Learned Performance Model with Transfer Learning Across
Devices for Deep Learning Tensor Programs 74
4.1 Motivation . 74
4.2 Problem Formulation . 76
4.3 Performance Model . 77
4.4 Transfer Learning . 82
4.5 Extension with Tensorized Instruction 83

4.5.1 Tensorized Instruction on NVIDIA GPUs 83
4.5.2 Assignment features for Tensor Program Characterization . . 85
4.5.3 Auto-Scheduling with Tensorized Instruction 90

4.6 Evaluation . 94
4.6.1 Implementation Details . 94
4.6.2 Dataset and Benchmark . 95
4.6.3 End-to-End Execution Evaluations 96
4.6.4 Transfer Learning Evaluations 97
4.6.5 Ablation Study . 101
4.6.6 Other Platforms: Intel CPUs 104

4.7 Summary . 105

vi

5 ALCOP: Automatic Load-Compute Pipelining in Compiler for GPUs 106
5.1 Motivation . 106
5.2 System Overview . 111
5.3 Scheduling Transformation . 112

5.3.1 Identification of Buffers for Pipelining 113
5.3.2 Ordering of Schedule Transformations 114

5.4 Program Transformation . 116
5.4.1 Analysis . 116
5.4.2 Transformations . 118

5.5 Static Analysis Guided Tuning . 120
5.5.1 Top-Level Model . 120
5.5.2 Obtaining Detailed Latencies 122
5.5.3 Model-Guided Auto-Tuning 124

5.6 Evaluation . 125
5.6.1 Single Operator Performance 125
5.6.2 End-to-End Performance . 127
5.6.3 Comparison with Libraries . 127
5.6.4 Performance Model Accuracy 128
5.6.5 Analytical-Model-Guided Schedule Tuning 129

5.7 Summary . 131

6 BACO: Co-exploration of Hardware Acceleration and Tensor Programs
with Unified Compilation Interface 132
6.1 Motivation . 132
6.2 Overview of BACO . 136
6.3 BACO Compiler . 138

6.3.1 Compilation Flow . 138
6.3.2 Problem Setup . 138
6.3.3 Block-oriented Programming Model 140
6.3.4 Multi-level Abstraction in BACO 142
6.3.5 Backend Code Generation . 148

6.4 Performance Fine-tuning . 149
6.5 Importance Estimation Strategy . 151
6.6 Evaluation . 154

6.6.1 Experimental Setup . 154
6.6.2 Single Operator Benchmark . 157

vii

6.6.3 End-to-End Network Benchmark 159
6.6.4 Exploration Efficiency . 161
6.6.5 Performance Model Evaluation 162

6.7 Summary . 162

7 Discussions 164
7.1 Tensor Program Generation with Compilation 164
7.2 Reforming Accelerator Design with Compilation 165
7.3 Future Research and Open Questions 166
7.4 Conclusion . 166

viii

List of Tables

2.1 Comparsions with existing optimization frameworks for hardware
and software design. 37

3.1 Detailed information of the benchmark and experiment models . . . 65
3.2 The information of subgraphs and scheduling weights with graph

partition . 65
3.3 End-to-end network execution performance benchmark (ms) 66
3.4 ViT-Base-16 with different optimization settings 67
3.5 The number of measurement trails . 71
3.6 The time used in the total compilation phase 72

4.1 Transferable adaptation evaluation between different GPU platforms
on ResNet-18. 98

4.2 The performance of Transformer models on TenSet-500 with transfer
learning. 98

4.3 Pre-trained models on TenSet-500 via transfer learning with con-
verged latency. 98

4.4 Total latency and tuning time of different methods with ResNet-18,
MobileNet-V2 and Bert-Tiny networks for end-to-end evaluation. The
relative gains obtain for batch size = 1 with 300 measurement trials.
“Register Abstraction” means the optimization for the tensorized
instruction during the compilation. 99

4.5 Different architecture about performance model. 101
4.6 Accuracy of the cost models on TenSet. 101
4.7 Hierarchical features and model architecture improvements for end-

to-end evaluation. 102
4.8 The training time of the ATFormer series cost models during the

offline optimization. 104

ix

4.9 Pre-trained models with the converged latency on the Intel CPU
platform. 104

5.1 Analytical Performance Model in ALCOP 120
5.2 Comparison of compiler search methods. 125
5.3 Model speedup from pipelining . 126

6.1 Instructions and programming primitives in BACO. 142
6.2 Analytical Performance Model in BACO. 147
6.3 Details modeling information of the accelerator. 150
6.4 Benchmarked GEMV/GEMM with different shapes. 154
6.5 Benchmarked convolution with different shapes. 155
6.6 Single Operator Benchmark on BACO. 158
6.7 Ablation study of BACO on ResNet-50. 159

x

List of Figures

2.1 Scaled Dot-Product and Multi-Head Attention (MHA). 16
2.2 Hardware details of the streaming multiprocessor (SM) and the mem-

ory hierarchy of NVIDIA RTX 2080 Ti GPU. 18
2.3 The overview of a search-based framework with computation graph,

cost model, search space and tuning algorithm during the compilation. 20
2.4 Gemmini hardware architectural template. 25
2.5 Micro-architecture of Gemmini’s two-level spatial array and dataflow. 28
2.6 Key concepts related to MLIR compilation framework. 30
2.7 Matrix multiplication with weight-stationary dataflow. 35
2.8 Manually writing a convolution kernel with CISC-type instructions. 36

3.1 The overview of (a) Ansor [Compiler-OSDI2020-Ansor] and (b) [bai2021iccad].
Initially, the input is a computation graph, which is converted into
tensor expression language. Subsequently, the auto-schedule module
is capable of automatically searching for the optimal schedule for
each operator. Finally, TVM code generation is performed to generate
optimized CUDA code on GPU. However, the primary distinguishing
factor between the two systems is the Dynamic Programming Operator
Fusion module. 43

3.2 The workflow and components of our framework. The input is
the transformer-based vision models and the output is the tensor
programs generated on the GPU platform. 44

3.3 The design of dynamic programming operator fusion. 48

xi

3.4 Sketch generation for the subgraph of MHA. This figure shows two
generated sketches. The left one is generated by the default An-
sor [Compiler-OSDI2020-Ansor] and the right one is generated by
[bai2021iccad]. The difference between these two sketches is that
the operator fusion occurs in GTCO with “red-dotted”. The code
example is pseudo-code in a Python-like syntax. 51

3.5 An example to illustrate how DPOF finds the fusion strategy. The orig-
inal computation graph is shown on the left. It has three operators,
M1,M2, and So f t. There are 4 states during the dynamic program-
ming algorithm and each transition is shown in the figure. Any
transition starts from the state V = {M1, So f t, M2} to V = {}. The
best fusion strategy can be obtained by the dynamic programming
process. 52

3.6 Register-Level Abstraction is defined to enable optimal configuration
of tensor computation with WMMA instructions on Tensor Cores.
The Input of the GTCO is the computation graph extracted from a
deep learning framework. The Dynamic Programming Operator Fusion
(DPOF) technique, as introduced in [bai2021iccad] with Section 3.4.1,
is utilized for graph-level optimization. With Register-Level Abstrac-
tion, the original tensor expressions can be encoded with hardware
intrinsic. Subsequently, a tensorization-aware auto-schedule, which
includes code generation is developed to generate high-performance
tensor programs on Tensor Cores. 59

3.7 During auto-tuning, the matrix multiplication is mapped to Tensor
Cores with hardware intrinsic via a hierarchical mapping described
in Algorithm 3. It involves three levels of optimization, namely
thread-blocks, warps, and instruction-level. It employs six parameters
(Bm, Bn, Bk, Wm, Wn, Wk) and two sets of WMMA instruction for tensor
transformation. Additionally, the double buffering technique is em-
ployed during kernel execution. It is worth noting that the primary
difference between GTCO and [bai2021iccad] is that the former uti-
lizes more comprehensive optimization techniques that span across
all three levels of parallel programming models, while the latter only
uses thread-blocks-level optimization with shared memory on CUDA
cores. 62

xii

3.8 The fusion of softmax and matrix multiplication kernel computa-
tion with data movement across a complex memory hierarchy is
implemented with the double buffering technique to improve overall
execution efficiency. 63

3.9 Sugraph performance benchmark. The y-axis is the throughput-based
log 10 and then plus 1. 70

4.1 Hierarchical features of convolution with a full tensor program repre-
sentation. 79

4.2 The architecture of performance model includes two attention blocks
that extract coarse and fine-grained features of the tensor program,
as well as a lightweight MLP layer for directly predicting the score. 80

4.3 Transfer learning among different platforms with ATFormer. 81
4.4 Self-attention between statement vector features during the compila-

tion . 82
4.5 Feature vectors with tensorized instructions for a tensor operator

during the compilation. 85
4.6 Automatic compilation flow for the tensor program with a learned

performance model. Our framework take a tensor operator and
tensorized instruction as inputs and generate the best low-level im-
plementation on domain-specific accelerators. 88

4.7 The relationship between algorithm iterations and tensorized instruc-
tion iterations. 91

4.8 End-to-end performance comparison of cost models across DNNs
and normalized by the XGBoost. 97

5.1 Motivation of automatic pipelining. (a-3) explains the concepts of
pipelining, which is overlapping data loading with computation. (b)
gives a motivating example. With tiling only, the performance is
always sub-optimal. Pipelining unleashes intra-tile parallelism and
increases the performance under large tiling. 107

5.2 Concept of multi-stage pipelining. (a) two-stage pipelining (or called
double-buffering) is not enough to hide the data loading latency. (b)
Four-stage pipelining can hide the data loading latency and achieve
full utilization of the computing units. ALCOP supports multi-stage
pipelining. 108

xiii

5.3 Concept of multi-level pipelining and inner-pipeline fusion. (a) shows
the GPU memory hierarchy, with two levels of buffers: the shared
memory and the register file. (b) shows the execution timeline of
single-level (only shared memory) pipelining. 109

5.4 (a) improves over (b) by pipelining the inner loop: register load-
ing and computing. (b) improves over (c) via inner-pipeline fusion,
which treats the repeated inner loop as a holistic loop and pipeline it.
ALCOP supports multi-level pipelining with inner-pipeline fusion. 110

5.5 The overview of ALCOP. It has three important modules including
schedule transformation, program transformation and performance
auto-tuning. 111

5.6 The effectiveness study on the optimization order of inlining and
pipelining. In case 1, after inlining, S2_buf can no longer be pipelined
because it is no longer produced by an asynchronous memory copy.
In case 2, after pipelining, inlining can still be applied. 115

5.7 Workflow and example input and output of the pipelining program
transformation . 117

5.8 An example to illustrate how to transform an original Tensor-IR (left)
to its pipelined version (right). 118

5.9 A high-level view of the performance model. Compared to prior
work [lym2019delta], our model takes into account the constraints
and trade-offs among pipelining, tiling and spatial parallelism. . . . 121

5.10 Explanation of the pipeline latency model. A load can be overlapped
by computing in other threadblocks, or in other stages of the same
threadblock. 123

5.11 Single operator performance normalized to TVM on A100. 124
5.12 Single operator performance versus libraries. 127
5.13 Best-in-top-k performance of two analytical performance models. The

mark ’compile fail’ means the first 10 or 50 proposed schedules fail
to compile into executables. 128

5.14 Search efficiency of schedule tuning methods. 130

6.1 (a) Hardware-first exploration with two-loop search; (b) Mapping-first
exploration with one-loop search; (c) Instruction-aware exploration
with one-loop search. 133

xiv

6.2 The goal of BACO is to achieve both the productivity of a high-
level programming paradigm and the high-performance of manually
optimized design. 135

6.3 Overall design of BACO. The black arrows show the flow of extracting
layers with different importance scores from DNNs and generate
optimized hardware and software configurations. The red arrows
means the performance tuning updates the status of all components
in the framework. 136

6.4 The compilation flow with multi-level IR in BACO. 137
6.5 Tensor to hardware matching with computation abstraction. 139
6.6 Structured memory access patterns with memory abstraction. 140
6.7 The kernel implementation only less than 40 LoC in Python. 141
6.8 InstGem Dialect with hardware-specific instructions. 148
6.9 LLVM IR Extension with hardware-specific instructions. 149
6.10 End-to-end benchmark for Energy-delay product (EDP) of baseline

accelerators. 156
6.11 End-to-end search efficiency for Energy-delay product (EDP) of base-

line methods. 157
6.12 Gemmini RTL latency v.s. predicted latency. 161

xv

Acknowledgments

My dissertation owes its realization to the invaluable guidance of numerous indi-

viduals.

Foremost, I extend my deep appreciation to my supervisor, Prof. Yu Bei, whose

unwavering support for my Ph.D. study and associated research has been instrumen-

tal. I am sincerely grateful for his unwavering patience, motivational influence, and

profound expertise. Prof. Yu’s mentorship has been indispensable to the progression

of my research. His teachings have instilled in me the key principle of astutely

selecting research topics. He consistently encourages me to pose insightful inquiries,

diligently nurtures my research skills, and imparts upon me an unwavering commit-

ment to perfection. Such guidance has propelled me to refine my work and strive

for superior research quality.

During the initial year of my Ph.D. program, I developed a keen interest in

constructing deep learning compilers to enhance the execution speed of model

operations on NVIDIA GPUs. With my strong engineering background, I initially

believed that I possessed the capability to tackle the associated challenges. However,

I soon observed a recurring pattern: whenever I identified new optimization oppor-

tunities for widely used models and invested considerable time in crafting CUDA

code, TensorRT consistently incorporated corresponding enhancements in subse-

quent versions. This disheartening situation left me perplexed and disillusioned, as

I struggled to achieve state-of-the-art performance.

In response to my predicament, Prof. Yu promptly advised me against engaging

in a competitive pursuit with hardware vendors and discouraged me from under-

taking tasks within their domain. He emphasized that NVIDIA already boasts

dedicated teams exclusively focused on addressing such matters, making it ex-

xvi

ceedingly arduous for a Ph.D. candidate like myself to surpass their expertise and

attain superior performance. Instead, Prof. Yu urged me to broaden my research

scope within the compilation framework. He suggested exploring alternative av-

enues, such as integrating the open-source RISC-V instruction set with underlying

hardware accelerators, to unlock the potentials for compilation optimization.

Significantly, Prof. Yu imparted a crucial lesson to me regarding the essence of

impactful system research. He emphasized that the foundation of such research

lies in its alignment with real-world applications, and that its essence lies in gain-

ing profound insights into existing systems rather than merely constructing new

ones. This revelation prompted me to reconsider the intricate relationship between

engineering and research. Subsequently, I acquired the skill to strategically identify

appropriate and pragmatic entry points for my research endeavors, which greatly

facilitated the smooth progression of my subsequent investigations.

In addition to his guidance in research, Prof. Yu also provided invaluable advice

on maintaining personal competitiveness within the academic job market. Drawing

from his own experiences of navigating the highs and lows of various research

directions, he possesses a keen sense of urgency and consistently encourages me

to continually update my knowledge and understanding of past and future works.

This emphasis on self-improvement serves as a constant stimulus, ensuring that I

remain at the forefront of academic excellence.

Furthermore, I would like to underscore the significance of leading a well-

rounded life and attending to familial responsibilities, which I have come to rec-

ognize as being of utmost importance and considerably more demanding than

conducting research. Hence, I extend my heartfelt gratitude to my mothers and my

wife, who selflessly dedicate themselves to the care and well-being of my son and

our family. Their unwavering support enables me to fully immerse myself in the

xvii

demanding realm of research. I am also deeply grateful to my son, whose presence

has been a source of invaluable lessons in patience and resilience. His unwavering

encouragement motivates me to persist in the face of adversity and not falter in my

pursuit of knowledge.

Lastly, I express my profound gratitude to all my collaborators and sponsors

who have played a crucial role in the realization of my research endeavors. I extend

my heartfelt appreciation to Guyue Huang, Wenqian Zhao, Zixiao Wang, Mingjun

Li, Shuo Yin, Yuhao Ji, Wendong Xu, Xufeng Yao, Xinyun Zhang, and the CUHK

Graduate Division for their invaluable support and contributions. Their unwavering

support and assistance have been instrumental in the successful completion of my

research.

xviii

Chapter 1

Introduction

The optimization of high-performance tensor programs is of paramount importance

to ensure efficient runtime for specific applications. Nonetheless, achieving opti-

mal tensor programs for diverse applications across various hardware platforms

remains a formidable challenge. Presently, machine learning systems heavily rely

on vendor-provided libraries or employ various search policies to attain performant

tensor programs. However, both approaches have their limitations: the former ne-

cessitates substantial engineering efforts to develop platform-specific optimization

code, while the latter often falls short in identifying high-performance programs

due to constraints on search space and ineffective exploration strategies.

Simultaneously, the era of exponential transistor scaling, which has propelled the

speed-up of general-purpose processors for several decades, is nearing its conclusion.

As a result, there has been a notable surge in interest, both within academia and

industry, in domain-specific hardware acceleration. Such specialized accelerators

offer promising advantages in terms of performance and energy efficiency compared

to their general-purpose counterparts. However, the development of a dedicated

accelerator, along with its associated compilation stack, entails considerable en-

1

gineering efforts in terms of design and implementation. Furthermore, previous

endeavors to establish a comprehensive full-stack implementation are challenging

to repurpose when transitioning to a new hardware accelerator design. To address

these challenges, this dissertation proposes a novel approach that combines tensor

program generation and hardware acceleration with design automation. Crucially,

the compiler assumes a central role as a first-class citizen in our hardware and

software co-design framework.

Firstly, this dissertation explores the potential of the compiler by integrating

computation graphs and enabling automatic generation of tensor programs. By

leveraging this capability, we aim to streamline the process of program generation

and enhance the efficiency of tensor computations.

Secondly, this dissertation delves into the effective utilization of the compiler

to facilitate knowledge transfer across different hardware platforms through the

application of transfer learning techniques. This enables the seamless adaptation of

compiled programs to diverse hardware architectures, thereby optimizing perfor-

mance and efficiency.

Furthermore, this dissertation investigates the optimization potential of pipelin-

ing techniques that synchronize data movement and computation. Leveraging the

compiler’s automatic optimization capabilities, we aim to maximize the efficiency

of these operations.

Ultimately, by harmonizing the distinct characteristics of hardware and software

design spaces, this dissertation presents a unified compilation interface. This

interface facilitates collaborative optimization, enabling the end-to-end generation of

high-performance tensor programs and hardware specifications through a cohesive

and streamlined process.

2

1.1 Goal: Automatic Generation of Programs and Hard-

ware Acceleration

To achieve this objective, various design requirements are imposed on all compo-

nents of the complete compilation flow.

• Compiler Optimization: The programming interface must possess a sufficient

level of expressiveness to facilitate the development of versatile applications,

while ensuring that the compiler can handle diverse combinations of these

features with robustness. This is crucial because tensor programs inherently en-

capsulate the design requirements for hardware acceleration, and the compiler

plays a vital role in understanding the correspondence between the software

and hardware through the instruction set architecture. The implementation of

all optimizations relies on the compiler pass, which acts as a bridge between

the software and hardware components.

• Design Space: The design space should embody a modular and comprehen-

sive approach. By adopting a modular design, we can achieve independent

integration of software and hardware co-designed features into specialized

accelerators. This approach also enables us to explore various optimization

opportunities from different perspectives. Additionally, through a general

design, the resulting tensor program and domain-specific accelerators can

effectively cater to the target domain. Therefore, the design space should pos-

sess adequate generality to encompass a broad range of potential applications

and provide abundant optimization possibilities for software and hardware

co-design.

3

• Performance Auto-tuning: To effectively leverage the compiler’s awareness

of software and hardware co-optimization, it is crucial to develop an auto-

tuner that is both effective and efficient. This requires the auto-tuner to have

the capability to select the optimal performance from the tensor program

and hardware design spaces, thus minimizing the need for time-consuming

on-device measurements and hardware synthesis. The entire tuning process

should be automated, allowing for seamless integration of the auto-tuner into

the compilation stack.

• Unified Compilation Interface: By identifying the tensor program and hard-

ware features within the design space, it becomes possible to adopt a high-level

mainstream programming paradigm with moderate extensions as the unified

compilation interface. As a result, the optimization of hardware parameters

and algorithm-to-hardware mappings can be achieved in a unified manner.

This unified approach allows for the integration of domain-specific knowl-

edge related to hardware accelerators into the interface, enabling compilers to

effectively facilitate software and hardware co-design.

1.2 Main Contributions

The contributions of this dissertation can be summarized as follows:

• GTCO. Deep learning frameworks or compilers often optimize operators in com-

putation graphs using fixed templates, which can sometimes overlook potential

optimizations such as operator fusion. Therefore, it is crucial to automatically

implement and optimize new combinations of operators on specific hardware

accelerators. In this dissertation, we present GTCO, a tensor compilation system

designed to accelerate inference of transformer-based vision models on GPUs.

4

GTCO addresses operator fusion techniques in transformer-based models through

a novel dynamic programming algorithm and proposes a search policy with new

sketch generation rules for fused batch matrix multiplication and softmax op-

erators. Tensor programs are sampled from an effective search space, and a

hardware abstraction with hierarchical mapping from tensor computation to

domain-specific accelerators (Tensor Cores) is formally defined. Finally, our

framework can efficiently map and transform tensor expressions into CUDA

kernels with hardware intrinsics on GPUs. Experimental results demonstrate that

GTCO significantly improves end-to-end execution performance, achieving up to

1.73x relative improvement compared to the state-of-the-art deep learning library

TensorRT on NVIDIA GPUs with Tensor Cores.

• ATFormer. The efficiency of training and inference for increasingly large deep

neural networks heavily relies on the performance of tensor operators on specific

hardware accelerators. Therefore, it is crucial to have a performance tuning frame-

work with tensorized instruction compilation for automatic tensor generation

to achieve efficient deployment. However, these novel tensorized instructions,

along with emerging machine learning models, pose significant engineering chal-

lenges in compilation-based methods. They entail exploring a large design space

with limited measurement accuracy and poor transferability among specialized

instructions that have specific hardware constraints. This dissertation introduces

a novel performance model for automatic code optimization with tensorized

instructions. The performance model is centered around the assignment feature,

which not only clearly specifies the behavior of instructions with memory and

computation abstraction but also formally defines the matching problem from

the algorithm to tensorized instructions. Additionally, a simple yet efficient

design with attention-inspired modules is employed to accurately predict the

5

performance of optimized tensor programs by capturing global and long-range

dependencies within a complete scheduling space. In comparison to state-of-the-

art methods, our performance model can predict the optimal implementation of

code configurations with tensorized instructions, resulting in reduced inference

time and search time by up to 1.22x and 6.97x, respectively, on modern deep

neural network benchmarks. Furthermore, with pre-trained parameters, our

performance model can quickly adapt to different workloads and platforms using

tensorized instructions through transfer learning.

• ALCOP. Pipelining between data loading and computation is a crucial optimiza-

tion technique for tensor programs on GPUs. For the latest NVIDIA Ampere

GPUs, multi-stage pipelining across the multi-level buffer hierarchy is particularly

essential to minimize resource idleness and ensure efficient kernel performance.

Currently, people rely on expert-written libraries like cuBLAS to access pipelining

optimizations, rather than through tensor program transformations. However,

this approach lacks extensibility to new operators and compatibility with prior

tensor compiler optimizations. We introduce ALCOP, an automatic pipelining

framework based on the TVM infrastructure, which overcomes three critical

challenges in code generation for pipelining. These challenges include detecting

pipelining-applicable buffers, transforming programs for multi-level multi-stage

pipelining, and efficient schedule parameter search using static analysis. Experi-

mental results demonstrate that ALCOP can generate programs with an average

speedup of 1.23× (up to 1.73×) compared to vanilla TVM. Moreover, in end-to-

end models, ALCOP outperforms TVM by up to 1.18× and XLA by up to 1.64×.

Additionally, our performance model significantly enhances the efficiency of the

schedule tuning process, finding schedules with 99% of the performance achieved

by exhaustive search while requiring 40× fewer trials.

6

• BACO. Domain-specific hardware accelerators hold great promise for achiev-

ing significant enhancements in both speed and energy efficiency compared to

general-purpose processors. Nevertheless, the design and development process of

these accelerators often demands a substantial amount of manual effort, particu-

larly in the realms of hardware design and the development of high-performance

tensor programs. Extensive research has been dedicated to optimizing these

aspects individually, which has resulted in a proliferation of possibilities, posing

considerable challenges. To tackle this challenge, we propose BACO, an end-

to-end one-loop search framework. The aim of BACO is to provide a unified

compilation interface that facilitates the co-exploration of hardware and software.

The key element of BACO is its multi-level abstraction, which not only precisely

defines the behavior of custom hardware instructions and configuration state,

but also enables fine-grained optimization of computation and data movement

through the concept of a block. Building upon this abstraction, we develop

a programming language and compiler that incorporates differentiable perfor-

mance models to automatically explore various high-performance design points.

Additionally, BACO employs an efficient strategy for estimating importance,

allowing for simultaneous optimization of multiple layers to enhance end-to-end

performance. This approach facilitates rapid co-exploration while reducing devel-

opment efforts. Experimental results demonstrate that BACO surpasses existing

state-of-the-art search solutions and manually tuned versions by a substantial

margin.

7

1.3 Produced Publications

The research work presented in this dissertation has resulted in several direct and

indirect publications, which are listed below:

• Yang Bai, Xufeng Yao, Qi Sun, Bei Yu, “AutoGTCO: Graph and Tensor Co-

Optimize for Image Recognition with Transformers on GPU”, IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), Nov. 1–4,

2021.

• Yang Bai, Xufeng Yao, Qi Sun, Wenqian Zhao, Shixin Chen, Zixiao Wang,

Bei Yu, “GTCO: Graph and Tensor Co-Design for Transformer-based Image

Recognition on Tensor Cores”, IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), vol. 43, no. 02, pp. 586–599, 2023.

• Yang Bai, Wenqian Zhao, Shuo Yin, Zixiao Wang, Bei Yu, “ATFormer: A

Learned Performance Model with Transfer Learning Across Devices for Deep

Learning Tensor Programs”, Empirical Methods in Natural Language Process-

ing (EMNLP-main Long Paper), Singapore, Dec. 06–10, 2023.

• Yang Bai, Wenqian Zhao, Shuo Yin, Zixiao Wang, Bei Yu, “A Learned Perfor-

mance Model with Transfer Learning Across GPUs on Tensorized Instruction”,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), under review

• Yang Bai, Mingjun Li, Yuhao Ji, Bei Yu, “BACO: Co-exploration of Hard-

ware Acceleration and Tensor Program with Unified Compilation Interface”,

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS 2025, Summer), under review

8

• Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu, Yufei Ding, Yuan Xie,

“ALCOP: Automatic Load-Compute Pipelining in Deep Learning Compiler for

AI-GPUs”, Conference on Machine Learning and Systems (MLSys), Jun. 04–08,

2023.

• Wenqian Zhao, Yang Bai, Qi Sun, Wenbo Li, Haisheng Zheng, Nianjuan Jiang,

Jiangbo Lu, Bei Yu, Martin D.F. Wong, “A High-Performance Accelerator

for Super-Resolution Processing on Embedded GPU”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 42,

no. 10, pp. 3210–3223, 2023.

• Xufeng Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen,

Ruiyu Li, Bei Yu, “PCL: Proxy-based Contrastive Learning for Domain General-

ization”, IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), New Orleans, Jun. 19–24, 2022.

• Wenqian Zhao, Xufeng Yao, Shuo Yin, Yang Bai, Ziyang Yu, Yuzhe Ma, Bei

Yu, Martin D.F. Wong, “AdaOPC 2.0: Enhanced Adaptive Mask Optimization

Framework for Via Layers”, accepted by IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD).

• Zixiao Wang, Yunheng Shen, Xufeng Yao, Wenqian Zhao, Yang Bai, Farzan

Farnia, Bei Yu, “ChatPattern: Layout Pattern Customization via Natural Lan-

guage”, ACM/IEEE Design Automation Conference (DAC), San Francisco,

Jun. 23–27, 2024.

• Shixin Chen, Su Zheng, Chen Bai, Wenqian Zhao, Shuo Yin, Yang Bai, Bei Yu,

“SoC-Tuner: An Importance-guided Exploration Framework for DNN-targeting

9

SoC Design”, IEEE/ACM Asian and South Pacific Design Automation Confer-

ence (ASPDAC), South Korea, Jan. 22–25, 2024.

• Weizheng Lu, Yaobo Jia, Feng Zhang, Yang Bai, Yueguo Chen, Bei Yu, Xi-

aoyong Du, “GADUS: GPU-based Automatically Dynamic Unrolling Neural

Differential Equation Solver”, Transactions on Parallel and Distributed Systems

(TPDS), under review

• Zixiao Wang, Yunheng Shen, Wenqian Zhao, Yang Bai, Guojin Chen, Farzan

Farnia, Bei Yu, “DiffPattern: Layout Pattern Generation via Discrete Diffusion”,

ACM/IEEE Design Automation Conference (DAC), San Francisco, Jul. 09–13,

2023.

• Yuxuan Zhao, Qi Sun, Zhuolun He, Yang Bai, Bei Yu, “AutoGraph: Opti-

mizing DNN Computation Graph for Parallel GPU Kernel Execution”, AAAI

Conference on Artificial Intelligence (AAAI), Feb. 7–14, 2023.

• Qi Sun, Xinyun Zhang, Hao Geng, Yuxuan Zhao, Yang Bai, Haisheng Zheng,

Bei Yu, “GTuner: Tuning DNN Computations on GPU via Graph Attention

Network”, ACM/IEEE Design Automation Conference (DAC), San Francisco,

Jul. 10–14, 2022.

• Wenqian Zhao, Qi Sun, Yang Bai, Haisheng Zheng, Wenbo Li, Bei Yu, Martin

D.F. Wong, “A High-Performance Accelerator for Super-Resolution Processing

on Embedded GPU”, IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), Nov. 1–4, 2021.

• Qi Sun, Chen Bai, Tinghuan Chen, Hao Geng, Xinyun Zhang, Yang Bai, Bei Yu,

“Fast and Efficient DNN Deployment via Deep Gaussian Transfer Learning”,

IEEE International Conference on Computer Vision (ICCV), Oct. 11–17, 2021.

10

1.4 Dissertation Outline

This dissertation endeavors to tackle the automation of tensor program generation

and domain-specific accelerator design from a compiler-centric standpoint. The

focal challenges encompass various layers of the system, encompassing software,

programming interface, and hardware.

Chapter 2 of this dissertation presents an extensive and meticulous exposition

of the background pertaining to several pivotal subjects. These encompass the

transformer model architecture, the architecture of GPU memory and computation,

the programming model, the machine learning compiler, the domain-specific lan-

guage, and the spatial accelerator. Each of these topics is exhaustively examined,

providing a robust groundwork for the subsequent chapters and the overall research

expounded in this dissertation.

Chapter 3 of this dissertation presents a comprehensive and detailed introduction

to a dynamic programming algorithm that focuses on exploring operator fusion

patterns in transformer-based models. This algorithm facilitates the efficient explo-

ration of various fusion possibilities, thereby enhancing the overall performance of

these models. Additionally, a search policy is proposed, incorporating novel sketch

generation rules and a unique hardware abstraction with register-level optimization.

These advancements enable a more flexible mapping for tensor computation, re-

sulting in improved performance. The optimization of fused matrix multiplication

and software operators is achieved through the utilization of tensorized instructions

on GPUs, further enhancing system efficiency. Lastly, a regression-based learned

performance model is employed to fine-tune the performance of each kernel. This

approach facilitates the optimization of individual kernel performance, ultimately

leading to improved overall system performance.

11

Chapter 4 of this dissertation introduces a pioneering performance model specif-

ically designed for the automatic optimization of tensor programs employing both

general and tensorized instructions. We propose a collection of innovative assign-

ment features that encode the tensor program with computation and memory

abstraction, enabling the representation of intrinsic hardware accelerator charac-

teristics. This approach facilitates systematic exploration of the scheduling space

and efficient matching, resulting in improved performance for a wide range of

tensor operators. In our experiments, the learned performance model demonstrates

substantial speedup in model deployment on GPU Tensor Cores. Through transfer

learning, the performance model achieves faster converged latency and exhibits

superior transferability across various hardware platforms, surpassing previous

state-of-the-art benchmarks.

Chapter 5 of this dissertation addresses the crucial need for automatic pipelining

optimization in the context of deep learning compilers. Given the substantial tiling

size required to mitigate bandwidth constraints, inter-tiling parallelism alone is

insufficient for achieving optimal utilization. Consequently, intra-tiling pipelining

emerges as a vital requirement. In response, we propose the first compiler solu-

tion that supports multi-stage, multi-level pipelining. By introducing automatic

pipelining, our compiler is capable of generating GPU programs that exhibit an

average speedup of 1.23× compared to vanilla TVM, with a maximum speedup of

1.73×. Furthermore, we develop an analytical performance model that significantly

enhances the search efficiency of the schedule tuning process.

Chapter 6 of this dissertation introduces the BACO framework, which offers a

comprehensive solution for the co-exploration of hardware and software using the

one-loop search approach. To facilitate the co-exploration process, the framework is

equipped with a programming language and compiler. The fundamental principle

12

of BACO lies in its utilization of a unified interface that treats blocks as first-class

citizens. This approach provides a straightforward yet highly effective granularity

for co-exploration. A noteworthy aspect of BACO is its internalization of a substan-

tial portion of the hardware-specific code generation logic and optimization policy

within the compilation flow. This design choice significantly reduces the complexity

exposed to users. The primary contributions can be summarized as follows:

• Productivity: BACO offers a Python-based DSL and compiler, enabling flexible

descriptions of desired target programs. The design principle revolves around

the concept of blocks, which represent statically shaped multi-dimensional sub-

arrays. At the block level, the DSL controls tensor splitting and accumulation.

Within each block, the compiler takes care of complex memory management,

accelerator-specific instructions, and configuration states. As a result, the

development and co-exploration process is made more streamlined, as users

are shielded from the tedious aspects of these tasks.

• Automation: BACO incorporates differentiable analytical performance models

that assess the number of arithmetic operations and memory accesses to

different buffers during program transformations. This feature allows for the

inference of minimal hardware requirements and the automatic updating of

parameters in an end-to-end manner. Consequently, it facilitates hardware and

software co-exploration within a unified space. Additionally, BACO employs

an importance estimation strategy based on gradient descent to automatically

prioritize layers that have a significant impact on overall performance.

• Performance: To the best of our knowledge, BACO is the first work to in-

troduce a unified compilation interface with programming language and

compiler support for hardware and software co-exploration. We conducted

13

evaluations of BACO using comprehensive benchmarks with open-source

DNN accelerators. The experimental results demonstrate significant per-

formance improvements. BACO achieves a 3.54× reduction in energy-delay

product (EDP) compared to manually-tuned libraries, and a 1.32× reduction

in EDP compared to the state-of-the-art one-loop search approach.

14

Chapter 2

Background and Related Work

2.1 Transformer-based Model Architecture

The transformer model, originally developed for a new attention-based building

block for machine translation. Transformers are built on a long sequence within

natural language processing and the key element in transformer architecture is the

attention mechanism, which is composed of neural network layers that aggregate

information from the entire input sequence and make the model learn to focus

on particular parts of a sequence. An important advantage of the attention-based

models is their global computations and large-scale memory scheduling, which

leads them more eligible than RNNs on long sequences though this would lead to

heavy computation and communication workloads during inference. Transformer

models make two main contributions. First, it popularizes attention mechanisms to

a particular module named multi-head attention (MHA) [ATTN-CVPR2021-SETR].

Second, it does not rely on recurrent or convolutional algorithms. Besides, an

important characteristic is that the transformer model contains many similar sub-

graph structures which can be executed in parallel with the same configuration.

15

MatMul

SoftMax

Scale

MatMul

Query ValueKey

Scaled Dot-Product Attention Multi-Head Attention

Linear

Concat

Query Key Value

Scaled Dot-Product Attention

Linear Linear Linear

Figure 2.1: Scaled Dot-Product and Multi-Head Attention (MHA).

Besides, transformer models contain many similar subgraph structures which can

be executed in parallel with the same configuration.

Encoder. The encoder module is composed of a stack of attention-based layers with

identical structures. There are two sub-layers in each layer. The first sub-layer is a

multi-head attention mechanism, and the second sub-layer is a simple, position-wise

fully dense layer. A residual connection layer is used between each of the two

sub-layer with a layer normalization. In other words, the output of each sub-layer is

the sum of the input and the attention of input under the layer normalization. And

the output of dimension is defined as dmodel.

Decoder. The structure of the decoder is akin to the encoder. In addition to the

two sub-layers mentioned in the encoder module, a third sub-layer is inserted into

the decoder module. The function of it is to perform multi-head attention over the

output of the encoder part. The function of the third sub-layer is to perform multi-

head attention over the output of the encoder part. Besides, some modifications

about masking mechanisms in the self-attention sub-layer are to prevent positions

from attending to subsequent positions.

16

Multi-Head Attention. Multi-head Attention generalizes attention mechanisms and

employs h attention heads parallelly to get different learned projections of a given

sequence. Each attention head is an instance of scaled dot-product attention, and

takes queries (q), keys (k), values (v) as its input. The function of attention is to

find values corresponding to the keys closest to the input queries. The functions

of heads are also augmented with linear layers that project their inputs into a

lower-dimensional space. The three inputs are first multiplied by weight tensors

wq, wk, wv, respectively, as a learned input projection. The query and key tensors

are subsequently multiplied together and scaled, followed by applying the softmax

operation to weight and select the most relevant results. This is then multiplied

with vv to produce the per-head output. The outputs of all the heads are finally

concatenated and linearly projected back to the input dimensional size, as depicted

in Figure 2.1.

MHA(x) =
H

∑
i=1

Atti(x), xmha = LN
(
x + MHA(x)

)
,

where Att is a dot product attention head, LN is layer normalization, and x is the

input vector. The output of the MHA layer is then entered into the FFN layer, which

consists of N filters:

FFN(x) =
(N

∑
i=1
W (2)

:,i σ(W (1)
i,: x + b(1)

i)
)
+ b(2),

xout = LN
(
xmha + FFN(xmha)

)
,

where W (1),W (2), b(1) and b(2) are the FFN parameters, and σ is the activation

function, typically GELU [hendrycks2016gaussian].

17

L1 Data Cache / Shared Memory (96KB)

CUDA
Core

Tensor
Core

Fetch
Decoder

CUDA
Core

Tensor
Core

Fetch
Decoder

CUDA
Core

Tensor
Core

Fetch
Decoder

CUDA
Core

Tensor
Core

Fetch
Decoder

Memory
HOST

616 GB/S

DEVICE

L2 Cache (5632KB)

68 SMs

Streaming Multiprocessor (SM)

Figure 2.2: Hardware details of the streaming multiprocessor (SM) and the memory hierarchy of
NVIDIA RTX 2080 Ti GPU.

2.2 GPU Architecture and Programming Model

Hardware Details of 2080Ti GPU. Compute Unified Device Architecture (CUDA)

is a high-performance programming language developed by NVIDIA to expose

software programmers to concepts such as computation parallelism and memory

hierarchy. However, effectively leveraging the memory and computation units of

GPUs to accelerate the execution time of deep neural networks (DNNs) requires

significant engineering efforts. As depicted in Figure 2.2, the GPU device has

many programmable units at different levels. For our experiments, we utilize the

NVIDIA RTX 2080Ti GPU, which follows the Turing microarchitecture and has 68

parallel streaming multiprocessors (SMs) within the processing elements. Each SM

has its local shared memory that can be accessed by threads within the same SM.

An SM is further divided into four processing blocks, with each block possessing

a 64 KB register file, and every four blocks sharing a combined 96 KB L1 data

18

cache/shared memory. Thread blocks are scheduled on each processing block,

and each thread block contains a group of threads that can execute the same code

on different data using the single instruction multiple threads (SIMT) technique.

Compute Unified Device Architecture (CUDA) is a parallel computing platform

and programming model for GPUs, which exposes high-performance computing

programmers to the concepts of the memory hierarchy and threads hierarchy. Under

the hood, accelerating deep learning models on complex memory hierarchy needs

to make good use of memory units and computation units. As shown in Figure 2.2,

there are many programmable units at different levels of GPU devices. RTX 2080

Ti GPU follows the Turing micro-architecture and contains 68 parallel streaming

multiprocessors (SMs). Each SM has its local shared memory, which can be accessed

by threads in the same SM. An SM is partitioned into four processing blocks. Each

processing block possesses a 64 KB register file, and the four processing blocks

share a combined 96 KB L1 data cache/shared memory. Some thread blocks are

scheduled on each processing block. And each thread block contains a group of

threads that can execute the same code on different data, following the single

instruction multiple thread (SIMT) mechanism. Typically, prior to launching the

computation kernel, data is first copied from the host memory to the device memory.

On-chip memory, which is close to the computing elements, has a faster access

speed than off-chip memory, which is slower and further away from the computing

elements. Each type of memory has its own unique access patterns. Registers and

local memory are private to the threads within a block and are located on-chip with

low latency. Shared memory is composed of a set of full-sized banks, and multiple

threads accessing the same bank simultaneously may lead to conflicts and increased

latency.

19

Input

Conv [a]

Matmul [e]

Computation
Graph

High-level
structure

Low-level
detail

Best
Candidate

Conv [c]

Conv [b]
Conv [b]

D
L

fr
am

ew
or

k
fr

on
te

nd
s

AT
Fo

rm
er

Output

Cost Model

Offline
DataSet

Search Space

Auto-Tuning

Full Tensor ProgramsHardware

C
od

e
ge

nr
at

io
n

ba
ck

en
ds

Search
Algorithm

Online
DataSet

Figure 2.3: The overview of a search-based framework with computation graph, cost model, search
space and tuning algorithm during the compilation.

2.3 Machine Learning Compilation

Recently, the development of compiler-based optimization frameworks, such as

Halide [Lerning-TOG2019-Adams], TVM [TVM-OSDI2018-Chen], XLA [50530],

and TACO [kjolstad2017tensor], has progressed rapidly. These optimization schemes

typically consist of two parts: DL framework frontends and code generation back-

ends, as illustrated in Figure 2.3. The frontend converts an input model into a high-

level graph-based intermediate representation (IR) and applies target-independent

optimizations, such as operator fusion and data layout transformation. In the

backend, target-dependent optimization passes, along with hardware features, fur-

ther optimize the final performance. TVM [Chen-TVM-OSDI] is a state-of-the-art

search-based tensor compiler that is widely used in academia and industry. Its

20

auto-tuning aims to achieve performance comparable to hand-tailored libraries

and has achieved promising results. TVM has two versions of auto-tuning: Au-

toTVM [OptTensor-NIPS2018-Chen] and Ansor [Ansor-OSDI2020-Zheng]. While

AutoTVM is a semi-automated framework that requires pre-defined manual tem-

plates, Ansor is more advanced and fully automated. However, both frameworks

need to collect data on-the-fly during the search, resulting in an extremely long

compilation time. This dissertation focuses exclusively on the application of deep

learning compilers. Specifically, we take Ansor [Compiler-OSDI2020-Ansor] as

an example, a widely used deep learning compiler for generating tensor pro-

grams across various hardware platforms. The compiler leverages a hierarchical

search space to optimize and separate the high-level generation structures from

the low-level sampling details. This approach enables Ansor to automatically con-

struct the search space for each operator or subgraph, eliminating the need for

experienced engineers to manually develop computing templates, which can be a

time-consuming and engineering-heavy process. Subsequently, Ansor incorporates

an automatic performance tuner that utilizes a comprehensive search space to obtain

complete tensor programs, which are then fine-tuned with a regression-based model

[ENL-KDD2016-XGBoost].

2.4 Performance Model

Tree-based Performance Model. Decision trees are commonly utilized in classifica-

tion and regression problems. To enhance their performance, an ensemble learning

approach is typically employed to reduce variance. XGBoost [XGBoost-Chen-KDD]

and LightGBM are powerful feature models in sequence modeling tasks. To achieve

accurate prediction, a number of works including [OptTensor-NIPS2018-Chen,

21

Ansor-OSDI2020-Zheng, ahnchameleon, Gaussian-ICCV2021-Sun, Opevo-XIAO-AAAI,

AutoGTCO-ICCAD2021-Bai2021] use XGBoost as the cost model during the search.

AutoTVM uses the statistical model and extracts domain-specific features from a

provided low-level abstract syntax tree (AST). These features, which include loop

structure information and generic annotations, are explored during optimization.

Additionally, TreeGRU [tai2015improved] recursively encodes a low-level AST into

an embedding vector, which is mapped to a final predicted score within a fully-

connected layer to enhance performance. The Halide [Lerning-TOG2019-Adams]

builds regression models with hardware-specific features for auto-scheduling. Tab-

Net [Tabnet-AAAI2020-Arik] uses sequential attention to select the most salient

features to reason at each decision via a deep tabular architecture. Decision trees

are frequently used in classification and regression problems. To enhance their

performance, an ensemble learning approach is typically employed to reduce vari-

ance. XGBoost [XGBoost-Chen-KDD] and LightGBM are powerful feature models

in sequence modeling tasks. To achieve accurate prediction, a number of works,

including [OptTensor-NIPS2018-Chen, Ansor-OSDI2020-Zheng, ahnchameleon,

Opevo-XIAO-AAAI, AutoGTCO-ICCAD2021-Bai2021, bai2023gtco, huang2023alcop,

zhao2023high], use XGBoost as the performance model during the tuning. Au-

toTVM extracts domain-specific features from a provided low-level abstract syntax

tree (AST). During optimization, these features, which include loop structure infor-

mation and generic annotations, are explored. Moreover, TreeGRU [tai2015improved]

recursively encodes a low-level AST into an embedding vector, which is mapped to a

final predicted score within a fully-connected layer to enhance performance. Halide

[Lerning-TOG2019-Adams] builds regression models with hardware-specific fea-

tures for auto-scheduling. TabNet [Tabnet-AAAI2020-Arik] uses sequential atten-

tion to select the most salient features to reason at each decision via a deep tabular

22

architecture.

DNN-based Performance Model. In contrast, some recent approaches aim to reduce

the impact of search algorithms on final performance by utilizing more robust and

powerful cost models. [Learned-MLsys2020-kaufman] and [sun2022gtuner] em-

ploy graph neural networks to predict the latency of DNNs on TPUs. [Value-mlsys2021-Steiner]

formulates the tuning process as a deterministic Markov Decision Process [MDP-ICCV-2015]

and solves it by learning an approximation of the value function. Tiramisu [Tiramisu-CGO2019-Baghdadi]

manually extracts 2534 features from the structure of AST, and forwards the AST

as a computation stream to propagate features during the training. These mod-

els are trained effectively on a dataset with only a few thousand schedules using

the hardware-dependent features crafted by heavy feature engineering techniques.

However, complex feature engineering can become problematic in such cases. As

hardware-specific features are difficult to transfer to a new platform, a learned

performance model trained on one hardware platform typically performs poorly on

another. This leads to an issue we call cross-hardware unavailability. Additionally,

this approach cannot keep pace with the rapid development of new hardware,

which further exacerbates the problem.

2.5 Multi-level Pipelining Optimization

Pipelining. Pipelining, as a GPU kernel optimization, is frequently used in GPU

libraries like CUTLASS [cutlass]. CUTLASS implements pipelining in matrix multi-

plication and convolution kernels. However, being a template-based kernel library,

CUTLASS is unable to provide automatic pipelining for any tensor programs; this

is only possible with our compiler-based solution.

The term pipelining in distributed deep learning training [huang2019gpipe,

23

narayanan2019pipedream, barham2022pathways, zheng2022alpa] refers to operator-

wise parallelism. Pipelining is also a hardware design technique widely used in ac-

celerator designs [liu2016cambricon, jouppi2017datacenter, sohrabizadeh2020end,

liao2021ascend], or hardware generation languages [wei2017automated, lai2019heterocl,

wang2021autosa, parashar2019timeloop]. Software-pipelining has been studied to

exploit instruction-level parallelism [ning1993novel, govindarajan1996framework]

and multithread parallelism [wei2012software]. Compared to all these pipelin-

ing scenarios, ALCOP’s task is more challenging because it must support multi-

level pipelining and must automatically split code into a load- or compute-blocks

using IR analysis, whereas, in other settings, the pipeline stages are straightfor-

ward. There is a rich amount of work on analytical performance models for

GPUs [hong2009analytical, volkov2016understanding, wang2020mdm, huang2014gpumech,

zhang2011quantitative, baghsorkhi2010adaptive, lym2019delta]. The most rele-

vant is DELTA [lym2019delta], which builds a model to predict the latency of

Conv2D kernels on GPUs. However, ALCOP is the first to model how pipelining

stage numbers affect performance and trade-offs between pipelining and tiling.

Recently, static analysis has arisen to supplement the standard ML-based schedule

tuning, whose cost model lacks hardware knowledge. Tuna [wang2021tuna] builds

a performance model for CPU and GPU to replace the ML-based schedule tuning in

AutoTVM [chen2018learning]. We show that a combination of an analytical model

and machine learning can achieve greater search efficiency than the Tuna technique.

2.6 Domain-Specific Accelerator

Gemmini Accelerator Generator. Gemmini is an open-source, full-stack gener-

ator for deep learning models, spanning across different hardware architectures,

24

Transposer

Sy
st

ol
ic

 A
rr

ay

ReLU Accumulator
SRAMScaling

DMA Engine
Dependency Mgmt

Local TLB

…

Scratchpad
Bank 0
Bank 1

Bank K

Controller

Gemmini Accelerator

Core

ROCC CMD

ROCC PTW L1+D

Rocket Host CPU

L2

DRAM

Figure 2.4: Gemmini hardware architectural template.

programming stacks, and system integration incorporating customized RISC-V

instructions. A typical DNN hardware accelerator has a few key components, as

described in Figure 2.4.

• Off-chip DRAM used for holding the weights and activation results of the

entire DNN models, which needs to be large enough to hold all of the model

weights and activation results.

• Smaller on-chip memory, referred to here as the scratchpad memory, which

needs to be large enough to hold a subset of the weights and inputs in order

to feed the processing elements (PEs).

• An array of PEs, each of which has the capacity to perform matrix multipli-

cation and accumulation operations, and which often contains one or more

small local memories called register files (RFs) that can store data with lower

per-access energy than scratchpad memory.

• An internal network-on-chip (NoC) that can transfer data between all of the PEs.

The Gemmini systolic array-based accelerators was selected as a test platform

25

because of its open-source nature. Gemmini was developed by the UC Berkeley and

is part of the Chipyard ecosystem. It works in a tighly-coupled manner with a RISC-

V CPU, using Rocket Chip Coprocessor (RoCC) interface to control the accelerator

with help from custom RISC-V instructions. The Gemmini project has two different

host CPU configurations. One is a low-power in-order Rocket core and the other

is a high-performance out-of-order BOOM core. We first generate a fairly typical

DNN accelerator, which is illustrated in Figure 2.4, using the Gemmini accelerator-

generator. The accelerators performs general matrix multiplication using a fixed-size

systolic array, which can implement the weight-stationary or the output-stationary

dataflow. When performing convolutions, the dimensions of the output-channels

and input-channels are spatially unrolled. The 8-bit integer weights and inputs are

stored in a 256 KB local scratchpad memory, and the 32-bit partial sums are stored

in a dual-ported 64 KB accumulator SRAM which performs matrix additions. When

DNN layers are too large to fit into the local scratchpad, the fall back onto an external

L2 cache and DRAM which are shared with CPUs and other accelerators on the

system-on-chip (SoC). Gemmini also provides an easy-to-use programming interface

so that end users can quickly program the applications for the generated accelerators.

Notably, different developers would prefer different software design environments

based on the targets or research interests. For instance, model designers would prefer

that the hardware programming environment be hidden by model development

frameworks like TensorFlow or PyTorch so that the do not need to worry about

low-level development details, as in the case of VTA and DNNWeaver. At the same

time, framework developers and system programmers may want to interact with

the hardware at a low level, in either C or C++ with assembly code, to accurately

control hardware states and squeeze every bit of efficiency out, as in the case of

MAGNet and Maeri. Unlike other DNN generators that tend to focus on one of these

26

requirements, Gemmini provides a multi-level programming interface to satisfy

users with different requirements. With the assistance of Gemmini, researchers have

the capability to generate a wide range of accelerators, ranging from low-power edge

devices to high-performance cloud platforms, incorporating customized RISC-V

instructions. equipped with Rocket Chip Coprocessor (RoCC) interface to control the

accelerator via custom RISC-V instructions. The Gemmini project has two different

host CPU configurations. One is a low-power in-order Rocket core and the other is

a high-performance out-of-order BOOM core. For a systolic array-based domain

specific accelerator, we focus on the low-level instructions because these instructions

can model the fine-grained control over the optimization schedules provided by

the programmer. The Gemmini systolic array-based accelerators was selected as a

test platform because of its open-source nature. Gemmini was developed by the

UC Berkeley and is part of the Chipyard ecosystem. It works in a tighly-coupled

manner with a RISC-V CPU, using Rocket Chip Coprocessor (RoCC) interface to

control the accelerator with help from custom RISC-V instructions. The Gemmini

project has two different host CPU configurations. One is a low-power in-order

Rocket core and the other is a high-performance out-of-order BOOM core.

Architecture Template. Figure 2.4 presents an overview of the architecture template

employed by Gemmini. The primary computation units are spatial processing

elements (PEs), responsible for executing dot product operations. The spatial array

retrieves data from a locally managed scratchpad, composed of banked SRAMs. The

results of the computations are then written to a local accumulator register file, which

possesses a higher bitwidth compared to the input data. Regarding other commonly-

used kernels in DNNs, such as maxpooling or non-linear activations, they can be

seamlessly incorporated with a RISC-V based host CPU for programming purposes.

In the Gemmini architecture, the spatial array adopts a two-level hierarchical design,

27

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

… … …

…

…

…

A

B

C

Systolic Array

PE PE PE

PE PE PE

PE PE PE

… … …

…

…

…

Tile
Weight

+

Acc

+

>>

PE

Weight
Preload

Partial
Sum

Input
Activation

Weight

Input
Activation

Partial Sum

Forward
Input

Partial Sum
(to next PE)

Accumulator
Preload

WS

OS

Figure 2.5: Micro-architecture of Gemmini’s two-level spatial array and dataflow.

which offers a versatile template suitable for diverse micro-architectures. The spatial

array consists of “Tilings” which are interconnected through a set of explicit pipeline

register files. Each individual Tiling can be further divided into an array of PEs. PEs

within the same Tiling are connected combinationaly without the use of pipeline

register files. Each PE performs a single multiplication and accumulation (MAC)

operation per cycle, utilizing weight-stationary and output-stationary dataflows in

Figure 2.5.

Programming Model. Gemmini not only encompasses its own hardware stack but

also incorporates a sophisticated hand-tuned library for software performance. This

library supports a multi-level software flow to accommodate various programming

scenarios. At the high-level, a customized version of ONNX-runtime has been

developed. It empowers users to input an ONNX model file and generate executable

binaries. It strives to map as many kernels as possible onto the Gemmini-generated

hardware accelerator using dynamic dispatch. In cases where no accelerators are

available, the execution kernel falls back to the host CPU. On the other hand, Gem-

mini provides a C/C++ library of kernels, including general matrix multiplication

28

and convolution layer. These kernels employ loop tiling with heuristics to maxi-

mize buffer usage. The Gemmini hardware generators can also be programmed

through C/C++ APIs, with tuned implementations for common DNN kernels. The

performance of each implementation is dependent on specialized memories, such

as the sizes of the scratchpad and register files. When the Gemmini accelerator

is generated, the programming stack can produce an accompanying header file

that contains various parameters, including the dimensions of the spatial array,

dataflows and computation units. The programming stack utilizes pre-defined

templates with different tiling sizes to maximize the amount of data moved into

the scratchpad per iteration, based on the input dimensions and hardware param-

eters of the accelerator instantiation during the runtime. Gemmini also enables

researchers to integrate different types of RISC-V CPUs with Gemmini-generated

accelerators in the Chipyard toolchain, including out-of-order BOOM or in-order

Rocket CPUs. These generated accelerators and multiple host CPUs can serve as

crucial components of a System-on-Chip (SoC), enabling the parallel execution of

multiple computation-intensive workloads.

Hardware Accelerator ISA. For the low-level programmable paradigm, the Gem-

mini ISA has two versions: complex and primitive instructions. For the primitive

instructions, Gemmini has mvin, preload, compute, mvout. These primitive

instructions are used to operate on DIM × DIM submatrices. We can use these in-

structions to explicitly manage scratchpad memories. In the mid-level programming

paradigm, Gemmini has some interfaces to integrate these functions into loops for

the computation. As for the complex instructions, Gemmini hardcodes these loops

with loop_matmul and loop_conv. In this paradigm, the scratchpad memory is

not explicitly managed by programmers. In the above complex instructions, all of

the hyper-parameters are fixed.(maybe we can use some dynamic scheduling on it.

29

Conversion Pass
D

ia
le

ct
R

eg
io

n

Interface Attribute

Type

Operation

Trait
Bl

oc
k

Interface Attribute

Type

Operation

Trait

Tr
an

sf
or

m
at

io
n

Pa
ss

D
ia

le
ct

Interface Attribute

Type

Operation

Trait

Bl
oc

k

Interface Attribute

Type

Operation

Trait

Figure 2.6: Key concepts related to MLIR compilation framework.

2.7 MLIR Compilation Infrastructure

MLIR [lattner2021mlir] is a collection of modular and reusable software components

that enable the progressive lowering of high-level operations to efficiently target

hardware in a common way. For the implementation of BACO, we use the open-

source MLIR infrastructure. MLIR is motivated by the observation that early

lowering to a low-level intermediate representation (IR) in a conventional compiler

loses much of the high-level semantics and structure of an workload, because it

cannot be described in the low-level IR. To enable the compiler to reason about high-

level semantics and achieve better compilation results, it is desirable to represent the

application by a hierarchy of representations, gradually lowering them to a low-level

IR. To facilitate the implementation of such representations at various levels of

abstraction and avoid the repeated implementation of infrastructure components,

the MLIR framework aims to provide a reusable infrastructure for the compiler

researchers.

The basic organizational unit for IRs are the Dialects, which can define

a set of “Operations” and “Types”. While the MLIR framework also uses the

30

static single assignment (SSA) form, its representations are more flexible than

the traditional control flow graph (CFG) representations in LLVM IR. Unlike the

previous CFG structures, MLIR allows for loop-nesting inside the IR information.

Each “Operations” does not only produce typed values with SSA, but can also have

multiple “Blocks”. Additionally, "Attributes" can be attached to “Operations” to

represent additional compilation information. In general, a typical compilation flow

utilizes multiple Dialects, and mixtures of them to represent the workload at

different abstraction levels. As the flow progresses, and moves to low-level Dialect,

lowering is used to translate between different Dialects. MLIR provides a number

of generic transformations in compilation, such as constant folding, through the use

of “Traits” and “Interfaces” that can be attached to "Operations". These are provided

in addition to other common infrastructure, such as pass managers. Next, we will

highlight some important concepts for the key terms related to MLIR mentioned

above as described in Figure 2.6.

Dialects. A Dialect defines a namespace for a group of related operations, at-

tributes, and types. MLIR provides multiple built-in Dialect to represent common

functionalities, and also features an open infrastructure that allows users to define

new Dialect at different abstraction levels.

Attributes. Attritbutes are used to identify specific features of operations. An

operation that initializes a constant may have an attribute that defines its value. The

std.const operation which uses the value attribute for this purpose.

Blocks. Blocks are defined similarly to other IRs with a few differences. First,

unlike the classical definition in compilation [lattner2004llvm], blocks in MLIR have

operations that can contain regions. Another difference is the concept of block

arguments. These arguments abstract control-flow dependent values that indicate

which SSA values are available in each block.

31

Regions. Regions in MLIR are a combination of blocks that can map to either a

classical reducible CFG or not, depending on how the input language generates

its MLIR representation. For instance, some languages such as Fortran implement

classical reducible CFG regions as an MLIR region with a single basic block, while

irreducible parts of the CFG are implemented using a region with multiple basic

blocks.

Pass. Passes are a key compownent of compilation that traverses the intermediate

representation (IR) for the purpose of analysis and optimization. Similar to the

LLVM infrastructure, compiler researchers can design transform and analysis passes in

MLIR to perform IR transformations and analysis, respectively. Note that transform

typically indicates the transformation within a specific dialect. The transformation

between different levels of dialects is defined as conversion, while the transformation

between MLIR dialects and external representation is referred to as translation.

Additionally, Lowering is a terminology that refers to the process of lowering the

different abstraction level of the IR in the compilation flow.

2.8 Programmable Spatial Accelerator

Hand-optimized Libraries on Accelerators. Popular DL acceleration libraries such

as cuDNN [chetlur2014cudnn], cuBLAS [cublas]and CUTLASS [cutlass, markidis2018nvidia]

are developed to use NVIDIA Tensor Core for the tensor computation. As for

the Intel CPUs, oneDNN [li2023onednn] are developed to use special instruc-

tions to perform high-performance computation. These libraries are implemented

by manual optimization and need lots of engineering efforts. DL frameworks

such as TensorFlow [abadi2016tensorflow], MxNet [chen2015mxnet] and PyTorch

[paszke2019pytorch] all leverage these libraries to optimize performance. The Gem-

32

mini generator [genc2021gemmini] produces not just a hardware stack, but also

a tuned software stack, boosting developer’s productivity for different hardware

accelerator specifications including import a DNN and computation graph in the

ONNX [onnx-mlir] can also be programmed via C/C++ code.

Automatic Generation Tensor on Accelerators. Halide [ragan2013halide] intro-

duces the concept of algorithm and schedule to represent the description and op-

timization, while TVM [chen2018tvm] generalizes this concept and allows per-

formance engineers to use tensorize primitive to lower part of the for-loop frag-

ments on the spatial accelerators manually. Automatic schedulers, such as Halide

scheduler [halide-scheduler], FlexTensor [zheng2020flextensor], ALT [zeng2020alt],

Rammer [ma2020rammer], Roller [zhu2022roller], DGP [sun2021fast], AutoGTCO

[bai2021autogtco], ALCOP [huang2023alcop] ,and Ansor [zheng2020ansor], have

focused on optimizing general-purpose hardware and have not addressed code gen-

eration for systolic array-based accelerators [kung1979systolic] like Gemmini. Mean-

while, existing compilers that generate code for spatial accelerators with intrinsic

functionality, such as XLA [sabne2020xla], AutoTVM [chen2018learning], ISA Map-

per [sotoudeh2019isa], and UNIT [weng2021unit], rely on hand-written templates

for schedules without the support of RISC-V instructions. Unfortunately, creating

these templates is a time-consuming process, which limits the range of supported op-

erators. TensorIR [feng2023tensorir] automatic schedules algorithm and performs

tensorization jointly with other optimizations and generates performant programs

on GPU. Hidet [ding2023hidet] constructs an efficient hardware-centric schedule

space, which is agnostic to the program input size and greatly reduces the tuning

time with task mapping Paradigm on Tensor Cores. The VeGen [chen2021vegen]

compiler can automatically generate templates for intrinsics on Intel CPU with

AVX-512 instruction. Polyhedral compilers such as AKG [zhao2021akg] relies on

33

a combination of polyhedral model and templates to map software onto spatial

accelerators. However, above methods are limited in generalizing to RISC-V based

hardware accelerators. Exo [ikarashi2022exocompilation] is an embedded DSL

and schedules are written as meta-programs in the Python. It transforms a simple

program into an equivalent, but more complex and high-performance version, tar-

geted to the Gemmini and x86 CPUs via successive rewriting of the application via

scheduling.

Instruction Selection Traditional method of instruction selection [lam2006compilers]

applies local pattern matching rules to replace small IR fragments with equivalent

instructions. However, it struggles to effectively exploit accelerator instructions

which correspond to large, complex program fragments. Recently, some work ap-

ply more powerful search technique to target more complex SIMD instructions

using program synthesis [phothilimthana2019swizzle] and equality saturation

[vanhattum2021vectorization]. TVM offers users a tensorization directive that

allows them to replace loop fragments with equivalent instructions. However, it

does not possess the flexibility to combine automation and verification, which is a

key feature of BACO’s unified compilation flow.

2.9 Computation on Spatial Accelerator

Figure 2.7 illustrates an implementation of matrix multiplication C = A× B on the

spatial array with weight-stationary (WS) dataflow. Firstly, we decompose the matrix

multiplication into independent sub-blocks by tiling the M and N dimensions. After

the tiling, it has M
TileM

× N
TileN

independent sub-blocks. Each sub-block is a matrix

multiplication with size: TileM × TileN × K. Then, the fragments of A with size of

TileM × K and B with K× TileN are loaded from DRAM to scratchpad memory. As

34

PE PE PE

PE PE PE

PEPE PE

Pu
sh

 T
ile

 A

Store

Write Psum

Preload Tile B

In
pu

t B
uff

er

Accumulator
Buffer

Matrix Multiplication
<latexit sha1_base64="JtbZzEm2YN31g69TzL7wNfDZEyI=">AAACCHicbZDLSsNAFIZP6q3WW9SlC4NFcFUS8bYRartxWcFeoC1lMp20QyeTMDMRSsjSja/ixoUibn0Ed76NkzYFbf1h4OM/5zDn/G7IqFS2/W3klpZXVtfy64WNza3tHXN3ryGDSGBSxwELRMtFkjDKSV1RxUgrFAT5LiNNd1RN680HIiQN+L0ah6TrowGnHsVIaatnHnZ8pIauF1eT6xneJDOqJD2zaJfsiaxFcDIoQqZaz/zq9AMc+YQrzJCUbccOVTdGQlHMSFLoRJKECI/QgLQ1cuQT2Y0nhyTWsXb6lhcI/biyJu7viRj5Uo59V3emG8r5Wmr+V2tHyrvqxpSHkSIcTz/yImapwEpTsfpUEKzYWAPCgupdLTxEAmGlsyvoEJz5kxehcVpyLkrnd2fFciWLIw8HcAQn4MAllOEWalAHDI/wDK/wZjwZL8a78TFtzRnZzD78kfH5A21WmkA=</latexit>

C = AB

K

K

N
<latexit sha1_base64="LWb/egjZ9ZkM3ZGRO3bnVaaiXDw=">AAACBnicbVDLSsNAFJ34rPVVdSnCYBFclUR8LatuBBGq2Ac0tUymk3boZBJmboQSsnLjr7hxoYhbv8Gdf+O0zUJbD1w4nHMv997jRYJrsO1va2Z2bn5hMbeUX15ZXVsvbGzWdBgryqo0FKFqeEQzwSWrAgfBGpFiJPAEq3v9i6Fff2BK81DewSBirYB0Jfc5JWCkdmHHDQj0PD85S7HLJb69T66xCzxgGl+l7ULRLtkj4GniZKSIMlTahS+3E9I4YBKoIFo3HTuCVkIUcCpYmndjzSJC+6TLmoZKYva0ktEbKd4zSgf7oTIlAY/U3xMJCbQeBJ7pHB6tJ72h+J/XjME/bSVcRjEwSceL/FhgCPEwE9zhilEQA0MIVdzcimmPKELBJJc3ITiTL0+T2kHJOS4d3RwWy+dZHDm0jXbRPnLQCSqjS1RBVUTRI3pGr+jNerJerHfrY9w6Y2UzW+gPrM8fLbaYTw==</latexit>

A 2 RM⇥K

<latexit sha1_base64="GHyMxcoc/UDmrrMKMEZlHXx8nXE=">AAACBnicbVDLSsNAFL3xWeur6lKEwSK4Kon4Wpa6EQSpYh/Q1DKZTtqhk0mYmQglZOXGX3HjQhG3foM7/8Zpm4W2HrhwOOde7r3HizhT2ra/rbn5hcWl5dxKfnVtfWOzsLVdV2EsCa2RkIey6WFFORO0ppnmtBlJigOP04Y3uBj5jQcqFQvFnR5GtB3gnmA+I1gbqVPYcwOs+56fVFLkMoFu75Mr5GoWUIWu006haJfsMdAscTJShAzVTuHL7YYkDqjQhGOlWo4d6XaCpWaE0zTvxopGmAxwj7YMFdjsaSfjN1J0YJQu8kNpSmg0Vn9PJDhQahh4pnN0tJr2RuJ/XivW/nk7YSKKNRVkssiPOdIhGmWCukxSovnQEEwkM7ci0scSE22Sy5sQnOmXZ0n9qOSclk5ujovlShZHDnZhHw7BgTMowyVUoQYEHuEZXuHNerJerHfrY9I6Z2UzO/AH1ucPMMGYUQ==</latexit>

B 2 RK⇥N

<latexit sha1_base64="Q/HIZUmWFTsl/tTRVLA+4pflP2w=">AAACBnicbVDLSsNAFL3xWeur6lKEwSK4Kon4Wha7caNUsQ9oaplMJ+3QySTMTIQSsnLjr7hxoYhbv8Gdf+O0zUJbD1w4nHMv997jRZwpbdvf1tz8wuLScm4lv7q2vrFZ2NquqzCWhNZIyEPZ9LCinAla00xz2owkxYHHacMbVEZ+44FKxUJxp4cRbQe4J5jPCNZG6hT23ADrvucnlRS5TKDb++QKuZoFVKHrtFMo2iV7DDRLnIwUIUO1U/hyuyGJAyo04ViplmNHup1gqRnhNM27saIRJgPcoy1DBTZ72sn4jRQdGKWL/FCaEhqN1d8TCQ6UGgae6Rwdraa9kfif14q1f95OmIhiTQWZLPJjjnSIRpmgLpOUaD40BBPJzK2I9LHERJvk8iYEZ/rlWVI/KjmnpZOb42L5IosjB7uwD4fgwBmU4RKqUAMCj/AMr/BmPVkv1rv1MWmds7KZHfgD6/MHNXWYVA==</latexit>

C 2 RM⇥N

②

③
⑤

…

…

…

……… …
④

Ti
le

 B
 R

em
ai

ns
 in

 P
E

DI
M

Weight Buffer
Scratchpad

①

Output
Buffer

DIM

Tile

Tile Tile

CA

B

M

Figure 2.7: Matrix multiplication with weight-stationary dataflow.

shown in step 1⃝, the elements of the B need to be pre-filled and stored into each

PE before the computation for the weight-stationary dataflow. Then the elements

of the A is pushed through the array in step 2⃝, and each PE generates one partial

sum every cycle in step 3⃝. The users can reuse the already loaded weights B

in the 4⃝. The generated partial sums are then reduced along each column in

parallel to generate the output and store the results to DRAM in step 5⃝. There

are two ways to implement the kernel: i) directly write the primitive instructions to

explicitly manage data movement and computation, or ii) use CISC-type instructions

to hardcode all of the for-loop optimization. The CISC instructions have too many

operands to fit into a single primitive instruction. Therefore, they are implemented

as a sequence of many primitive instructions which must be called consecutively by

the users.

35

Load Input Activation 1

def target_workload_conv2d(Weight, Input, Output):
for y.0 in range(0, 56):

for r.0 in range(0, 3):
for s.0 in range(0, 3):

for k.1 in range(0, 64, 32):
for x.1 in range(0, 56, 32):

for c.1 in range(0, 64, 8):
tensorized_body(Weight, Input, Output)

def tensorized_body(Weight, Input, Output):
sWeight = Weight[c.1:c.1+8, x.1+r:x.1+r.0+32, y.0+s.0]
sInput = Input[k.1:k.1+32, c.1:c.1+8, r.0, s.0]
for k.2 in range(0, 32, 16):

for x.2 in range(0, 32, 16):
for c.2 in range(0, 8):

tWeight = sWeight[c.2, x.2:x.2+16]
tInput = sInput[k.2:k.2+16, c.2]
tOutput = gemm_loop_ws(tWeight, tInput)
sOutput[k.2:k.2+16, x.2:x.2+16] += tOutput

tOutput[k.1:k.1+32, x.1:x.1+32, y.0] += sOutput

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Te
ns

or
 P

ro
gr

am
H

ar
dw

ar
e

 A
cc

el
er

at
io

n

Hardware and Software
Interface

CISC-type
Instruction

Figure 2.8: Manually writing a convolution kernel with CISC-type instructions.

2.10 Complex Hardware and Software Interfaces

The design of accelerated hardware and tensor program presents a distinctive

engineering task, characterized by several unusual aspects. Firstly, unlike traditional

programs running on general-purpose processors, the hardware-software interfaces

for domain-specific accelerators are complex, encompassing specialized memories,

exposed configuration state, and intricate operations. Moreover, these interfaces

exhibit a high level of diversity, with each accelerator having its unique complexities.

We use an example of executing convolution kernel from ResNet-50 on the spatial

accelerator with CISC instruction in Figure 2.8. Secondly, the rates of change within

the stack are inverted compared to conventional systems. Accelerator architectures

evolve at a faster pace than the essential kernels they execute, and the optimization

of these kernels to effectively utilize the hardware undergoes even more rapid

iterations. This phenomenon is particularly pronounced during accelerator design,

where the target application workloads often remain fixed, while both the hardware

architecture and program transformation are co-designed iteratively to achieve

36

Table 2.1: Comparsions with existing optimization frameworks for hardware and software design.

Frameworks
Productivity Performance Automation

Frontend IR Level User-specific Target Usecase ISA Support Hardware Co-search Multi-layer Auto-Tuner

MLIR [lattner2021mlir] Nelli [levental2023nelli] Multiple ✓ Compilation General General - - -

TVM [chen2018tvm] DSL Single ✓ Compilation General General - - Evolutionary Search

AKG [zhao2021akg] DSL Single ✓ Compilation General Spatial - - Genetic Search

TensorIR [feng2023tensorir] DSL Single ✓ Compilation General General - - Evolutionary Search

AMOS [zheng2022amos] DSL Single ✓ Compilation General General - - Genetic Search

Exo [ikarashi2022exocompilation] DSL Single ✓ Compilation RISC-V Spatial - - -

Timeloop [parashar2019timeloop] - - - Co-explore - Spatial - - Genetic Search

FAST [zhang2022full] - - - Co-explore - Spatial Two-loop - Integer Linear Programming

MAGNet [venkatesan2019magnet] - - - Co-explore - Spatial Two-loop - Heuristics

HASCO [xiao2021hasco] - - - Co-explore - Spatial Two-loop - Reinforcement Learning

Interstellar [yang2020interstellar] - - - Co-explore - Spatial One-loop - Heuristics

DiGamma [kao2022digamma] - - - Co-explore - Spatial One-loop - Genetic Search

DOSA [hong2023dosa] - - - Co-explore - Spatial One-loop ✓ Gradient Descent

BACO DSL Multiple ✓
Co-explore

with compilation
RISC-V Spatial One-loop ✓ Gradient Descent

optimal performance and efficiency. Therefore, we need a more productive method

to perform hardware and software co-exploration.

2.11 Hardware-Software Co-design Framework

There has been a growing body of research as shown in Table 2.1 focused on opti-

mizing the hardware and software design with the goal of achieving performance

and efficiency. Most prior work treats the program transformation and hardware

co-exploration as a two-loop search and utilizes a combination of various optimization

techniques to solve each space independently. The inner loop demonstrates the

software optimization and the outer loop represents the hardware optimization.

In the first stage, the optimizer samples accelerator configurations from hardware

space and then optimizing for optimal program for that specialized hardware within

the inner loop. In the second stage, the best program is used for generating the

hardware performance feedback for the outer loop optimization. There are three

common optimizers: heuristics, block-box (BB) and white-box optimization.

There are also some works to use one-loop search. The mechanism tackles it

from a mapping-first approach that infers the minimal accelerator configuration

37

with instruction-agnostic program found in the mapping space, and the hardware

space is similar in size to the mapping size. [kao2022digamma] employs BB-GA

which treats the mapping performance as a block-box and needs to evaluate many

unique hardware and software points iteratively to achieve a good performance.

DOSA [hong2023dosa] takes a novel technique by formulating the analytical perfor-

mance model as a differentiable white-box model. It then employs gradient descent

to optimize the mapping variables in the direction of steepest descent.

38

Chapter 3

GTCO: Graph and Tensor Co-Design

for Transformers on GPUs

3.1 Motivation

Recent years have witnessed the success of deep learning in the industry-scale appli-

cation, ranging from language translation, virtual reality, and recommendation sys-

tems to computer vision and autonomous driving. In particular, convolutional neu-

ral networks (CNN) remain dominant in computer vision [IMGC-CVPR2016-ResNet,

IMGC-ICLR2015-VGG, IMGC-CVPR2016-Inception, CV-ICME-Pose]. Despite

their significant success, attention has been increasingly focused on integrating self-

attention techniques with CNN-based models [ATTN-NIPS2017-Vaswani], inspired

by their success in neural language processing (NLP). Many model architectures have

entirely replaced CNNs with transformer-based models [ATTN-2021-TransformersSurvey],

promoting the further application of these models in various vision tasks [ATTN-ECCV2020-DETR,

ATTN-2021-SelfSupervisedTransformer, ATTN-CVPR2021-SETR, ATTN-arXiv2020-ViT].

This trend paves the way for using a unified transformer architecture in future re-

39

search developments.

Optimizing the performance of different operators with diverse hardware plat-

forms requires a significant engineering effort when using these vendor-provided

libraries. As a result, researchers and engineers often concentrate on enhancing

the performance of compute-intensive primitives, such as GEMM and convolu-

tion, which are frequently employed in CNN architecture. Alternatively, they

turn to a search-based compilation approach [Compiler-SIGGRAPH2012-Halide,

Compiler-OSDI2018-TVM] that involves separating kernel definition from compu-

tation scheduling to automatically generate tensor programs.

While prior research has primarily focused on optimizing the deployment of

CNN models, the potential of transformer-based vision models on modern ac-

celerators has not been effectively leveraged due to the specialized self-attention

modules. Although existing libraries have the capability to fuse element-wise

operators into compute-intensive kernels, they are not as effective in optimizing

memory-intensive workloads, such as matrix multiplication with softmax opera-

tors. Furthermore, transformer-based models typically involve a large number

of fine-grained operators, which can result in significant overheads when im-

plemented on specific hardware, such as GPUs. Meanwhile, due to the prede-

fined rules for optimizing compute-intensive operators, traditional techniques such

as Halide [Compiler-SIGGRAPH2012-Halide, Compiler-OSDI2020-Ansor] cannot

effectively utilize the inference efficiency of specialized modules in transformer

models.

Numerous techniques have been proposed to enhance the efficiency of models

by optimizing them at the graph-level. Lots of work are proposed to facilitate the

optimization from the graph-level to improve the efficiency of the model. Ten-

sorRT [GPU-NVIDIA-TensorRT] utilizes a two-step fusion policy to optimize the

40

computation graph. Firstly, specific operators such as fully-connected, convolu-

tion, batch normalization [CV-ICML2015-BN], and ReLU [CV-CoRR-ReLU] are

fused vertically using rules designed by high-performance computing engineers.

Secondly, the operators are fused horizontally within the same stage. This two-

step optimization method works well for CNN architectures with multiple parallel

branches and kernels of the same size. Greedy rule-based subgraph substitutions

are employed to optimize the computation graph in classical frameworks such

as TensorFlow [DL-OSDI2016-TensorFlow], PyTorch [DL-NIPSW2017-PyTorch],

TVM [Compiler-OSDI2018-TVM], and Ansor [Compiler-OSDI2020-Ansor]. While

template-based substitutions may enhance the efficiency of computations, they

are not suitable for long-term maintenance. With new operators continuously

being proposed from a high-level model perspective, the rule-based graph substi-

tution approach becomes increasingly unsuitable for real-world production, as it

requires significant engineering effort. To search potential substitutions, search-

based methods are introduced by TASO [Compiler-SOSP2019-TASO] and IOS

[Compiler-MLSys2021-IOS] to exploit a large enough search space. TASO gen-

erates graph substitutions with a formal verification to verify the correctness of

the optimized graph substitutions automatically. Search-based methods have been

introduced to tackle the issue of finding potential substitutions for new operators.

TASO [Compiler-SOSP2019-TASO] and IOS [Compiler-MLSys2021-IOS] are two

examples of search-based methods that are capable of exploring a vast search space.

TASO generates graph substitutions and verifies the correctness of the optimized

graph substitutions through formal verification techniques. While IOS is able to

leverage inter-operator and intra-operator parallelism to schedule operators with

CUDA stream, thus maximizing the benefits of both software and hardware ac-

celerators, it is not able to fully exploit the code generation capabilities from a

41

compilation perspective for the implementation of each operator. This is due to the

IOS using the vendor-provided library cuDNN to do the runtime, which provides

a fixed template for each operator with limited runtime performance. As a result,

searching for optimal solutions with operator fusion from a comprehensive search

space is not possible using this paradigm.

The NVIDIA GPUs’ domain-specific accelerators (Tensor Cores) are programmed

using instruction set architecture, which allows for algorithmic specification to be

separated from hardware architectural details. These instructions are commonly

referred to as intrinsic, and using them for tensor computation is known as ten-

sorization. While intrinsics provide programmability, mapping specific intrinsics

remains a challenging task. For example, there are 35 different ways to map the

seven for-loops of a 2D convolution implementation on the Tensor Cores. Map-

ping performance is crucial to configurations that can impact data locality and

parallelism on GPUs. However, current compilers [Compiler-OSDI2018-TVM,

Compiler-OSDI2020-Ansor] rely heavily on manual programming with hardware

intrinsic to develop high-performance implementation, which may overlook optimal

mapping choices between the complex memory hierarchy. To efficiently support

algorithms on domain-specific accelerators, an automated mapping solution is nec-

essary to explore software and hardware co-design. While the baseline framework

is presented in [bai2021iccad], our framework is called GTCO.

This work presents a solution to the automatic mapping problem on domain-

specific accelerators (Tensor Cores) by introducing a novel abstraction above the

hardware intrinsics. The abstraction comprises two components: computation and

memory abstraction, which describe the computation and data movement behaviors

within an intrinsic. Based on the proposed abstraction, this work develops a two-

step mapping generation method that can map software computations to a virtual

42

 Ansor System

Auto
Schedule

Computation
Graph

Tensor
Expression

Optimized
CUDA Code

TVM
CodeGen

(a)

Auto
Schedule

Computation
Graph

Tensor
Expression

Optimized
CUDA Code

TVM
CodeGen

Dynamic Programming
Operator Fusion

(b)

Figure 3.1: The overview of (a) Ansor [Compiler-OSDI2020-Ansor] and (b) [bai2021iccad].
Initially, the input is a computation graph, which is converted into tensor expression language.
Subsequently, the auto-schedule module is capable of automatically searching for the optimal schedule
for each operator. Finally, TVM code generation is performed to generate optimized CUDA code
on GPU. However, the primary distinguishing factor between the two systems is the Dynamic
Programming Operator Fusion module.

hardware accelerator without hardware constraints and then modify the mapping

configurations based on actual physical constraints. This work is based on Ansor,

shown in Figure 3.1. Additionally, the authors efficiently explore the search space to

achieve low inference latency on domain-specific accelerators (Tensor Cores). Finally,

the authors implement all of the techniques and integrate them into an end-to-end

tensor compilation named GTCO.

3.2 System Overview

Figure 3.2 illustrates the overall architecture of our tensor compilation system, which

comprises four essential modules: dynamic programming operator fusion, subgraph

scheduler, program sampler, and performance tuner. Starting with the input of the

transformer-based model lacking the operator fusion technique, each operator is

43

DPOF

Operator
Arrangement

Operator
Fusion

CUDA Program
Sampler
Sketch

Customization

Random
Annotation

Performance
Tuner

NVIDIA GeForce RTX 2080 Ti GPU

Subgraph
Scheduler
Subgraph 1

Subgraph 2

…

Transformer Model

Encoder Decoder

Cost Model
Subgraph 3

Figure 3.2: The workflow and components of our framework. The input is the transformer-based
vision models and the output is the tensor programs generated on the GPU platform.

initially labeled with a pattern that denotes the relationship between the connected

operators. After applying the operator fusion technique, each operator is assigned

a new pattern, and the types of the connected operators are also altered based on

the predicted labels that arise from the operator fusion. High-performance tensor

programs with hardware intrinsic are generated for the fused operators on the GPU

platform. All in all, our framework includes the following components:

• A DPOF module that can find an optimized operator fusion schedule for the

transformer-based vision model.

• A subgraph scheduler module assigns time slots for optimizing fused sub-

graphs optimized by the DPOF.

• A program sampler module that constructs a comprehensive search space

and samples different kinds of tensor programs from it randomly to ensure

diversity.

44

• A performance tuner module trains a regression-based model to predict the

performance of sampled programs.

• An automatic mapping flow with compilation techniques that can find the

optimal implementation of the fused operators in transformer-based models

on Tensor Cores with floating point 16 (FP16) datatype.

3.3 Problem Formulation

This section defines the operator fusion strategy and formulates the problem.

Computation Graph. The model is defined using a computation graph G = (V, E),

where V is the set of vertices and E is the edge set. Each vertex in the graph

represents an operator such as GEMM or softmax. As for the edge (u, v) ∈ E, it

represents a tensor that can store the input of operator v and the output of operator

u. Each vertex can represent an operator such as GEMM and softmax operation in

the computation graph. Each edge (u, v) ∈ E is a tensor that can store the output of

operator u and the input of operator v. Computation graphs are a common way to

represent deep learning models in frameworks or compilers. Figure 2.1 shows the

computation graph in the transformer-based model.

Operator Pattern. Operator fusion is a very efficient technique to optimize memory-

bound workloads. To circumvent the need for storing intermediate results in global

memory, operator fusion merges multiple connected operators into a single compu-

tation kernel. This optimization technique can substantially enhance the inference

speed-up, particularly in throughput-oriented architectures like GPUs. In order to

effectively do operator fusion, the operator patterns must first be defined. We cate-

gorize operators into five distinct patterns: (1) injective, (2) element-wise, (3) opaque,

(4) reduction, and (5) complex-out-fusable. Meanwhile, generic rules are provided to

45

fuse the operators. More details can be found in [Compiler-OSDI2018-TVM]. We

observe that matrix transposition, layer normalization, batch matrix multiplication,

softmax, and fully connected layers frequently occur in transformer-based mod-

els. Furthermore, the default configuration of them adheres to these guidelines: i)

softmax are marked as the opaque pattern; ii) Dense and batch matrix multiplica-

tion are identified as the complex-out-fusible pattern; and iii) Layer normalization

[CV-CoRR-LN] can be decomposed into a set of fundamental operators (multiple,

add, subtract), which are labeled as the element-wise pattern.

Fusion Scheduling. Based on each computation graph G extracted from the

transformer-based model, a corresponding schedule S is defined to optimize the

inference latency on the GPU platform as follows:

S = {(V1, F1), (V2, F2), ..., (Vk, Fk)} ,

where Vi denotes a set of computation operators in the i-th stage and Fi denotes the

paired variable that describes the fusion relationship between any two nodes. The

execution of G with the schedule S is carried out consecutively from the first stage

(V1, F1) to the last stage (Vk, Fk).

Problem Formulation. Given a computation graph G and fusion schedule S on

GPU, our objective is to search for a schedule S∗:

S∗ = argmin
S

Cost(G, S),

where Cost is the execution time of G with the schedule S.

46

3.4 Workflow of GTCO

3.4.1 Dynamic Programming-based Operator Fusion

Initially, the execution order of computation operators in the original graph is

determined by a topological sorting algorithm, which serves as our starting point

for finding an optimized schedule. Next, we use a computation queue to store the

selected operators from the topological sorting algorithm. Rather than using a more

complex graph data structure, we employ a queue data structure to identify and

store the optimal schedule. The variables in the queue can be divided into two

categories: placeholder and computation variables. Placeholder variables are used

to store input and output results, which do not affect the execution time of the

entire computation graph and are therefore not taken into account. As introduced

in Section 3.3, the same operator with various labels makes the difference in the

execution stage. Thirdly, we assume that no fusion relationship exists between the

operators at the beginning stage, and all operators are assigned to an opaque state.

The size of the queue is determined by the maximum number of the stage defined

in the scheduling Section 3.3. As discussed in Section 3.3, the same operator with

different patterns can have a significant impact on the execution stage.

Operator Fusion. The computation graph G = (V, E) is initially partitioned into

two sets: V′ and V −V′ based on the execution order of the computation variables

and the maximum number of the stages during the scheduling. In a set of V′,

the edges in a set of V −V
′

have a pointing relationship with the directed edges.

Specifically, the start points of the edges are in V − V
′

and the end points are in

V′. The set of vertices V′ is defined as the segmentation set. The interplay between

V
′

and V −V
′

is illustrated in Figure 3.3. We observe that the computation graph

47

A B

C D E

G

F

<latexit sha1_base64="CAQ7zVEIVzfNqIlIT6dcbG1PkD4=">AAAB/3icbVA9SwNBEN3zM8aop4KNIItBsAp3KdQyYGOpaGIgF8LeZi5ZsvfB7pwYzhQW/hEbC0Us9W/Y+Rv8E24+Ck18MPB4b4aZeX4ihUbH+bLm5hcWl5ZzK/nVwtr6hr25VdNxqjhUeSxjVfeZBikiqKJACfVEAQt9Cdd+73ToX9+A0iKOrrCfQDNknUgEgjM0Usve8RBuMbvkXWinEjwaBwOP1lp20Sk5I9BZ4k5IsVJ4v/h+2Hs/b9mfXjvmaQgRcsm0brhOgs2MKRRcwiDvpRoSxnusAw1DIxaCbmaj+wf0wChtGsTKVIR0pP6eyFiodT/0TWfIsKunvaH4n9dIMThpZiJKUoSIjxcFqaQY02EYtC0UcJR9QxhXwtxKeZcpxtFEljchuNMvz5JaueQelcoXJo0yGSNHdsk+OSQuOSYVckbOSZVwckceyTN5se6tJ+vVehu3zlmTmW3yB9bHD6N+mX4=</latexit>

Schedule of V

<latexit sha1_base64="mUHs6FN516gff+tFmLVg1IggzJA=">AAACUHicbVHLahsxFL3jPpK6j7jtMptLTWlKqZkxoc0mEOgmyxRqJ+AZjEa+Y4tImkG6UzCDPzGb7PId3XTR0sqPtnn0gNDhnHORdJRXWnmO46uode/+g4db24/aj588fbbTef5i6MvaSRrIUpfuLBeetLI0YMWazipHwuSaTvPzT0v/9Cs5r0r7hecVZUZMrSqUFBykcWfaTKpUU8E4wiGmTk1njBkeYmqUxbWzh9cz77EZLt78i+I7ZDJ/AzfNDXm7GHe6cS9eAe+SZEO6sMHJuHOZTkpZG7IstfB+lMQVZ41wrKSmRTutPVVCnospjQK1wpDPmlUhC3wdlAkWpQvLMq7U6xONMN7PTR6SRvDM3/aW4v+8Uc3FQdYoW9VMVq4PKmqNXOKyXZwoR5L1PBAhnQp3RTkTTkgOf9AOJSS3n3yXDPu95EOv/3m/e9Tf1LENu/AK9iCBj3AEx3ACA5BwAd/gB/yMLqPv0a9WtI7+2eEl3ECr/RsWILBI</latexit>

dp [V] = min (dp [V � V 0] + temp [V 0])

<latexit sha1_base64="6Lcn1HRWGlLysJgObDv5u+kpNgM=">AAACAnicbVC7SgNBFJ2NrxijRq1EkMEgWoXdFGoZsLGwSMA8IBvC7GQ2GTL7YOauuCzBRj/FxkIRmxR+hZ3f4E84m6TQxAMDh3Pu5c45Tii4AtP8MjJLyyura9n13EZ+c2u7sLPbUEEkKavTQASy5RDFBPdZHTgI1golI54jWNMZXqZ+85ZJxQP/BuKQdTzS97nLKQEtdQv7NrA7SK4JMJ/GNg5cG49w0hiddAtFs2ROgBeJNSPFSn5c+348HFe7hU+7F9DIYz5QQZRqW2YInYRI4FSwUc6OFAsJHZI+a2vqE4+pTjKJMMLHWulhN5D6+YAn6u+NhHhKxZ6jJz0CAzXvpeJ/XjsC96KTcD+M0oTTQ24kMAQ47QP3uGQURKwJoZLrv2I6IJJQ0K3ldAnWfORF0iiXrLNSuabbKKMpsugAHaFTZKFzVEFXqIrqiKJ79IRe0KvxYDwbb8b7dDRjzHb20B8YHz+C15p+</latexit>

Latency of V 0

<latexit sha1_base64="1L7uHZeIfTS9OyWRrKsP1lvi4GI=">AAAB/nicbVC7SgNBFJ31GeNrjVjZLAYhFobdFGoZsLGMYB6QDWF2MpsMmZ1ZZu6KYQn4B36DjYUittZ+gp0fYu9skkITDwwczrmHe+cEMWcaXPfLWlpeWV1bz23kN7e2d3btvUJDy0QRWieSS9UKsKacCVoHBpy2YkVxFHDaDIaXmd+8pUozKW5gFNNOhPuChYxgMFLXPvCB3kFa0klwGitpYtHJON+1i27ZncBZJN6MFKsFv/T98eDXuvan35MkiagAwrHWbc+NoZNiBYxwOs77iaYxJkPcp21DBY6o7qST88fOsVF6TiiVeQKcifo7keJI61EUmMkIw0DPe5n4n9dOILzopEzECVBBpovChDsgnawLp8cUJcBHhmCimLnVIQOsMAHTWFaCN//lRdKolL2zcuXatFFBU+TQITpCJeShc1RFV6iG6oigFD2iZ/Ri3VtP1qv1Nh1dsmaZffQH1vsPbrWYxA==</latexit>

(sub-problem)

<latexit sha1_base64="1zaAr43jtrHxPH+RCxpmnmgpp8I=">AAACCHicbVDLSgNBEJyN7/iKehR0MIheDLs5qEfBi8eIJgayIcxOepPB2QczvWJY9piLv+LFg2K8+gne/AZ/wtnEg6+ChqKqm+4uL5ZCo22/W4Wp6ZnZufmF4uLS8spqaW29oaNEcajzSEaq6TENUoRQR4ESmrECFngSrrzr09y/ugGlRRRe4iCGdsB6ofAFZ2ikTmnbRbjF9IL3oZtIcGnkuzSjDXpA00a2V+yUynbFHoP+Jc4XKZ8sjc4/hlujWqf05nYjngQQIpdM65Zjx9hOmULBJWRFN9EQM37NetAyNGQB6HY6fiSju0bpUj9SpkKkY/X7RMoCrQeBZzoDhn3928vF/7xWgv5xOxVhnCCEfLLITyTFiOap0K5QwFEODGFcCXMr5X2mGEeTXR6C8/vlv6RRrTiHleq5SaNKJpgnm2SH7BOHHJETckZqpE44GZJ78kierDvrwXq2XiatBetrZoP8gPX6CV9wm+Q=</latexit>

Schedule of V � V 0

Figure 3.3: The design of dynamic programming operator fusion.

exhibits numerous segmentation sets. According to the dynamic programming

algorithm, we can systematically enumerate the elements in the segmentation sets

V′ of V. This technique transforms the original problem into a sub-problem that

aims to determine the optimal schedule for V −V
′
. Consequently, the computation

graph G can be recursively optimized for each element in the segmentation set.

The dynamic programming approach defines dp[V] as the execution time of the

computation graph G with an optimal schedule S in the nodes set V. Additionally,

temp[V
′
] represents the execution time of the subgraph composed of the nodes in

the stage (V
′
, F). Here, F represents the optimal fusion strategy in the segmentation

set V
′
. The state transition equation can be defined as follows:

dp[V] = min
v∈V′

(dp[V −V
′
] + ∑

v
temp[v]). (3.1)

In Algorithm 1, v represents a node in the segmentation set V
′
, and dp[∅] is the

boundary value of the state transition equation, set to 0. The optimal solution is

obtained by storing each node v in the segmentation set V
′

and measuring the

execution time of each V through action[V].

48

Algorithm 1 Operator Fusion Strategy

Require: A computation graph G = (V, E) with the opaque type for ∀v ∈ V, pattern(v) = 0;
Ensure: A operator fusion strategy with the type of each operator v ∈ V, pattern(v);

1:
2: Defining dp[∅]← 0, dp[V]← +∞, action[V]← ∅;
3: Defining S ← [∅] (A Stack data structure to store the phase of optimal schedule for

operator fusion);
4:
5: function SelectSchedule(G)
6: V = all operators in computation graph G;
7: Scheduler(V);
8: while V ̸= ∅ do
9: V

′
, F = action[V];

10: Put phase (V
′
, F) into the stack S;

11: V = V −V
′
;

12: return the Fusion Strategy S;
13:
14: function Scheduler(V)
15: if dp[V] ̸= +∞ then
16: return dp[V];
17: for all v ∈ V

′
do

18: TV′ , FV′ = PhasePartition(V
′
);

19: TV = Scheduler(V −V
′
) + ∑vi∈V′ TV′ ;

20: if TV ≤ dp[V] then
21: dp[V] = TV ;
22: action[V] = (V

′
, FV′);;

23: return dp[V];
24:
25: function PhasePartition(V

′
)

26: for all operators vi ∈ V
′

do
27: if pattern(vi, vj) ̸= opaque then
28: Tfused(i,j) = Runtime(pair(vi, vj));
29: else
30: Tfused(i,j) = +∞;
31: return Tfused(i,j), pattern(vi, vj);

3.4.2 Subgraph Scheduler

It is evident that partitioning a model into different subgraphs is a crucial step

before performance optimization. However, it is futile to invest significant time in

tuning subgraphs without the possibility of enhancing the execution performance

of the model during optimization. Therefore, we opt to dynamically assign varying

amounts of time slots to different types of subgraphs. For transformer models,

49

a subgraph may occur multiple times. As a result, achieving a well-optimized

transformer-based model requires resolving numerous scheduling tasks during

compilation.

We integrate three objectives during the tuning process: i) reducing the total

execution time of the transformer-based models; ii) meeting requirements of execu-

tion time for various subgraph; iii) decreasing the overall tuning time when certain

subgraphs already meet the requirement and cannot be significantly improved. To

achieve this, we define an assignment vector as t, where ti denotes the time slots

assigned to the i-th task. Initially, all t values are set to (1, 1, ..., 1). We then define

gi(t) as the minimum execution time required for the i-th subgraph under task

ti. The subgraph execution times f (g1(t), g2(t), ..., gn(t)) represent the end-to-end

execution time of a transformer-based model, and our objective is to minimize the

following function. To minimize the end-to-end execution time of the transformer,

the objective function is defined as follows:

f = max

[
n

∑
i=1

wi ×max(gi(t), ES(gi, t)), Lj

]
. (3.2)

The number of search task occurrences is denoted as wi, where i is the task index. It

is important to note that if the latency requirement is already satisfied, no tuning

time slots will be allocated for a subgraph i.

Thus, the latency requirement of subgraph j is represented as Lj. Additionally,

we define a function ES(gi, t) to enable early stopping by utilizing the historical

log information of the i-th task. Our framework differs from other frameworks in

that it compares the execution and early stopping configurations. Furthermore, we

optimize each search task sequentially. Finally, a scheduling design based on the

gradient descent method is developed to efficiently solve the objective function.

50

[Placeholder: A, B

]

for i.0 in range(None):
for j.0 in range(None):…
for ic.2 in range(None):

for jc.2 in range(None):
for k.0 in range(None):
for k.1 in range(None):

for k.2 in range(None):

for i.3 in range(None):
for j.3 in range(None):

C = …

C.local = …

for i.0 in range(0, 1050):
for k.0 in range(0, 33):

threadIdx.x k.1 [0, 32]
T_softmax_maxelem = …

for i.0 in range(0, 1050):
for k.0 in range(0, 1050):

T_softmax_expsum = …
for i.0 in range(0, 1050):
for i.1 in range(0, 1050):

T_softmax_norm = …

Generated Sketch 1:

[Placeholder: A, B

]

for i.0 in range(None):
for j.0 in range(None):…
for ic.2 in range(None):

for jc.2 in range(None):
for k.0 in range(None):

for k.1 in range(None):
for k.2 in range(None):

for i.3 in range(None):
for j.3 in range(None):

C = …

C.local = …
for i.0 in range(0, 1050):
for k.0 in range(0, 33):

threadIdx.x k.1 [0, 32]
T_softmax_maxelem = …

for i.0 in range(0, 1050):
for k.0 in range(0, 1050):

T_softmax_expsum = …
for i.0 in range(0, 1050):
for i.1 in range(0, 1050):

T_softmax_norm = …

Generated Sketch 2:

Ansor

The mathmetical expressions:

D[i, j] = SoftMax(m[i, j])

<latexit sha1_base64="9Mns8V5JWv5XJ8vJU+K8sqXzsvw=">AAACA3icbVDLSgMxFM3UV62vUXe6CRahgpQZqehGKejCjVDRPqAdSibNtLGZZEgyYhkKbvwVNy4UcetPuPNvTNtZaPXAhcM593LvPX7EqNKO82VlZmbn5heyi7ml5ZXVNXt9o6ZELDGpYsGEbPhIEUY5qWqqGWlEkqDQZ6Tu989Gfv2OSEUFv9GDiHgh6nIaUIy0kdr21nmT7sNbD57AaxHoS3RfCCfKXtvOO0VnDPiXuCnJgxSVtv3Z6ggch4RrzJBSTdeJtJcgqSlmZJhrxYpECPdRlzQN5SgkykvGPwzhrlE6MBDSFNdwrP6cSFCo1CD0TWeIdE9NeyPxP68Z6+DYSyiPYk04niwKYga1gKNAYIdKgjUbGIKwpOZWiHtIIqxNbDkTgjv98l9SOyi6peLhVSlfPk3jyIJtsAMKwAVHoAwuQAVUAQYP4Am8gFfr0Xq23qz3SWvGSmc2wS9YH9+wl5Wi</latexit>

m[i, j] =
X

k

A[i, k]⇥B[k, j]

<latexit sha1_base64="MS8j78r3na2gotCf3/XRwzAXiN8=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0UUoiFd0oVTcuK9hWSEKYTCftNDNJmJkIJfQT3Pgrblwo4talO//G6WOhrQcuHM65l3vvCVJGpbKsb6OwsLi0vFJcLa2tb2xumds7LZlkApMmTlgi7gMkCaMxaSqqGLlPBUE8YKQdRNcjv/1AhKRJfKcGKfE46sY0pBgpLfnmIXdope/Bc+jKjPt5NLzUAow86CrKiYRXTlSBfc83y1bVGgPOE3tKymCKhm9+uZ0EZ5zECjMkpWNbqfJyJBTFjAxLbiZJinCEusTRNEZ6mZePHxrCA610YJgIXbGCY/X3RI64lAMe6E6OVE/OeiPxP8/JVHjm5TROM0ViPFkUZgyqBI7SgR0qCFZsoAnCgupbIe4hgbDSGZZ0CPbsy/OkdVy1a9WT21q5fjGNowj2wD44AjY4BXVwAxqgCTB4BM/gFbwZT8aL8W58TFoLxnRmF/yB8fkD5ZybOw==</latexit>

The Computation Graph:

SoftMax

A

B
DMatMul

Ours

The sketch generated by Ansor The sketch generated by GTCO

Figure 3.4: Sketch generation for the subgraph of MHA. This figure shows two generated sketches.
The left one is generated by the default Ansor [Compiler-OSDI2020-Ansor] and the right one is
generated by [bai2021iccad]. The difference between these two sketches is that the operator fusion
occurs in GTCO with “red-dotted”. The code example is pseudo-code in a Python-like syntax.

3.4.3 Program Sampler

A hierarchical search space is defined to sample the tensor program, which is based

on two techniques: high-level sketch generation and low-level annotation sampling.

The high-level information is encapsulated in the sketches, and millions of low-level

choices are made to obtain specific optimization, such as blocking size, virtual thread

tiling, and cooperative fetching, as the final annotations. To generate high-level

sketches for each subgraph, computation nodes are visited in topological order,

and a generation structure is built iteratively with multi-level for-loop nests. For

computation-intensive nodes with a higher likelihood of data reuse, such as batch

51

Input

Output

M1: MatMul_1
M2: MatMul_2
Soft: SoftMax

MatMul_1

SoftMax

MatMul_2

V’= {M2}
V = {M1, Soft}
dp[{M1, Soft, M2}]
action[{M1, Soft, M2}]

V’= {Soft}
V = {M1}

Phase 1

Phase 2

Phase 3

MatMul_1

SoftMaxSoftMax

MatMul_1

MatMul_1

SoftMaxSoftMax

MatMul_2

V’= {M2}
V = {M1, Soft}

V = {}

Phase 1

Phase 2

Input

Output

Phase 1

Phase 2

MatMul_1_SoftMax

MatMul_1_SoftMax

MatMul_2
MatMul_1_SoftMax

MatMul_2MatMul_2

Original Subgraph

V’= {M2, Soft}
V = {M1}

V = {} Phase 1

Phase 2
SoftMax_MatMul_2MatMul_1

MatMul_1MatMul_1

Possible
Schedule

Best
Schedule

Final
State

Original
State

V’= {M1, Soft, M2}
V = {}

V = {} Phase 1

Phase 2

Phase 3
MatMul_2

MatMul_1

SoftMax

1

1

2

3

4

Fusion Strategy
found by GTCO

Figure 3.5: An example to illustrate how DPOF finds the fusion strategy. The original computation
graph is shown on the left. It has three operators, M1,M2, and So f t. There are 4 states during the
dynamic programming algorithm and each transition is shown in the figure. Any transition starts
from the state V = {M1, So f t, M2} to V = {}. The best fusion strategy can be obtained by the
dynamic programming process.

matrix multiplication, standard loop tiling, and fusion strategies are implemented

as the sketch generation technique.

As illustrated in Figure 3.4, a running example is presented to elucidate the

process of generating high-level sketches for a common subgraph that comprises

matrix multiplication ([1050, 8, 32]× [32, 8, 1050]) and softmax operators in the multi-

head attention mechanism. The computation nodes are sorted in the order of

(A, B, MatMul, So f t, D). Starting from the output node D, we utilize the generation

rules to obtain the sketches of the subgraph. The generated sketch 1 depicts that the

softmax operators and matrix multiplication are implemented separately, and are

not integrated into a single CUDA kernel. To fully exploit the potential of execution

efficiency, batch matrix multiplication and softmax operators with new derivation

52

rules are designed in the transformer-based model to optimize numerous operators

as a unified computation kernel. In the end, we integrate all of the techniques with

existing optimization rules seamlessly to improve execution efficiency.

Sketch Customization. The default sketch generation rules for the GPU backend

with a multi-level tiling structure in Ansor are denoted by the string “SSSRRSRS”.

Here the letters ‘S’ and ‘R’ indicate the spatial and reduction dimensions, respec-

tively. The first three “S” correspond to BlockIdx,Virtual Thread, and ThreadIdx in

GPU programming. The consecutive ‘S’ in the tiling structure “SSSRRSRS” describes

the matrix multiplication process, which transforms the original 3-level for-loop

into a 19-level for-loop, as illustrated in the Figure 3.4. Additionally, the special

multi-level tiling structure can take loop order into consideration during the tensor

transformation. Therefore, we have designed an effective operator fusion strategy,

denoted as “SSSR-RSRS”. For more details, please refer to Figure 3.5. This cus-

tomized tile structure is specifically designed for batch-matrix multiplication and

softmax operators in transformer-based models. By incorporating a caching node

with the optimized loop tiling structure, we are able to fully utilize the computation

resources on GPUs and fuse multiple operators together. Finally, the computation

structure is sent to the sketch of the softmax operator to obtain the fused subgraph

implementation.

In Figure 3.5, the optimized fusion strategy for a subgraph containing batch-

matrix multiplication and softmax operators is shown. This strategy was discovered

using Algorithm 1 in DPOF. There are four states 1 , 2 , 3 and 4 in the process.

The initial state has three operators in the subgraph V = {M1, M2, S}. For each

state, we can get the ending of V
′

of V. Thus, the execution efficiency of V can

be composed of the latency of V
′

and V −V
′
. The latency of V

′
can be measured

on the GPU directly and the optimized latency of V − V
′

can be solved with

53

dynamic programming. 1 to 4 show the four different states during the dynamic

programming. 4 is the final state with the best fusion strategy and it also has the

optimal inference latency compared with other states. In this state, M1 and S are

fused into a single computation kernel in the first phase and M2 is executed after

that in the second phase.

Annotation Sampling. The sketches generated by the customization rules are

incomplete tensor programs because they only have parallel thread structures

without the specific value. In order to generate the complete tensor programs which

can be successfully executed on the GPU, an auto-tuning technique is employed to

find optimal parameters for these optimized parallel thread structures. To achieve

this, a performance tuner is developed. a performance tuner is developed to make

up for the incomplete tensor programs with optimal values. To illustrate this, we

randomly select a sketch from a list of generated sketches using our customization

rules. Parallel intrinsic functions are used to generate complete tensor programs

for the outer for-loop optimization, while vectorize and unroll intrinsic functions

are employed to optimize the inner for-loops. It is worth noting that all valid

hyper-parameters are sampled from a uniform distribution and assigned random

values during the tuning process.

3.4.4 Performance Tuner

ML-Based Cost Model. Auto-tuners [Compiler-NIPS2018-LOTP] provide a means

to search for the optimal scheduling of a tensor program from a vast search space.

A crucial component of this process is the use of a learned cost model to evaluate

the performance of all sampled tensor programs. The cost model is trained on a

wide range of extracted features, including arithmetic and memory access features

that represent the number of floating-point and integer operations, vectorization,

54

unrolling, parallelization, buffer access, allocation, and GPU thread binding-related

features. We adopt the same feature extraction scheme as that used in Ansor

[Compiler-OSDI2020-Ansor]. The loss function of the prediction model f on a set

of sampled programs P with throughput y is defined as the weighted squared error.

Specifically, the loss function is given as:

loss(f , P, y) = wp(∑
s∈S(P)

f (s)− y)2, (3.3)

where S(P) denotes a set of innermost non-loop statements in P. To predict the

performance of the sampled tensor programs, we train a gradient-boosting decision

tree [ENL-KDD2016-XGBoost] as the underlying prediction model f . In the training

process, we set y to be approximately equal to w for the actual calculation, which is

consistent with Ansor’s approach.

Evolutionary Search. To collect training data, a search policy is required for the

performance tuner. Evolutionary search is utilized, which repeatedly generates a

new set of candidates through mutation and crossover mechanisms for multiple

iteration rounds during the search. The objective of the performance tuner is to

select a set of tensor programs with the highest prediction scores for optimization. If

a generated tensor program has a higher prediction score, it indicates that it will run

faster on the platform. The generated tensor programs are compiled and measured

on the actual GPU platform to obtain the execution time as the training labels. In

addition, the collected data with the highest prediction scores from the previous

training is incorporated into the training dataset to enhance the quality of the cost

model.

55

3.5 Hardware Abstraction and Mapping on Tensor Cores

3.5.1 Domain Specific Accelerators on GPU

The recent advancements of GPU hardware technology have resulted in a significant

increase in computing power, particularly with the introduction of the Tensor Cores

on NVIDIA GPUs. Unlike the scalar-to-scalar primitives found in CPUs or the

general CUDA Cores in GPUs, Tensor Cores provide specialized tensor computation

capacities, which can deliver over 10× higher throughput. Notably, the initial version

of Tensor Core is designed for handling the GEMM with half-precision input and

full-precision output. Recently, new features supporting different datatypes such as

int8,int4 and int1 input variables have been introduced in the latest architecture

(Truing and Ampere). Listing 1 demonstrates several essential instructions utilized

in NVIDIA GPU Tensor Cores. It is worth noting that Tensor Cores are capable of

executing Fused-Multiply-Add (FMA) operations in each instruction cycle. These

FMA operations process input values in half-precision, while the output values can

be in either half-precision (FP16) or full-precision (FP32).

Tensor Cores enable the computation primitive of D = α(A× B) + βC, where

tiling of matrix A and B are required to be a certain type of precision, while the

type of matrix C and D are also be determined. The shape of tiling A(M × K)

and B(N × K) may have multiple configurations which depend on the input data

precision and GPU architecture. Unlike CUDA Cores, which require users to define

the execution flow of each thread, Tensor Cores only require the collaboration of a

warp of threads. Using Tensor Cores for computation involves the following steps: i)

before calling Tensor Cores, all registers of a warp of threads collaboratively store the

tiling into a memory component called fragment, which allows for data sharing

56

Algorithm 2 Standard Attention Implementation in the MHA

Require: Input Matrices Q, K, V ∈ RN×d in the global memory.
Ensure: Output Matrics O ∈ RN×d

1: Load Q, K with thread blocks from the global memory;
2: Compute S = QK⊤ with CUDA cores;
3: Store S back to the global memory;
4: Read S from the global memory;
5: Compute P = so f tmax(S) with the CUDA cores;
6: Write P back to the global memory;
7: Load P and V with thread blocks form the global memory;
8: Compute O = PV with the CUDA cores;
9: Store O back to the global memory;

across all registers. The intra-warp sharing mechanism provides opportunities for

fragment-based memory optimizations; ii) the loaded matrix fragment components

serve as the input variables of the Tensor Cores to generate the output fragment,

which also consists of the registers from each thread in a warp and data movements

among these registers are also managed collaboratively by a warp of threads.

In this section, we present a compilation-based approach to optimize tensoriza-

tion programs and introduce the abstractions utilized in our design. Our primary

aim is to convert high-level tensor expressions into low-level hardware intrinsics

with optimal inference performance. We define the register-level abstraction us-

ing hierarchical mapping, which is divided into two categories: computation and

data movement (memory) abstractions. The purpose of these abstractions is to

formalize the behavior of domain-specific accelerators, which enables our system to

automatically analyze and optimize different compute-intensive workloads. In this

work, we focus solely on the NVIDIA Turing 2080Ti GPU with the FP16 datatype

via Tensor Cores. Turing architecture supports two common matrix multiplication

shapes from the instruction-level parallelism, with 8 × 8 × 4 and 16 × 8 × 8. An

overview of our framework can be found in Figure 3.6. We illustrate the whole

process by using the matrix multiplication operator in Figure 3.7 and demonstrate

57

how to define the abstractions, generate tensorization candidates, and explore the

optimal mapping step-by-step on the Tensor Cores. Tensor Cores are supported

by different architectures such as Volta, Turing, and Ampere, and they can handle

various datatypes such as TF32, FP16, INT8, INT4 and INT1.

3.5.2 Standard Attention Implementation on CUDA Cores

Memory Access Overheads. Memory-aware design involves carefully managing

the movement of data between the different levels of hierarchical memory on

a GPU. Since most operations in transformer-based models are memory-bound

[ivanov2021data], it is crucial to implement memory-aware optimizations to achieve

an efficient performance. However, popular frameworks like TensorFlow, PyTorch,

and TVM lack the necessary fine-grained control for memory-bound optimization.

A computation paradigm that can compute exact operators in transformer-based

models with fewer data movements would be highly beneficial. Such a paradigm

would reduce the number of required memory accesses and improve overall per-

formance. Operation fusion, which involves using the output values from one

operation such as a matrix multiplication layer as the input directly to the following

operation such as a softmax layer, without writing intermediate values to off-chip

memory, is one way to achieve this optimization.

Opportunities. Given the inherent limitations of the standard attention mechanism,

it is imperative to minimize the number of memory accesses to improve perfor-

mance on GPUs. However, a naive approach may lead to increased data movement

overheads between on-chip and off-chip memory, even with the register files. For-

tunately, the MHA computation process can be deconstructed into distinct steps,

allowing the softmax reduction to be computed incrementally without accessing the

entire input. As such, the attention computation can be restructured by partitioning

58

Auto-Schedule
on Tensor Cores

Computation
Graph

Tensor
Expression

Optimized
CUDA Code

With WMMA

Dynamic Programming
Operator Fusion

Register-Level
Abstraction

TVM
CodeGen

GTCO

Figure 3.6: Register-Level Abstraction is defined to enable optimal configuration of tensor computa-
tion with WMMA instructions on Tensor Cores. The Input of the GTCO is the computation graph
extracted from a deep learning framework. The Dynamic Programming Operator Fusion (DPOF)
technique, as introduced in [bai2021iccad] with Section 3.4.1, is utilized for graph-level optimiza-
tion. With Register-Level Abstraction, the original tensor expressions can be encoded with hardware
intrinsic. Subsequently, a tensorization-aware auto-schedule, which includes code generation is
developed to generate high-performance tensor programs on Tensor Cores.

the input into blocks and performing several passes over these blocks. Our approach

leverages a compiler to enable precise control over memory access and combines the

matrix multiplication and softmax operations into a single kernel using specialized

hardware intrinsic to accelerate inference.

3.5.3 Register-Level Abstraction

Regarding computation abstraction, we utilize the function to represent arithmetic

operations such as addition and multiplication operators. Specifically, we represent

Tensor Core computations as mma_sync intrinsic, which is capable of computing a

matrix multiplication for a special shape. The abstraction can be defined as follows:

dst [m, n] = multiply(src1 [m, k] , src2 [k, n]). (3.4)

Register-Level abstraction is a list of statements that specify the scope, operands,

and memory access indices. The notation used for this abstraction includes dst to

represent the output tensor, and src1,2 for the input tensors. The terms “global”,

“shared”, and “register” are used to indicate the different memory hierarchies, while
→
i ,
→
j ,
→
k denote the indices for tensor storage in each hierarchy. Specifically,

→
i refers

59

Algorithm 3 Optimized Implementation with Tensor Cores

Require: Input Matrices Q, K, V ∈ RN×d in the global memory, shared memory of size
mem1 and register files of size mem2.

Ensure: Output Matrics O ∈ RN×d.
1: Divide Q into a numbers of blocks Q1, Q2, . . . , Qi, . . . , Q mem1

4d
;

2: Divide K into a numbers of blocks K1, K2, . . . , Ki, . . . , K mem1
4d

;
3: Load Qi and Ki with blocks from global memory to shared memory and store in the

fragment;
4: Divide Qi into blocks Qi1, Qi2, . . . , Qij, . . . , Qi mem2

4d
;

5: Divide Ki into blocks Ki1, Ki2, . . . , Kij, . . . , Ki mem2
4d

;
6: Load Qij and Kij from the fragment to the register files;
7: Compute Sij = Qij K⊤ij with the Tensor cores;
8: Compute the max value of row in Sij via mij;
9: Compute the pij = exp(Sij −mij) for softmax;

10: Compute the sum value of row via lij = ∑ pij;
11: Compute P = so f tmax(S) with mij, pij and lij;
12: Write P back to the shared memory and store in the fragment;
13: Load V to the shared memory and store in the fragment;
14: Compute O = PV with the tensor cores;
15: Store O back to the global memory;

to the indices in the global memory,
→
j in the shared memory, and

→
k in the register

files. It is important to note that the same operand may have different indices within

different memory scopes. For example, the intrinsic load_matrix_sync is used

to load data from shared memory to register files, while the intrinsic for storing

data from registers to global memory can be expressed in the same way. The whole

process of the data movement can be formulated as follows:

shared.Src
[→

j
]
= global.Src

[→
i
]

, (3.5)

reg.Src
[→

k
]
= shared.Src

[→
j
]

, (3.6)

global.Src
[→

i
]
= reg.Src

[→
k
]

. (3.7)

Both the computation and memory abstractions are designed to capture the behavior

of hardware intrinsics with the behavior of Tensor Cores.

60

3.5.4 Auto-Scheduling on Tensor Cores

To generate the abstraction with hardware intrinsics, we propose a hierarchical

mapping approach. First, we map the software iterations to a virtual accelerator

component composed of the load/store unit and computation units, without con-

sidering memory allocation or computation resource assignment. Next, we consider

constraints such as memory capacity and hardware intrinsic with six parameters, as

shown in Figure 3.7. These parameters can represent three-level parallel optimiza-

tion on the GPU with Tensor Cores. The first three parameters Bm, Bn, Bk can map

the computation on the thread-block-level concurrency. The last three parameters,

Wm, Wn, Wk represent warp-level optimization and parallelism in the implementa-

tion of the main loop. In the Tensorized Body component, the shapes of the WMMA

instruction and datatype differ between GPU architectures. For this work, we focus

solely on the Turing architecture with FP16 datatype, with the option of using 8

× 8 × 4 and 16 × 8 × 8 shapes. In order to obtain a valid physical mapping from

software iterations to the domain-specific accelerators with a more complex memory

hierarchy, we propose modifications to the previous auto-schedule introduced in

[bai2021iccad]. We present a practical example to illustrate our hierarchical map-

ping approach for matrix multiplication on Tensor Cores. Specifically, we consider

the computation S[m, n]+ = Q[m, k]× K[k, n], which can be easily extended to the

batch matrix multiplication used in vision transformer models on Tensor Cores.

The initial step assumes that GTCO is capable of loading data of arbitrary volume

into on-chip memory (register files and shared memory), and has sufficient hardware

resources to directly perform all the tensor computations. The primary challenge

at this stage is to map software-defined tensor operations to their corresponding

hardware intrinsic. The second step involves considering two types of constraints:

61

[Placeholder: Q, K, S

]

for i in range(1024):
for j in range(1024):

for k in range(512):
S[i,j]+=Q[i,k]*K[k,j]

Tensor Expression:

[Placeholder: Q, K, S

]

for i.0 in range(Bm):
for j.0 in range(Bn):

Tensor Transformation with Hierarchical Mapping:

for k.0 in range(Bk):

for i.1 in range(Wm):
for j.1 in range(Wn):

for k.1 in range(Wk):

Tensorized Body
mma_instruction(m,n,k)

Thread-blocks-level

Warps-level

Instruction-
 level

Q

K
SMatMul

Mathmetical Expression:

Thread Block Tile Warp Tile Thread Tile

Global Memory Shared Memory Register File Tensor Cores

Blocked GEMM

Load Input Activation 1

Global Memory

Auto Schedule on Tensor Cores

Figure 3.7: During auto-tuning, the matrix multiplication is mapped to Tensor Cores with
hardware intrinsic via a hierarchical mapping described in Algorithm 3. It involves three lev-
els of optimization, namely thread-blocks, warps, and instruction-level. It employs six parameters
(Bm, Bn, Bk, Wm, Wn, Wk) and two sets of WMMA instruction for tensor transformation. Addition-
ally, the double buffering technique is employed during kernel execution. It is worth noting that the
primary difference between GTCO and [bai2021iccad] is that the former utilizes more comprehensive
optimization techniques that span across all three levels of parallel programming models, while the
latter only uses thread-blocks-level optimization with shared memory on CUDA cores.

memory capacity and intrinsic size. Hardware accelerators have a fixed capacity

for computing results at any given time, which is limited by the problem size of an

intrinsic extracted from its indices range represented in the computation abstraction.

In our running example, the matched software iterations are limited by a factor

of 4 due to the problem size of the example Tensor Core shapes being 8 × 8 × 4

and 16 × 8 × 8. 1⃝, 2⃝, and 3⃝ show the proposed mapping across different

memory hierarchies from high-level mathematical expression to low-level hardware

intrinsic. Step 1⃝ represents that the original matrix is divided into tiling data,

which are loaded from the global memory to the shared memory and then stored in

62

Main
Kernel Computation

Global to
Shared Memory

 Registers to
Tensor Cores

Shared Memory
to Registers

Load from Global Memoy Store
 Shared

Load
Shared

Load
Shared

Load
Shared

Load
Shared

Load
Shared

Load
Shared

Load
Shared

Load
Shared

Load
Shared

CUDA
 __syncthreads()

Memory
Hierarchy

Kernel Kernel Kernel Kernel Kernel Kernel Kernel Kernel

Figure 3.8: The fusion of softmax and matrix multiplication kernel computation with data movement
across a complex memory hierarchy is implemented with the double buffering technique to improve
overall execution efficiency.

the fragment with thread block. It corresponds to the operation defined in Equation

(3.5). Step 2⃝ describes the process of moving tiling data from the fragment to the

register files for the computation, which corresponds to Equation (3.6). Step 3⃝
indicates that performing matrix multiplication within one clock cycle, using the

tiling data stored in the register and scaling it according to the dimensions (m ×
n × k) specified by the WMMA instruction. It corresponds to the data movement

operations defined in Equation (3.7). To alleviate the impact of memory latency,

software pipelining is utilized to overlap memory accesses with other computations

within a thread. The pipelining stage is set to 2 throughout the process. Further

details on the pipelining of various kernel fusions, such as softmax and matrix

multiplication operators in transformer-based models, can be found in Figure 3.8.

Thus, in order to identify the optimal implementation, valid software-hardware

mappings need to be selected from the design search space. However, when opti-

mizing these schedules with tiling or parallelization primitives on domain-specific

accelerators, it is challenging to determine the performance of these mappings. The

reason is that these optimizations, combined with different software-hardware map-

pings, exhibit varying performance due to differences in computation and memory

63

utilization. Moreover, the search space for performance tuning is too vast. Therefore,

to address this challenge, we employ a combination of tuning techniques and an

ML-based cost model to explore the mapping and schedule space. For a more

detailed description of the performance tuner design, please refer to Section 3.4.4.

It enables our computation and data movement in one kernel, loading input

from global memory, performing all the computation operations such as softmax

and matrix multiplication on the register-level files, then writing the result back to

global memory. It can avoid repeatedly reading and writing inputs and outputs

with the memory access overhead. More details about the proposed optimization

technique can be found in Section 3.5.3.

3.6 Evaluation

3.6.1 Experimental Setup

Our framework is implemented on top of PyTorch and the HuggingFace Trans-

formers library. We evaluate the effectiveness of our approach, such as oper-

ator fusion optimization, kernel generation mechanisms, and Tensor Cores ac-

celeration on three modern vision transformers: ViT [ATTN-arXiv2020-ViT] for

image classification, DETR [ATTN-ECCV2020-DETR] for object detection and

SETR [ATTN-CVPR2021-SETR] for semantic segmentation. The DETR and ViT

pre-trained models are downloaded from the Hugging Face datasets hub. The

SETR models are downloaded from the original GitHub repo [SETR-repo]. Py-

Torch 1.7.1, CUDA 10.0, cuDNN V7.6.5, NVIDIA driver 460.67, TVM 0.8.dev0

[Compiler-OSDI2018-TVM] and TensorRT V7.0.0.11 [GPU-NVIDIA-TensorRT]

are set as baselines for fair comparisons. Note that all evaluation results are

64

Table 3.1: Detailed information of the benchmark and experiment models

model ec dc width mlp-dim nh input shape patch mha encoder decoder Params

DETR-ResNet50-E3 3 6 256 2048 8 [1,3,800,1333] N/A
q [1050,1,256]
k [1050,1,256]
v [1050,1,256]

[1050,1,256] t [100,1,256] 37.40M

DETR-ResNet50-E6 6 6 256 2048 8 [1,3,800,1333] N/A
q [1050,1,256]
k [1050,1,256]
v [1050,1,256]

[1050,1,256] t [100,1,256] 41.30M

DETR-ResNet50-E12 12 6 256 2048 8 [1,3,800,1333] N/A
q [1050,1,256]
k [1050,1,256]
v [1050,1,256]

[1050,1,256] t [100,1,256] 49.20M

SETR-Naive-Base 12 1 768 4096 12 [1,3,384,384] 16
q [576,1,768]
k [576,1,768]
v [576,1,768]

[576,1,768] t [576,1,768] 87.69M

SETR-Naive 24 1 1024 4096 16 [1,3,384,384] 16
q [576,1,1024]
k [576,1,1024]
v [576,1,1024]

[576,1,1024] t [576,1,1024] 305.67M

SETR-PUP 24 1 1024 4096 16 [1,3,384,384] 16
q [576,1,1024]
k [576,1,1024]
v [576,1,1024]

[576,1,1024] t [576,1,1024] 310.57M

ViT-Base-16 12 0 768 3072 12 [1,3,224,224] 16
q [197,1,768]
k [197,1,768]
v [197,1,768]

[197,1,768] N/A 86.00M

ViT-Large-16 24 0 1024 4096 16 [1,3,224,224] 16
q [197,1,1024]
k [197,1,1024]
v [197,1,1024]

[197,1,1024] N/A 307.00M

ViT-Huge-14 32 0 1280 5120 16 [1,3,224,224] 14
q [257,1,1280]
k [257,1,1280]
v [257,1,1280]

[257,1,1280] N/A 632.00M

Table 3.2: The information of subgraphs and scheduling weights with graph partition

n1 Weight-Encoder n2 Weight-Decoder n3 Weight-Transformer

Ansor [Compiler-OSDI2020-Ansor] 9 {[6 ∗ 7], [12 ∗ 2]} 13 {[6 ∗ 10], [18 ∗ 3]} 22 {[6 ∗ 17], [13 ∗ 2], [19 ∗ 2], [18 ∗ 1]}
[bai2021iccad] 6 {[8 ∗ 4], [10 ∗ 2]} 11 {[8 ∗ 6], [20 ∗ 5]} 17 {[9 ∗ 12], [20 ∗ 3], [16 ∗ 2]}
GTCO 6 {[8 ∗ 4], [10 ∗ 2]} 11 {[8 ∗ 6], [20 ∗ 5]} 17 {[9 ∗ 12], [20 ∗ 3], [16 ∗ 2]}

collected on 2080Ti GPU by different batch sizes.

Workflow. Our workflow can be categorized into the following two patterns: 1)

For the inference engine like TensorRT, PyTorch is used to build the models and

then the ONNX export interface is used to export ONNX models. To avoid some

redundant operators caused by conversion, ONNX-Simplifier [onnx-sim] is used

to simplify the ONNX model. Finally, the model is converted into an executable

file with the CUDA runtime environment; 2) As for the compiler flow like Ansor,

[bai2021iccad] and GTCO, the model is converted into the TorchScript format first

65

Table 3.3: End-to-end network execution performance benchmark (ms)

PyTorch JIT [DL-NIPSW2017-PyTorch] TVM-CUDA [Compiler-OSDI2018-TVM] TVM-cuDNN [Compiler-OSDI2018-TVM] TensorRT [GPU-NVIDIA-TensorRT] Ansor [Compiler-OSDI2020-Ansor] [bai2021iccad] GTCO

DETR-ResNet50-E3 18.62 54.73 54.43 6.97 5.85 5.32 4.18

DETR-ResNet50-E6 23.67 93.59 88.25 7.73 6.78 5.60 4.46

DETR-ResNet50-E12 33.01 171.96 157.97 15.79 14.29 13.18 11.08

SETR-Naive 68.26 753.25 742.21 33.71 34.22 28.65 22.34

SETR-Naive-Base 31.06 186.13 187.39 16.97 15.44 14.21 11.45

SETR-PUP 37.62 199.42 189.21 18.61 17.89 16.01 12.88

ViT-Base-16 24.92 91.86 96.31 5.87 8.57 8.43 5.08

ViT-Large-16 52.96 329.74 334.38 18.45 18.99 18.41 14.85

ViT-Huge-14 76.07 846.87 846.27 34.14 32.53 29.89 24.08

and then is imported into the Relay interface to read the TorchScript model into

our compilation system. In terms of the subgraphs, the corresponding tensor

programs are generated by the code generation part. As for the Tensor Cores

settings, we only use the basic instructions provided by CUDA such as fragment,

load_matrix_sync, mma_sync, store_matrix_sync without extensions of

customized instructions.

3.6.2 End-to-End Performance

Workloads. The configurations of the models are described in Table 3.1, including

the number of encoders, decoders, attention heads, the shape of inputs, and the

outputs. All of the results are reported with batch size 1 on an NVIDIA 2080Ti.

Baselines and Configurations. PyTorch JIT [DL-NIPSW2017-PyTorch], TensorRT

[GPU-NVIDIA-TensorRT], TVM [Compiler-OSDI2018-TVM], and Ansor [Compiler-OSDI2020-Ansor]

are used as our baseline frameworks. More specially, there are two common ways

to improve the efficiency of execution time on GPUs. Optimizing operators via

the vendor-provided libraries such as PyTorch and TensorRT is the first way. On

the other hand, another strategy is to use a regression-based model to search the

schedule for each kernel such as TVM. In the meantime, TVM also supports calling

external libraries such as cuBLAS/cuDNN to optimize some kernels in the compu-

tational graph. PyTorch JIT is a just-in-time compiler in PyTorch, which is a way

to create serializable and optimizable models from PyTorch code to a production

66

Table 3.4: ViT-Base-16 with different optimization settings

Setting
GTCO

(a) (b) (c) (d) (e) (f)

TC ✓ ✓ ✓ ✓ ✓

DPOF ✓ ✓ ✓ ✓

Sketch Customization ✓ ✓ ✓

Subgraph Scheduler ✓ ✓

Auto-Schedule Register ✓

Speedup 1.00× 1.22× 1.44× 1.56× 1.59× 1.68×

environment where Python programs may be disadvantageous for performance and

multi-threading reasons. Auto-tuning trails are set to 10,000 measurement unless

execution time converges to a stable value. The goal of the subgraph scheduler

is to minimize the total execution time. Finally, optimized tensor programs for

subgraphs are generated for measurement. In the Turing architecture GPUs, they

have two recommended types of GEMM shapes with 8× 8× 4 and 16× 8× 8. We

use 8× 8× 4 in all of the experiments and we find that 16× 8× 8 is not better than

the former after a certain number of experiments.

Results. Table 3.3 shows the results on a NVIDIA RTX 2080Ti GPU. In general,

[bai2021iccad] surpasses all of the baseline frameworks except the ViT-Base vision

model. Compared with vendor-specific engine TensorRT, [bai2021iccad] consistently

outperforms all benchmarks with 1.01 to 1.38× speedup except for the ViT-Base

vision model. The reason for the drop in execution time is that ViT-Base is com-

posed of a number of encoders, and the input shape (197, 1, 768) of the encoder

in ViT-Base is relatively limited compared with ViT-Large and ViT-Huge. Thus,

it limits the search space of specific operators in transformer-based models such

as batch matrix multiplication and softmax fusion in MHA. Compared with the

tuning-based method [Compiler-OSDI2020-Ansor], [bai2021iccad] outperforms all

67

benchmarks with 1.01 to 1.21× speedup. That is, our framework equipped with

operator fusion technique and sketch customization rules has achieved good per-

formance on transformer-based vision models. TVM-cuDNN/BLAS means we

use the TVM as the compiler and then call the operators defined in the cuDNN

and cuBLAS library to optimize the execution time of each kernel. Compared

with TVM-cuDNN/BLAS [Compiler-OSDI2018-TVM], [bai2021iccad] consistently

outperforms all benchmarks with significant speedup.

Obviously, TVM-cuDNN/BLAS uses the operator fusion patterns defined in

Relay to partition the graph into lots of subgraphs. Each operator in the subgraph is

replaced with the implementations in cuDNN/cuBLAS. Neither the search-based

optimization for the tensor program nor fine-tuning the performance of each kernel

by a regression-based cost model is implemented during the optimization. Therefore,

[bai2021iccad] has more advantages on the emerging new operators or uncommon

operator fusion patterns because it is not easy for vendor-specific static libraries

such as cuDNN/cuBLAS to optimize for all the cases manually. The only difference

between TVM-CUDA and TVM-cuDNN/BLAS is that the implementation of each

operator in the subgraph is done by the default scheduling template defined in the

deep learning compiler. Note that the GTCO means all of the transformer-based

vision models are conducted on the Tensor Core with floating-point 16 data type.

From the last column in Table 3.3, we can find that our abstraction design and

mapping strategies on Tensor Cores for GTCO perform the best in the end-to-end

benchmark. In the DETR-ResNet series of vision models, GTCO can achieve up

to 1.27 × speedup compared with [bai2021iccad] on 2080Ti GPU. In the SETR

series of vision models, GTCO can achieve up to 1.28 × speedup compared with

[bai2021iccad].

All in all, our design can fully take advantage of the Tensor Cores on the modern

68

GPU to accelerate the vision transformer execution with specific datatype FP16.

Ablation study. To explore the function of each module, we run variants of GTCO

on the ViT-Base-16 benchmark. “DPOF ✓” means dynamic programming operator

fusion technique is used to optimize the computation graph from graph-level rather

than the template-based method designed in Relay. “Sketch Customization ✓

” means sketch generation rules and search policy defined in GTCO is used to

generate the tensor program rather than default configurations defined in Ansor.

“Subgraph scheduler ✓” means we use the object function defined in Equation (3.2)

to optimize our auto-tuning. Obviously, Design (a) is the native Ansor with Tensor

Core support. We set the execution time of Design (b)-(d) to be the speedup against

Ansor equipped with Tensor Core. As shown in Table 3.4, Design (e) performs the

best in speedup performance among all of the designs. “TC” means that we only

use the Tensor Cores to accelerate the operators in the models without register-level

abstraction and hierarchical mapping. “Auto-Schedule Register” represents the

proposed register-level abstraction and auto-schedule on Tensor Cores. It can verify

that the graph and tensor co-design is very significant for the transformer-based

model execution. At the graph-level, GTCO utilizes the “DPOF” to optimize the

operator fusion and then uses a subgraph scheduler designed for the transformer-

based model to assign different search tasks with various time slots. At the tensor-

level, the tensor programs are generated by our sketch generation rules with search

policy. The design of register-level abstraction of computation and memory can

boost the final performance on Tensor Cores with hierarchical mapping.

3.6.3 Subgraph Benchmark

Baselines and Configurations. Three common subgraphs in DETR-ResNet-50-E6 are

conducted to verify the subgraph benchmark including MHA, Encoder, and Decoder.

69

MHA
Encoder

Decoder

Transformer
0

1

10

100

PyTorch JIT
TensorRT
Ansor
[bai2021iccad]
GTCO

Figure 3.9: Sugraph performance benchmark. The y-axis is the throughput-based log 10 and then
plus 1.

The measurement trails per test case are set to 20,000 during the auto-tuning for

Ansor and we use the consumed time in the whole process to demonstrate the final

performance. We use the same set of baseline frameworks and run benchmarks

with the approximate converged latency.

Results. Figure 3.9 shows that [bai2021iccad] outperforms PyTorch JIT on the

Encoder and Decoder by 2.47× and 11.67× speedup. For the high-performance

computing library TensorRT, [bai2021iccad] can achieve 2.47×, 1.08×, and 4.19×
speedup on MHA, Encoder, and Decoder. For the compiler-based search algorithm

Ansor, GTCO can achieve 1.29×, 1.17×, and 1.17× speedup on MHA, Encoder, and

Decoder. It can prove that [bai2021iccad] can generate efficient tensor programs

for these subgraphs on the NVIDIA GPU platform. Meanwhile, GTCO performs

best in all subgraph benchmarks compared with Pytorch-JIT, TensorRT, Ansor,

and [bai2021iccad] under the same inference configuration. GTCO can achieve

1.83×, 1.44×, and 1.29× speedup on MHA, Encoder, and Decoder compared to

[bai2021iccad].

70

Table 3.5: The number of measurement trails

Ansor [Compiler-OSDI2020-Ansor] [bai2021iccad] GTCO

Multi-Head Attention 1,600 1,408 1,264

Encoder-3-Layer 3,008 2,816 2,416

Encoder-6-Layer 4,992 4,096 3,464

Encoder-12-Layer 6,528 5,760 5,022

Decoder-6-Layer 2,688 2,432 1,986

DETR-ResNet-50-E6 8,640 6,784 6,112

Average 100% 87% 75%

3.6.4 Graph Partition and Tuning Time

The graph partition on the DETR-ResNet50-E6 benchmark is shown in Table 3.2. “ni”

means the number of subgraphs in the encoder, decoder, and transformer models,

respectively. The meaning of “Weight-*” can be explained with two important

values. For example, {[6 ∗ 7] , [12 ∗ 2]} means there are 7 subgraphs with weight

value 6 and 2 subgraphs with weight value 12. Therefore, the total number of

subgraphs in the encoder is 9. Compared to the rule-based method in Ansor, we can

find that our graph partition and subgraph scheduler methods can achieve a more

effective operation fusion strategy for the number of subgraphs and weight values.

In addition, GTCO can not change the partition methods defined in our optimization

on encoders and decoders compared with [bai2021iccad] from Table 3.2, and it only

accelerates the runtime on the Tensor Cores.

Table 3.5 shows the search time needed for [bai2021iccad] and GTCO to match

the execution time of Ansor on the same benchmark.“number of measurement

trails” are used to evaluate the search time. From the table, GTCO can match the

performance of Ansor with fewer measurement trails. It can prove that the efforts

saving in search time come from the techniques we introduced before including

a subgraph scheduler, the dynamic programming operator fusion at the graph

level, the sketch generation rules for tensor programs generation, and register-

level abstraction with hierarchical mapping on Tensor Cores. From the average

71

Table 3.6: The time used in the total compilation phase

Network batch [bai2021iccad] GTCO Ratio

1 1,625 1,430 88%

DETR-ResNet50-E3 4 3,652 3,324 91%

8 6,322 5,436 86%

1 1,825 1,624 89%

DETR-ResNet50-E6 4 4,314 3,796 88%

8 6,792 6,112 90%

1 1,997 1,698 85%

DETR-ResNet50-E12 4 4,798 4,220 87%

8 7,001 5,880 84%

1 2,158 1,770 82%

SETR-Naive 4 4,334 3,640 84%

8 6,698 5,626 84%

1 4,160 3,452 83%

SETR-PUP 4 5,026 4,272 84%

8 8,298 6,804 82%

1 1,682 1,312 78%

ViT-Base-16 4 4,146 3,358 81%

8 7,019 5,826 83%

1 2,767 2,214 80%

ViT-Large-16 4 5,310 4,354 82%

8 7,631 6,410 84%

1 3,158 2,748 87%

ViT-Huge-14 4 6,620 5,564 84%

8 9,012 7,388 82%

performance of six benchmarks, we can find that GTCO outperforms the Ansor and

[bai2021iccad]. CTCO can generate high-performance tensor programs on Tensor

Cores with less effort.

Table 3.6 shows the total compilation time needed for GTCO to match the nearly

uniform latency performance of [bai2021iccad] on the end-to-end performance. All

the data used in this table are recorded in seconds. We use “Ratio” to demonstrate

the efficiency of our compilation technique. Compared with the time 1,625 seconds,

the total compilation time used in GTCO with DETR-ResNet-E3 is 1,430 seconds.

If we use the GTCO with FP16 datatype on Tensor Cores, we can get the final

latency performance compared with the dense CUDA Core version of GTCO in

88% of the total time. From all of the experimental results in the Table 3.6, we can

find that the techniques used in the hardware abstraction and automatic mapping

72

on Tensor Cores can accelerate the optimization time during the total compilation

phase among all of the vision transformer models.

3.7 Summary

Existing deep learning compilers optimize operator fusion based on the rule de-

signed by experts, which is strictly improving execution performance for the new

operators on hardware platforms. However, they fail to consider the potential

performance improvements that more effective operator fusion strategies could pro-

vide. This work addresses this issue by tackling the problem from two perspectives.

Firstly, a dynamic programming algorithm is introduced to explore operator fusion

patterns. Secondly, a search policy is proposed that includes new sketch generation

rules and a novel hardware abstraction with register-level optimization, enabling

more flexible mapping for tensor computation and better performance. This ap-

proach is applied to optimize fused matrix multiplication and softmax operators

with WMMA instructions. To achieve an end-to-end flow, a regression-based learned

model is used to fine-tune the performance of each kernel. Overall, GTCO achieved

up to 1.73× inference speedups compared to the high-performance inference engine

TensorRT with Tensor Cores, and 1.38× speedups with CUDA Cores.

73

Chapter 4

ATFormer: A Learned Performance

Model with Transfer Learning Across

Devices for Deep Learning Tensor

Programs

4.1 Motivation

Recently, there has been a significant improvement in model performance for deep

neural networks (DNNs) [CNN-CVPR2016-He, MobileNetV2-CVPR2018-sandler,

Semantic-Seg-Shan, Bert-NACCL2019-Devlin, FBNet-CVPR-WU, VQA-CVPR2019-STVQA,

bello2019-attentionaugmentedcnn]. However, this progress has been accompanied

by a significant increase in the number of operators and, consequently, the compu-

tational complexity of DNNs. As a result, it has become increasingly challenging

to efficiently deploy DNNs with optimized tensor programs on certain hardware

accelerators like CPUs, GPUs and TPUs [TPU-V1-Google].

74

To overcome the limitations, mainstream search-based tensor compilers [Chen-TVM-OSDI,

Ansor-OSDI2020-Zheng, AutoGTCO-ICCAD2021-Bai2021, li2020deep, MLSYS2021_182be0c5]

are developed. These compilers automatically search for the optimal deployment

configuration of each operator on increasingly heterogeneous platforms. Conduct-

ing on-device measurements is extremely time-consuming, making it impossible

to place all the generated tensor programs on the target platform for measurement

during the compilation process. Therefore, the prediction via an optimal cost model

is crucial in reducing the time-consuming measurements during the compilation

which can significantly improve search efficiency and quality.

Nevertheless, the existing cost models are capable of selecting nearly optimal

configurations but suffer from excessively long optimization time. These long opti-

mization times not only impede the deployment period but also raise concerns about

the practicality of search-based compilers. Furthermore, statistic cost models trained

on one hardware platform exhibit significant performance degradation on different

hardware, making them unusable across different platforms. It is noteworthy that

the execution times of tensor programs can vary significantly on different platforms

due to domain gaps, making it challenging to deploy optimized models on multiple

platforms. This is further compounded by the significant differences in the features

extracted from various platforms. Even when extracted on GPUs, the feature’s

stability and performance cannot be guaranteed across different GPU architectures

such as Volta, Turing, and Ampere. Therefore, additional engineering efforts are

necessary to account for the differences in hardware architectures, resulting in a

laborious and cumbersome feature extraction process.

To address these challenges, we propose a powerful yet simple approach that uses

attention-inspired blocks to enhance the performance of cost models. These blocks

can capture global and long-range dependencies among tensor program statements.

75

Additionally, transferable features with pre-trained parameters are used to expedite

search convergence across different hardware platforms. These techniques can be

easily incorporated into existing search algorithms and improve efficiency in an end-

to-end fashion. Our performance model, consistently outperforms popular DNN

benchmarks, including small and large-scale models. Furthermore, our techniques

enable cross-platform transfer learning, resulting in more efficient deployment.

4.2 Problem Formulation

We describe a DNN model as a computation graph and then define some important

terminologies in the compilation flow.

Subgraph. Computation Graph G is partitioned into a set of subgraphs S based

on the graph-level optimizer [UW-Relay-PLDI]. Each search task is extracted from

an independent subgraph Si on a specific hardware platform H. Thus, we define

search task Q as follows:

QH(S|G) =
{

Q1
(S1|G), Q2

(S2|G), . . . , Qn
(Sn|G)

}
, (4.1)

where n is the number of subgraphs in G. Note that each subgraph Si contains a

computation-intensive operator σ and σ ∈ Si. Therefore, we use Qi
(Si|G) to represent

the i−th search task in G. Each subgraph Si has its own search space, which is

determined by the input and output shapes, data precisions, memory layout, and

the hardware platform. The search space is usually large enough to cover almost all

kinds of tensor candidates.

Hierarchical Search Space. A tensor program, denoted by p, represents an imple-

mentation of the subgraph using low-level primitives that are dependent on the

hardware platform. Each tensor program can be considered as a candidate in the

76

search space. We define the hierarchical search space ϕ1,2, which decouples high-

level structures ϕ1 from low-level details ϕ2, allowing for the efficient exploration

of potential tensor candidates during the tuning process. Here, we can transform

a tuning problem into an optimization problem that explores the potential tensor

programs in a hierarchical search space.

Given code generation function 1, high-level structure generation parameters

ϕ1, low-level detail sampling parameters ϕ2, computation-intensive operator σ and

operator setting k (e.g., kernel size), our goal is to use ϕ1,2 to build a hierarchical

search space and generate tensor program p to achieve the optimal prediction score

y∗ on a specific GPU hardware platform C with CUDA cores.

ϕ∗1,2 = arg max
ϕ

yc,

yc = fC(1(ϕ1, ϕ2|σ, k)).

(4.2)

The cost model fC predicts score yt of the tensor program p on GPU CUDA

cores. The accuracy of the cost model fC is crucial in finding ideal optimization

configuration.

4.3 Performance Model

The process of optimization using our design is outlined in Algorithm 4. The

input is a set of optimized operators or subgraphs with different configurations. To

implement our workflow, three functions are defined: GenerateHighSketch(),

Sampling(), and EvolutionSearch(), as shown in Algorithm 4. The function

of GenerateHighSketch() takes ϕ1, σ, and k as input and returns the high-level

generation sketch GS1 as output. Sampling() takes GS1, ϕ2, σ, and k as input

77

Algorithm 4 Search-based Framework on CUDA Cores
Require: Search space ϕ1, ϕ2 with operator σ and setting k.
Ensure: Tensor program p∗ with best configuration c∗.
1: while nTrials < eachSubgraphTrials do
2: GS1 ← GenerateHighSketch(ϕ1,σ,k);
3: GS2 ← Sampling(GS1,ϕ2,σ,k);
4: P← EvolutionSearch(GS1, GS2);
5: for p ∈ P do
6: c← fC(1(ϕ1, ϕ2|σ, k));
7: nTrials← nTrials + batchSize;
8: c∗ ← best tensor program configurations on CUDA cores;

and returns the low-level annotation samples GS2 as output. EvolutionSearch()

takes the high-level generation sketch GS1 and the low-level annotation samples

GS2 as input and returns a group of tensor candidates for the cost model training.

Next, an evolutionary search strategy is used along with a learned cost model to

fine-tune the performance of the generated tensor programs. By iteratively mutat-

ing high-quality tensor programs, it can generate new programs with potentially

higher quality. After a number of measurement trials, the best tensor program

configurations can be identified.

Hierarchical Feature Generation. The input of ATFormer is a series of mix-grained

feature vectors extracted from pσ, where pσ is the full tensor program to implement

operator σ. Each vector represents a single computation statement within pσ.

These mix-grained feature vectors are composed of two important components: (i)

Coarse-Grained operator embedding features that capture the high-level structure of the

operator σ and (ii) Fine-Grained statement features that capture the low-level details of

each statement within program pσ. Each operator in the subgraph S can be classified

into a few categories, and we represent each operator with a one-hot embedding

feature vector that covers all possible operator types. In practice, we use feature

vectors of length 10 for the operator embedding and length 164 for the statement

features, consistent with the approach used in Ansor [Ansor-OSDI2020-Zheng].

78

Placeholder: A, B
for i.0 in range(None):

for j.0 in range(None):

for k.0 in range(None):
for k.1 in range(None):

Computation Statement 1= …

High-level Structure:

 Conv2DO
utput

Feature VectorComputation Statement 2 = … …
…

Innerm
ost

statem
ent

features

O
perator

em
bedding

features

164
10

174

Figure 4.1: Hierarchical features of convolution with a full tensor program representation.

The prediction score for a subgraph is computed as the sum of the prediction scores

for each innermost non-loop statement within the loop nests of the full tensor

program. More details can be found in Figure 4.1.

Model Architecture. Our proposed ATFormer model consists of three layers: (i)

a kernel embedding layer, which extracts a compact feature representation; (ii)

a computation processing layer, which captures essential information from the

innermost non-loop computation statements in the neighborhood; and (iii) a simple

regression layer for making the final prediction. ATFormer can be easily integrated

into existing search algorithms and consistently improve the efficiency of auto-

tuning. We believe that the simplicity of our method will attract more research

attention to the field of tensor operator optimization, further enhancing training

and inference efficiency. The feature processing of computation and regression in

ATFormer is illustrated in Figure 4.2. The kernel embedding layer is composed

of two fully connected layers with ReLU activation. The function of the kernel

embedding layer is to project the features from low dimension space to a new

embedding space for similarity measurement. Starting from the batched tensor

programs I ∈ RL×Din representing a specific type of operator σ, where L is the

accumulated number of the feature statements within I . A kernel embedding

79

Feature

Score

N
orm

alization

Em
bedding

Self-A
ttention

N
orm

alizaiton

M
LP

Multi-head : 4
dimension : 512

A
ttention
Block

A
ttention
Block

M
LP

Computation Layer Regression

 Traditional Learning
 (Online Dataset)

ATForm
er

(Cost M
odel)

Figure 4.2: The architecture of performance model includes two attention blocks that extract coarse
and fine-grained features of the tensor program, as well as a lightweight MLP layer for directly
predicting the score.

layer then generates a set of feature statements E ∈ RL×Dout in embedding space.

Typically, we use Dout = 512. The value L is determined by the parameters of

high-level structures ϕ1 and the low-level details sampling ϕ2 for each subgraph S.

As for the computation layer, a set of feature statements E ∈ RL×Dout should

be split into M stacks of feature statements Z ∈ RM×N×Dout firstly. Each stack

contains N feature statements of innermost non-loop computation within a full

tensor program p. We adopt the self-attention mechanism for feature statements

aggregation. With the parameter tensors written as W Q, WK, WV , a full tensor

program with a set of innermost non-loop feature statements Z is first encoded into

query Q, key K, and value V by three identical linear transformations: Q, K, V =

Z⊤W . Then it will be further calculated by the self-attention as:

Attention(Q, K, V) = Softmax

(
Q⊤K√

dk

)
V . (4.3)

The final prediction of these M tensor programs is computed by a regression layer

with a dimension from 512 to 1. The predicted score is y ∈ RM×1.

80

Source Domain

Transferable
Feature

XGBoost

LSTM

ATFormer

Source TargetTransfer Learning

Tesla T4 GPU

RTX 2080Ti GPU

Target Domain 2

Target Domain 1

RTX 3090 GPU

Figure 4.3: Transfer learning among different platforms with ATFormer.

Loss Function. The model ranks the performance of potential candidates in a large

search space. Therefore, the model can be trained with ranking losses or regression

losses to predict relative or absolute scores. To explore the loss function to train

ATFormer, a common choice is to use the squared error function as a regressor

which can mostly care about identifying the well-performing tensor programs.

The loss function of the model f on a full tensor program p with throughput h

is MSELoss(f , p, h) = (∑s∈S(p) f̂ (s)− y)2, where S(p) is the set of innermost non-

loop computation statements in tensor program p. We train ATFormer as the

performance model f . However, we only care about the relative order of tensor

program runtime rather than their absolute values during the compilation. We

instead use the following RankLoss [Learning2rank-ICML2007-Cao] to rank the

performance of candidates in the large design space. This can fully exploit the

optimal candidates to reduce the impact of the search algorithm on final prediction

results. The loss function is defined as follows:

RankLoss = ∑
s(i),s(j)∈S(p)

log(1 + e f (i,j)); (4.4)

f (i, j) =−sign(yi − yj)(f̂ (si)− f̂ (sj)). (4.5)

We can use the prediction f̂ (x) to select the top-performing implementations of a

81

…

…

…

… V1

V3
V2

V4

K

Q

V

Score

Correlation

Computation Statement 1= …

Computation Statement 2 = …

Computation Statement 4

Computation Statement 3 =…

for：

for：
for：

for：

Figure 4.4: Self-attention between statement vector features during the compilation

full tensor program p. The computation graph G is trained for tensor programs

extracted from all subgraphs. The throughput of all tensor programs is normalized

to be in the range of [0, 1].

4.4 Transfer Learning

The trade-off between search time and performance improvement is interesting

to explore and exploit, as long search times may not always be acceptable. Our

current focus is on developing a cost model for optimizing tensor operators on a

specific hardware platform. However, in practical settings, we require a cost model

that can be used across various hardware platforms. This would allow us to reuse

a single-cost model for multiple platforms by providing it with new online data

during auto-tuning. To achieve this, we pre-train the cost model with an offline

static dataset and exploit transferable features that are invariant to both source and

target domains to speed up the optimization process, as depicted in Figure 4.3. The

use of transferable features greatly contributes to the success of transfer learning,

as different designs may have varying degrees of invariance. By training the cost

82

model offline using a dataset, we can significantly reduce the frequency of on-device

measurements and use the pre-trained parameters as a starting point for new search

tasks via transfer learning. In Figure 4.4, each tensor program is transformed into a

sequence of vectors, with each vector representing a tensor computation statement.

During training, all sequences are of the same length, and any shorter sequences

are padded with zeros at the end. The padded items are masked out and excluded

from the loss computation.

4.5 Extension with Tensorized Instruction

4.5.1 Tensorized Instruction on NVIDIA GPUs

The surge in hardware specialization has added further complexity to the problem

at hand. In order to accelerate machine learning, modern hardware backends have

introduced specialized instructions for efficient tensor computations. Examples

of such advancements include Nvidia Tensor Core [nvidia2017tensorcore] and

Google TPU [jouppi2017datacenter]. Additionally, experts in various domains have

begun developing micro-kernel primitives, which employ highly optimized instruc-

tions to perform sub-computations and expedite domain-specific tensor operator

libraries. These hardware instructions and micro-kernel primitives primarily operate

on multi-dimensional tensor regions, enabling efficient tensor operations such as

multi-dimensional loads, dot products, and matrix multiplications. To fully lever-

age the potential of these hardware backends, modern machine learning systems

must optimize programs that consist of hierarchical loop nests, multi-dimensional

loads, and tensor intrinsics. We refer to this optimization challenge as tensorized

instruction optimization. Currently, most tensorized programs are optimized by

83

domain experts who combine tensorized primitives with multi-dimensional loops,

threading patterns, and data caching techniques to create specialized kernel li-

braries like Intel MKL-DNN [intel2017mkldnn], ARM Compute Library [acl], and

NVIDIA cuDNN [chetlur2014cudnn]. These libraries are then utilized by popu-

lar machine learning frameworks such as TensorFlow [abadi2016tensorflow], Py-

Torch [paszke2019pytorch], and MXNet [chen2015mxnet]. However, the support

for an expanding range of models and backends requires significant engineering

efforts, and the adaptation of these libraries to the ever-changing and expanding

landscape of machine learning applications takes time, hindering the development

of new machine learning models.

Notably, the Tensor Core [nvidia2017tensorcore] on NVIDIA GPUs stands out

as a significant breakthrough. Unlike the scalar-to-scalar primitives in CPUs or the

general primitives on GPUs CUDA Cores, Tensor Core offers specialized tensorized

instructions that can achieve higher throughput. It is noteworthy that the original

tensorized instructions on Tensor Core was designed to handle basic GEMM op-

erations with half-precision input and full-precision output. More recently, new

features have been introduced on the latest GPU architecture to support different

data types such as int8, int4, and int1. Each cycle of a Tensor Core can carry

out Fused-Multiply-Add (FMA) operations, whereby the input values are in half-

precision, while the output values can either be in half precision (FP16) or full

precision (FP32).

The matrix tiling shapes of A with (M× K) and B with (N× K) can have various

configurations depending on the data type and the different GPU micro-architecture.

For instrance, if we set the datatype as 1-bit, the Tensor Core requires M = N = 8

and K = 128. Unlike the CUDA Cores, which necessitate users to define the

execution flow of each thread, the Tensor Core only requires the collaboration of a

84

 Tensor O
perator

for i.0 in range(None):
for j.0 in range(None):

for k.0 in range(None):
Computation Statement 1 with

Tensorized Instruction (wmma)
for i.1 in range(None):

for j.1 in range(None):

Computation Statement 2 with
Tensorized Instruction (wmma)

for k.1 in range(None):
Computation Statement 3 with

Tensorized Instruction (wmma)

i.0 Loop

j.0 Loop

k.0 Loop i.1 Loop j.1Loop

k.1Loop

C
om

putation Feature Vector

C
om

putation Feature Vector

C
om

putation Feature Vector

Computation Features with
Tensorized Instructions

164

…

15 5 10
Innermost Statement

Features

Assignment
Features

Operator Embedding
Features

Figure 4.5: Feature vectors with tensorized instructions for a tensor operator during the compilation.

warp of 32 threads. The process of utilizing Tensor Cores can be summarized as

follows: i) prior to invoking Tensor Cores, all registers within a warp of threads must

collectively store the matrix tiling in memory called a fragment, which enables data

sharing across all registers. This intra-warp sharing mechanism presents numerous

opportunities for fragment-based memory optimizations; ii) the loaded matrix

fragment serves as inputs for the Tensor Core, generating the output fragment,

which also encompasses the registers from each thread in a warp. Data movements

among these registers are managed collaboratively by the warp of threads.

4.5.2 Assignment features for Tensor Program Characterization

In order to get the high-performance implementation of each operator by compila-

tion, we can transform the generation of tensor program with tensorized instruction

into an optimization problem that explores the potential configurations in a hierar-

chical scheduling space.

85

Problem Formulation. Given code generation function 2, high-level structure

generation parameters ϕ1, low-level detail sampling parameters ϕ2, register-level

computation abstraction ϕ3, data movement abstraction ϕ4, computation-intensive

operator σ and operator setting k (e.g., kernel size), our goal is to use ϕ1,2,3,4 to

build a hierarchical scheduling space and generate tensor program p to achieve the

optimal prediction y∗ on a specific GPU platform T with tensorized instruction.

ϕ∗1,2,3,4 = arg max
ϕ

yt,

yt = fT(2(ϕ1, ϕ2, ϕ3, ϕ4|σ, k)).

(4.6)

The performance model fT predicts score yt of the tensor program p with ten-

sorized instruction and the accuracy of the fT is crucial in searching ideal program

configuration in the large scheduling space. Our tensor program characterization

is based on the representation of intermediate representation. A tensor program

is caracterized as an ordered tree of computation feature vectors as shown in Fig-

ure 4.5. A computation feature vector that includes three pieces of information:

i) innermost statement features; ii) assignment features; iii) opeartor embedding

features. We describe each of these components, the key features we aim to encode

by each one, and how to combine them in a compact way during the tensor program

compilation. Compared with the previous compilation framework with auto-tuning,

the tensorized instructions are quite new and there is a lack of understanding of the

behavior during the execution. In order to achieve a fully automatic compilation

flow for generating the tensor program with tensorized instruction, the core of this

flow is the performance model which estimates the latency of tensorized program

candidates on the hardware. Therefore, it is important to design the performance

model which can clearly specify the behavior of tensorized instruction. Based on

86

Algorithm 5 Extension with Tensorized Instructions.
Require: Search space ϕ1, ϕ2, ϕ3, ϕ4 with operator σ and setting k.
Require: Algorithm and iteration matching access matrix A, I.
Require: Tensorized instruction access matrix T .
Ensure: Tensor program p∗ with best configuration c∗.

1: while nTrials < eachSubgraphTrials do
2: GS1 ← GenerateHighSketch(ϕ1,σ,k);
3: GS2 ← Sampling(GS1,ϕ2,σ,k);
4: GS3 ← RegisterCompute(GS2,ϕ3,σ,k);
5: GS4 ← RegisterDataMove(GS3,ϕ4,σ,k);
6: P← EvolutionSearch(GS1, GS2, GS3, GS4);
7: for p ∈ P do
8: c← fT(2(ϕ1, ϕ2, ϕ3, ϕ4|σ, k));
9: Validation(c);

10: nTrials← nTrials + batchSize;
11: c∗ ← best tensor configurations with tensorized instructions;
12: function Validation(G, C)
13: A

′
= T × I;

14: T
′
= A× IT ;

15: Return (A
′
= A) and T

′
= T ;

the previous design experience in [bai-2023-atformer], we also use the innermost

statement features to handle the general for-loop nests based optimization in a full

tensor program and opeartor embedding features for the tensor category. The main

difference is that we design the a set of novel assignment features between previous

computation feature vectors. The idea behind the assignment feature is to make the

performance model handle the tensorized instructions into the compilation process.

That is, these assignment features can reform the low-level tensorized instructions

into equivalent high-level progarm representation. We category assignment features

into two components: 1) data movement abstraction; 2) computation abstraction.

The goal of this design is to formally define the behavior of data movement and

compuation so that our performance model can automatically analyze the tensorized

instruction on the hardware during the compilation.

Data Movement Abstraction. Memory abstraction is a list of statements in GPU

87

Full Tensor Programs with
Tensorized Instruction

Scheduling
Generation

Scheduling
Validation

Scheduling
Exploration

Tensor
Operator

Tensorized
Instruction

Performance
Model

Offline
DataSet

Online
DataSet

Best Candidate with
Tensorized Instruction

Hardware

Auto-Scheduling with Tensorized Instruction

Figure 4.6: Automatic compilation flow for the tensor program with a learned performance model.
Our framework take a tensor operator and tensorized instruction as inputs and generate the best
low-level implementation on domain-specific accelerators.

programming. Each statement specifies the scope, operands, and memory access

indices. For each buffer statement access, we extract features for it. While different

statements can access different number of buffers, we conduct feature extraction

for at most five buffers. Then we pad zeros if a statement accesses less than five

buffers and remove small buffers if a statement accesses more than five buffers. On

the Tensor Core computation, instruction such as wmma::store_matrix_sync,

wmma::load_matrix_sync, and wmma::fragment are used to describe the data

movement among the complex memory hierarchy. The register-level abstraction

requires the fragment to fill six variables to formally execute this instruction. Take

the tensorized instruction wmma::fragment<Matrix_a,M,N,K,Dtype,Row> as

example, the Matrix_a parameter in the context specifies the type of matrix A,

while the dimensions M and N specify the number of rows and columns of matrix

A, respectively. Additionally, the parameter K specifies the size of each slice, and

Dtype specifies the precision or data type of the tiling. The Row parameter indicates

that the matrix elements are arranged in row-major order in fragement memory.

Collectively, these parameters form the WMMA fragment object. This object

88

represents a tiling of matrix that is loaded into the shared memory of the GPU.

The purpose of this operation is to facilitate matrix computations using tensorized

instructions. By organizing the data into tilings and storing them in shared memory,

we can take advantage of the high-performance capabilities of the GPU’s Tensor

Cores for efficient matrix operations. In our assignment feature, we have formulated

15 designated sites to symbolize diverse tensorized instructions, encompassing

wmma::store_matrix_sync and wmma::load_matrix_sync. These sites can

be employed to indicate the category, placement, and sequence of distinct instruc-

tions, along with other attributes linked to them during the compilation.

Computation Abstraction. We extract the above features for one innermost non-loop

statement in the context of a full tensor program. The features include categorical fea-

tures and numerical features. We use one-hot encoding to encode category features.

Computation abstraction is a statement that specifices the operands, arithmetic

operations among operands, and data access indices of operands for each tensorized

instruction. We use wmma::mma_sync<C_frag,A_frag,B_frag,C_frag> ten-

sorized instructions during the computation. The instruction corresponds to a total

of four register variables, namely C_frag, A_frag, and B_frag. These variables

represent different fragments of matrices in the computation. Specifically, the first

C_frag refers to the output matrix fragment, A_frag represents the fragment of

the first input matrix, and B_frag represents the fragment of the second input

matrix. It is important to note that the second C_frag refer to the same memory

block with the first C_frag. This instruction synchronously performs the multipli-

cation and accumulation operations between the fragments of A_frag and B_frag

matrices, and the resulting values are written into the C_frag fragment. In our

assignment feature, we have incorporated a flag to distinguish the computation

abstraction. As a result, a total of 5 designated sites are utilized to encode the

89

parameters within this feature.

4.5.3 Auto-Scheduling with Tensorized Instruction

In the last section, we introduce assignment features with data movement and

computation abstraction. In order to fully take advantage of the set of improvements,

we need an automatic solution to optimize over a set of schedulings and map

computations to the standard tensorized instructions. In this section, we introduce

a tensorized instruction-aware automatic scheduler to solve this problem.

Scheduling Generation. Figure 4.6 provides an overview of our auto-scheduling for

tensorized instruction. Our compilation framework takes as input a description of

the workload operator from a neural network, as well as the tensorized instructions

specific to the domain-specific accelerators. The auto-scheduler initially generates

candidates for tensorized instructions by analyzing the computation patterns. It then

generates candidates for tensor program sketches that incorporate the tensorized

operations, while also determining the data movement based on the computation

patterns. Within the search space defined by the tensorized instructions, we employ

an evolutionary search guided by a performance model with assignment features.

The entire process revolves around tensorization and makes use of abstractions for

both data movement and computation. During compilation, a program sketch is

constructed, where certain parts of the program structure are fixed, while allowing

for flexibility in parameter choices such as loop tiling size and computation caching

decisions. We generate sketches by applying predefined rules for sketch generation

that operate on tensorized instructions. Consequently, the key challenge in the

generation step lies in correctly mapping algorithm-defined tensor operators to their

corresponding tensorized instructions. In other words, it involves establishing the

correspondence between iterations in the algorithm and iterations in the tensorized

90

A
lg

or
ith

m
 D

es
cr

ip
tio

n
of

 T
en

so
r P

ro
gr

am

for n in range(None):
for k in range(None):

for p in range(None):

result[n, k, p, q] +=
weight[k, c, r, s] * input[n, c, p+r, q+s]

for q in range(None):
for c in range(None):

for r in range(None):
for s in range(None):

i1

n
k
p
q
c
r
s

Algorithm
Iterations

i2

r1
Tensorized Instruction

Iterations

Figure 4.7: The relationship between algorithm iterations and tensorized instruction iterations.

instructions.

As depicted in Figure 4.7, we present a motivating example that demonstrates

the mapping of algorithm iterations n, p, q to tensorized instruction iterations i1,

algorithm iterations k to i2, and algorithm iterations c, r, s to r1. This matching,

illustrated in the figure, enables the transformation of the original convolution tensor

operators into an equivalent matrix multiplication. The tensor core is designed

to load two matrices, each with dimensions 16× 8 and 8× 8, into registers. It

then performs the matrix multiplication concurrently for the 16× 8× 8 dimensions,

followed by storing the resulting output back to the global memory. During this

process, we take into consideration two types of constraints: the index range of each

tensorized instruction and the memory capacity. The domain-specific accelerator

is capable of computing or handling only a fixed size of tensors at a time. It is

worth noting that the problem size of a tensorized instruction can be determined

from its index range, which is exemplified in the computation abstraction. As

for memory capacity, each register fragment on the GPU can only accommodate

a limited amount of data. Consequently, we divide the entire input/output data

into smaller tiles and load/store these data tiles multiple times. This necessitates

updating the base address and strides accordingly.

Scheduling Validation. However, it is important to note that not all generated

91

mappings may be valid with tensorized instructions. To address this, we have

designed a validation algorithm that ensures only valid tensorized candidates

are considered. The details of this algorithm can be found in Algorithm 5. The

Access matrix is a binary matrix that describes the data access relationship between

indices and tensors. Each row of the matrix represents a tensor, while each column

represents an index. If an index and column are used to access the data of a tensor

at a specific row, the corresponding value in the access matrix is set to 1; otherwise,

it is set to 0. Similarly, the Matching matrix is a binary matrix that represents

the matching relationship between algorithm iterations and tensorized instruction

iterations. In equations 4.7 and 4.8, we use the convolution operator to illustrate

the access matrix, tensorized instructions, and the matching matrix between them.

These binary matrices contain crucial access and matching information that is

essential for validation. The algorithm’s access relationship defines which algorithm

iterations access which registers using tensorized instructions, while the tensorized

instructions access the algorithm-defined operator tensors. Initially, the algorithm

employs the tensorized instruction access matrix T and the iteration matching matrix

I to calculate the algorithm’s access relationship using A′ = T × I. If A′ is equal

to A, it indicates that the access behavior remains consistent for all indices and

every pair of input/output tensors from the algorithm and tensorized instructions.

Similarly, we can calculate the tensorized instruction access relationship using

T ′ = A× IT . The resulting T ′ is also a binary matrix and is expected to be the same

as the tensorized instruction access matrix T if the iteration matching matrix I is

valid. Our validation algorithm, while simple, is highly efficient in guaranteeing

the exploration of a valid scheduling space. This ensures the preservation of the

original semantics when utilizing tensorized instructions.

92

A =




n k p q c r s

input 1 0 1 1 1 1 1

weight 0 1 0 0 1 1 1

result 1 1 1 1 0 0 0




(4.7)

I =




n k p q c r s

i1 1 0 1 1 0 0 0

i2 0 1 0 0 0 0 0

i3 0 0 0 0 1 1 1




, T =




i1 i2 r

s1 1 0 1

s2 0 1 1

out 1 1 0




(4.8)

Scheduling Exploration. After generating valid scheduling during the compilation

process, determining the performance of each scheduling option with specific

code transformation and optimization passes poses a challenge. Following the

tensor program generation and validation with tensorized instructions, we obtain a

comprehensive scheduling space in conjunction with induced programs. To identify

the best candidate with tensorized instructions, we employ an evolutionary search

approach. Our search procedure commences with random initializations of choices

for the given tuning knobs. Subsequently, we introduce mutations to the current set

of tensor programs, fostering diversity and variation within the search. From the

mutated candidates, we select the most promising tensor programs and assess their

real performance on the hardware with tensorized instructions. This evaluation

phase involves benchmarking and collecting a substantial amount of data. These

data serve a crucial role in updating the performance model, integrating assignment

features, to enhance our understanding of the performance characteristics associated

with different scheduling options. By iteratively refining the performance model

and leveraging the insights gained from the evaluation phase, we steadily converge

93

towards identifying superior tensorized instruction candidates. This iterative process

not only optimizes the overall performance of the compiled code but also ensures

that the selected tensorized instructions are the best fit for the given workload and

architectural constraints.

4.6 Evaluation

4.6.1 Implementation Details

The performance model is implemented on the top of Ansor [Ansor-OSDI2020-Zheng]

and evaluated from two aspects: end-to-end search efficiency and quality, as

well as performance portability. We compare the proposed performance model

against the state-of-the-art methods, including the statistic, DNN-based cost models

and [bai-2023-atformer]. The items labeled with XGBoost represent the Ansor de-

fault configuration. We also provide a detailed ablation study of the model architec-

ture, accuracy, loss function, convergence speed, and training scheme, with insights

and qualitative results. The generated tensor programs are evaluated on two differ-

ent GPU architectures: Turing RTX 2080Ti and Ampere RTX 3090, with float32 data

types used for all evaluations. We train the cost model using the Adam optimizer

for 50 epochs, with a starting learning rate of 7e−4 that decays to 1e−6, and a training

batch size set to 512. We use TVM v0.8dev in TenSet [Tenset-NIPS2021-Zhang],

LLVM 11.0, and CUDA 11.0 for compilation, while XGBoost 1.5.0 and PyTorch 1.7.1

are used for training models. The use of a “mask” is a widely adopted technique

for training transformers. Our ablative models, including MHA, ATFormer-1L,

ATFormer, and ATFormer-M, were also experimented with. MHA is the basic Multi-

Head Attention layer, ATFormer-1L only has one encoder layer, ATFormer has two

94

encoder layers, and ATFormer-M uses the "mask" scheme during training. Ours

means the ATFormer combined with assignment features for tensorized instruction

compilation.

4.6.2 Dataset and Benchmark

We evaluated our design using TenSet, a large-scale and challenging dataset for

search-based tensor compilers. TenSet comprises 52 million performance records of

tensor programs obtained from real measurements on different hardware platforms.

Various randomly generated tensor programs for popular workloads are compiled

via the TVM compiler and executed on the target hardware platforms. To ensure

the inclusion of diverse workloads essential for generalization ability, we collected

tensor programs from 120 networks with 13,848 tasks on the NVIDIA Tesla T4

GPU. This dataset serves as a series of static offline datasets. We use float32 as the

data type for all evaluations. We train our model with the Adam optimizer for 50

epochs with a starting learning rate of 7e−4, the learning rate decays to 1e−6, and

the training batch size is set to 512. We use TVM v0.8dev in TenSet, LLVM 11.0

and CUDA 11.0 for compilation. Meanwhile, we use XGBoost 1.5.0 and PyTorch

1.7.1 for training models. To explore transferable features and fast adaptation of

ATFormer between different hardware platforms, ATFormer is pre-trained using

offline learning with a number of samples from TenSet, and then fine-tuned using

online learning on different platforms. For the offline learning, we randomly sample

50, 100, 200, 300, 500 search tasks from TenSet NVIDIA Tesla T4 GPU. We train

40 models including XGBoost, LightGBM, LSTM, TabNet, Multi-head attention,

ATFormer-1L, ATFormer, ATFormer-Mask for all of experiment evaluation in this

chapter.

95

4.6.3 End-to-End Execution Evaluations

Workloads. We evaluate the performance of ATFormer on various DNNs, including

small and large-scale models. For small-scale models, we use AlexNet, VGG-16,

MobileNet-V2, ResNet-18/50 and Bert-Tiny to evaluate the design. As for the

large-scale models, we use BERT and GPT-3 models, specifically BERTbase, BERTlarge,

GPT-2large and GPT-3350M. We report the the end-to-end inference latency with

batch size 1 on RTX 2080Ti.

Baselines and Settings. For statistic model, we use XGBoost as a baseline which

has proven to be a state-of-the-art feature-based model in auto-tuning framework

[Ansor-OSDI2020-Zheng]. For DNN-based learning, we use LSTM with eight

heads and 1024 hidden dimensions, and TabNet is implemented in TenSet as

another baseline. Note that the search algorithm uses the default configurations,

and the search terminates when it runs out of allowed measurement trials. We keep

the rest of the factors the same for a fair comparison.

Main Results on CUDA Cores. Figure 4.8 shows the final optimized total latency

results on the RTX2080Ti GPU. Overall, the ATFormer-series model performs the best

in all cases. Compared with the tree-based model XGBoost, ATFormer outperforms

them in all cases with 1.15 − 1.61× speedup. Compared with the DNN-based

model TabNet, ATFormer outperforms them in all cases with 1.14− 2.14× speedup.

Compared with LSTM, ATFormer performs equally the best and achieves 0.96−
1.48× speedup. Although LSTM surpasses ATFormer a little in finding the best

configuration on Bert-Tiny and VGG-16, the amount of computation that can be

parallelized in ATFormer leads to a shorter used time. Overall, the experiment

results from the GeoMean verify the effectiveness of the attention-based modules

over the tree- and DNN-based performance models.

AlexNet VGG-16 Mobile-V2 ResNet-18 ResNet-50 Bert-Tiny
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

N
or

m
al

iz
ed

La
te

nc
y XGBoost LSTM TabNet MHA ATF1L ATF Ours

Figure 4.8: End-to-end performance comparison of cost models across DNNs and normalized by the
XGBoost.

Main Results with Tensorized Instructions. The dataset collection process equipped

with tensorized instruction takes 5 days with a server equipped with an Intel Core

i9-12900K CPU and NVIDIA GeForce RTX 3090 GPU. The sampling selection pro-

cess for the operator is conducted in a manner similar to that on the GPU’s CUDA

Cores. We use the floating point 16 (fp16) as the computation datatype in the

whole evaluation. In the end-to-end latency evaluation experiment, we conducted

tests on our performance model on a GPU using the same DNN benchmark as AT-

Former [bai-2023-atformer]. Specifically, we targeted AlexNet, VGG-16, ResNet-18,

ResNet-50, and Bert-Tiny, achieving latency values of 1.22×, 1.11×, 1.13×, 1.14×,

and 1.13×, respectively.

4.6.4 Transfer Learning Evaluations

As mentioned in Section 4.4, we use RTX 2080Ti and 3090 GPUs as different

platforms to verify our design by two typical metrics: i) Fix the measurement trails

and compare the total latency and ii) Fix a converged latency, and then compare the

search time to reach it. To explore transferable features and fast adaptation of auto-

tuning between different hardware platforms, ATFormer [bai-2023-atformer] is

97

Table 4.1: Transferable adaptation evaluation between different GPU platforms on ResNet-18.

cost model XGBoost LightGBM LSTM TabNet MHA ATFormer-1L [bai-2023-atformer] ATFormer [bai-2023-atformer] ATFormer-M [bai-2023-atformer] Ours

(ms/s) latency time latency time latency time latency time latency time latency time latency time latency time latency time

ResNet-18-2080Ti 1.47 573 1.58 770 1.29 604 1.52 748 1.32 687 1.25 706 1.04 787 1.23 762 0.78 622

R
T

X
20

80
Ti

Tr
an

sf
er

TenSet-50 0.86 535 0.98 527 1.02 614 1.13 583 1.01 595 1.00 602 0.97 600 1.00 611 0.72 588

TenSet-100 0.96 533 0.98 526 1.07 615 0.82 596 0.87 602 1.00 602 0.85 594 0.84 611 0.69 575

TenSet-200 0.99 536 0.86 525 1.07 611 0.88 582 0.83 602 0.82 612 0.82 604 0.82 632 0.68 561

TenSet-300 0.89 538 0.85 526 1.02 622 0.83 583 0.85 600 0.81 609 0.89 612 0.87 607 0.63 542

TenSet-500 0.96 530 0.81 529 1.03 622 0.82 574 0.83 593 0.87 598 0.84 612 0.79 615 0.61 535

ResNet-18-3090 1.07 589 1.11 676 1.24 762 1.64 741 1.11 658 0.97 661 1.02 677 3.01 665 0.75 642

R
T

X
30

90

Tr
an

sf
er

TenSet-50 0.70 537 0.74 524 0.88 593 0.75 581 0.75 610 0.77 605 0.78 599 0.79 604 0.68 589

TenSet-100 0.71 540 0.73 526 0.83 599 0.67 620 0.65 607 0.68 601 0.66 606 0.69 614 0.62 574

TenSet-200 0.78 534 0.68 526 0.87 582 0.70 589 0.65 612 0.73 599 0.64 596 0.66 611 0.59 557

TenSet-300 0.70 536 0.68 531 0.83 616 0.66 585 0.64 617 0.67 595 0.71 607 0.66 613 0.58 537

TenSet-500 0.72 535 0.67 540 0.85 618 0.69 587 0.67 591 0.68 581 0.67 607 0.63 609 0.52 529

Table 4.2: The performance of Transformer models on TenSet-500 with transfer learning.

cost model XGBoost LSTM MHA ATFormer-1L [bai-2023-atformer] ATFormer [bai-2023-atformer] Ours Speed up

performance (ms / s) latency time latency time latency time latency time latency time latency time latency time

BERTbase
Traditional Learning 24.51 3028 32.89 3246 19.13 2890 18.77 2996 17.56 2874 14.52 2681

1.21× 5.17×
Transfer Learning 23.82 654 33.35 880 19.98 602 19.51 648 18.72 578 15.78 519

BERTlarge
Traditional Learning 51.63 5016 59.81 5540 53.21 5218 54.32 5312 46.54 5232 42.18 5011

1.10× 5.18×
Transfer Learning 52.49 1098 60.33 1302 55.88 1084 56.58 1192 47.76 1026 43.52 967

GPT-2large
Traditional Learning 489.12 6240 502.22 6531 467.22 6311 452.56 6380 445.52 6268 401.72 5996

1.11× 5.98×
Transfer Learning 491.24 1392 503.52 1594 468.29 1375 454.18 1272 447.31 1102 408.58 1003

GPT-3350M
Traditional Learning 513.61 7789 542.23 8582 479.42 8082 468.59 7982 442.02 7891 389.97 7542

1.13× 6.97×
Transfer Learning 514.42 1857 543.59 2302 480.12 1890 470.52 1920 443.62 1296 392.48 1081

Table 4.3: Pre-trained models on TenSet-500 via transfer learning with converged latency.

cost model XGBoost LSTM MHA ATFormer-1L [bai-2023-atformer] ATFormer [bai-2023-atformer] ATFormer-M [bai-2023-atformer] Ours

performance (ms / s) latency time latency time latency time latency time latency time latency time latency time

RTX 2080Ti
Traditional Learning 1.26 1026 1.02 1487 1.03 1172 1.20 1269 1.02 1382 1.71 1124 0.89 1057

Transfer Learning 1.23 281 1.05 348 0.99 261 1.15 264 0.99 271 0.93 266 0.86 206

RTX 3090
Traditional Learning 0.96 1004 1.03 1235 0.79 1125 0.87 1141 0.74 2054 0.94 2018 0.69 1878

Transfer Learning 0.98 287 1.02 270 0.77 261 0.83 269 0.76 267 0.65 264 0.70 228

pre-trained with a number of samples from TenSet and then fine-tuned using online

datasets on different platforms. Therefore, we divide our experiment settings into

“traditional learning” and “transfer learning” parts. In order to further validate the

compilation performance of our performance model under above settings, and to

make a fair comparison with ATFormer [bai-2023-atformer], we adopted the same

dataset partitioning method. The dataset with tensorized instruction is also divided

into combinations of TenSet-50/100/200/300/500 and then fine-tuned using online

datasets.

Traditional Learning. In Table 4.1, our performance model achieves the best total

98

Table 4.4: Total latency and tuning time of different methods with ResNet-18, MobileNet-V2 and
Bert-Tiny networks for end-to-end evaluation. The relative gains obtain for batch size = 1 with 300
measurement trials. “Register Abstraction” means the optimization for the tensorized instruction
during the compilation.

Methods
ResNet-18 MobileNet-V2 Bert-Tiny

(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

mask? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pre-trained? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RMSE Loss? ✓ ✓ ✓

Rank Loss? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AutoTVM? ✓ ✓ ✓

Assignment Features? ✓ ✓ ✓

total latency (ms) 1.42 1.04 1.23 0.81 0.83 1.92 0.72 0.53 0.51 0.76 0.39 0.40 1.29 0.31 4.18 3.41 3.97 2.32 2.46 5.07 1.98

search time (s) 781 787 762 620 611 3274 599 962 1000 958 617 604 2996 587 1127 1141 1150 818 816 3826 784

latency on RTX 2080Ti. ATFormer performs almost equally best with ATFormer-1L

about total latency with a fixed measurement trail on 3090 GPU. The results show that

self-attention based models perform best in the final performance compared with

others without this design on different types of GPUs with tensorized instruction.

Transfer Learning. In Table 4.1, experiment results on RTX 2080Ti and 3090 show

that the pre-trained parameters make the search convergence much faster. With the

increasing number of training tasks in the offline dataset from 50 to 500, the learning

ability of cost models with self-attention blocks, including MHA, ATFormer-1L,

and ATFormer-Mask, become more stable, and they can adapt to the new tasks via

transfer learning. Our performance model performs better than the statistic and

DNN-based model XGBoost, LSTM in optimized total latency with the parameters

trained from TenSet-100 to TenSet-500. All large-scale models are exported from

Hugging Face, with a batch size of 1 and a maximum input sequence length of 512.

As shown in Table 4.2, our performance model achieves latency speedups of 1.21×,

1.10×, 1.11×, and 1.13× on the RTX 3090 GPU compared with [bai-2023-atformer].

In terms of end-to-end tuning time, our performance achieves speedups of 5.17×,

5.18×, 5.98×, and 6.97× compared to traditional learning.

As for the TenSet-50 datasets, curves start from different points at the beginning,

99

and we can find that XGBoost performs best. It means that the transferable features

in the ATFormer-series models are not fully exploited on the limited dataset (task#50)

during the training. Obviously, the adaptation skills amplify rapidly with the

increasing number of tasks on the offline dataset. From TenSet-100 to TenSet-500,

we can find that ATFormer-series models show fast adaptation and generalization

ability across hardware platforms and operators compared with XGBoost and LSTM

models.

In Table 4.3, we make the traditional learning and transfer learning on different

platforms for ResNet-18 have an approximate converged latency. Our performance

model reduces the search time by up to 5.13× while maintaining the same search

quality on RTX 2080Ti. This is the best speedup compared with 3.65× by XGBoost,

4.27× by LSTM, 4.81× by ATFormer-1L, 5.09× by ATFormer and 2.2× MHA,

respectively. Under the same conditions, our performance model also performs

the best with reducing the search time by up to 8.24× on RTX 3090 compared with

3.49× by XGBoost, 4.57× by LSTM, 4.24× by ATFormer-1L, respectively. Traditional

learning with a mask-guided training scheme degrades the performance on total

latency and search time. Comprehensive experiments show that it is not easy to

make ATFormer-Mask have the approximate converged latency on RTX 2080Ti

and 3090 compared with traditional learning and transfer learning. It means that

ATFormer-Mask with pre-trained parameters has better task generation for tensor

programs and achieves better performance during the compilation.

Overall, our performance model takes full advantage of transferable features

learned from the source domain Tesla T4 GPU and transfers the knowledge to the

different target domains RTX 2080Ti and RTX 3090 to accelerate the convergence

speed with a fixed number of measurement trails. Fast convergence is desirable

for many users of auto-tuning to have better control of the optimization cost and

100

Table 4.5: Different architecture about performance model.

architecture n_head hidden_dim latency (ms) search time (s)

MHA

2 512 3.71 652

4 256 1.58 647

4 512 1.24 641

4 1024 1.29 652

6 768 1.48 658

8 512 1.19 658

ATFormer-1L [bai-2023-atformer] 4 512 1.25 706

ATFormer [bai-2023-atformer] 4 512 1.04 777

ATFormer-3L [bai-2023-atformer] 4 512 1.23 788

Ours 4 512 0.89 716

Table 4.6: Accuracy of the cost models on TenSet.

Architecture XGBoost ATFormer-1L [bai-2023-atformer] ATFormer [bai-2023-atformer] ATFormer-M [bai-2023-atformer] Ours

TenSet-50 91.31 85.98 93.48 93.28 93.51

TenSet-300 92.24 90.41 93.82 93.33 93.85

TenSet-500 93.08 91.98 94.06 93.71 94.12

good performance. For instance, deployment engineers may want to obtain an

optimized model as soon as possible or quickly get an upper-bound estimation

of total inference latency in real-world production. They can use the cost model

like ours with strong generalization as decent pre-trained parameters to accelerate

not only the convergence speed but also the total execution inference time. Finally,

comprehensive experiments with pre-trained parameters on different sizes of the

TenSet dataset show that our design enable fast adaptation in not only cross-operator

but also cross-platform scenarios.

4.6.5 Ablation Study

Various designs are evaluated in this section. We report the performance about

total latency, search time on ResNet-18 and MobileNet-V2 and accuracy on the static

datasets.

Loss Functions. Table 4.4 shows two different loss functions in our experiments.

Method (a) is ATFormer with Root Mean Square Error (RMSE) loss function while

101

Table 4.7: Hierarchical features and model architecture improvements for end-to-end evaluation.

Methods
ResNet-18

(a) (b) (c) (d) (e) (f) (g) (h)

Hierarchical features? ✓ ✓ ✓ ✓

XGBoost? ✓ ✓

LSTM? ✓ ✓

ATFormer? [bai-2023-atformer] ✓ ✓

Ours? ✓ ✓

w/o Transfer total lantency (ms) 1.47 1.63 1.29 1.58 1.04 1.18 0.88 0.97

w/o Transfer search time (s) 573 618 604 648 787 796 724 752

w/ Transfer total latency (ms) 0.96 0.98 1.03 1.12 0.84 0.91 0.76 0.81

w/ Transfer search time (s) 530 599 622 689 612 632 545 578

method (b) is with lambdaRank loss function. Compared with method (a) and

method (b), we find that lambdaRank loss always outperforms RMSE in our design

for different workloads of DNNs. It shows that the goal of a decent cost model is

to rank the performance of different tensor programs by relative scores in a given

search space.

Convergence Speed. In Table 4.4, method (d) is the proposed ATFormer, which

adapts the pre-trained parameters to the new task via transfer learning into method

(c). Note that ATFormer with the pre-trained parameters minimizes the total latency

of all subgraphs in three DNNs as much as possible and the search time as quickly

as possible. The proposed ATFormer improves the total latency by 4.66× speedup

and convergence speed by 1.55× speedup. Method (f) is the AutoTVM with

lambdaRank loss function. The performance is inferior to the baseline configuration.

Method (g) is the ATFormer with introduced assignment features for the tensorized

instructions. The performance of optimized inference latency and the search time

are the best in all of the different configurations.

Training Schemes. In Table 4.4, method (c) incorporates the mask module into

method (b) during traditional learning. Method (d) imports the mask module into

102

method (e) during transfer learning, resulting in a notable increase in convergence

speed. It’s worth noting that adding a mask scheme during traditional learning

is not very helpful and can even cause a decrease in the total latency. However,

for transfer learning with pre-trained parameters, incorporating the mask module

is crucial for achieving faster convergence speed. The introduced techniques do

not require expensive training resources in terms of both time and computation

power. The only difference between method (d) and method g is the introduced

assignment features for register-level abstraction during the tensorized instruction

compilation. In the same training strategy, method (g) can outperform the original

ATFormer on the three benchmark from total inference latency and search time.

Model Architectures. Table 4.5 lists ATFormer with various architectures. To

achieve high accuracy while minimizing the model parameters, we find that the self-

attention block, which contains four heads with 512 hidden dimensions, performs

the best on the total latency and search time. Note that ATFormer does not benefit

from deeper encoder layers in the Transformer model. Thanks to its simple and

efficient architecture, the inference latency of ATFormer is consistently lower than

that of the DNNs it optimizes. Thus, we set the two encoder layers as the final

decision. Table 4.7 shows the relationship between the hierarchical-level features and

different architectures to affect total latency and search time on ResNet-18. Method g

in Table 4.7 means hierarchical features combined with assignment features for the

tensorized instruction during the compilation for ATFormer. The performance of

final optimized latency with transfer learning is greater than Method e. Method h

means we only use the assignment features without the hierarchical features.

Accuracy. Table 4.6 presents the pairwise comparison accuracy of ATFormer and

XGBoost on various scales of static datasets. The findings indicate that ATFormer

outperforms XGBoost, demonstrating the highest measurement accuracy and pro-

103

Table 4.8: The training time of the ATFormer series cost models during the offline optimization.

Cost Model TenSet-50 TenSet-100 TenSet-200 TenSet-300 TenSet-500

ATFormer-1L [bai-2023-atformer] 258 362 549 685 916

ATFormer [bai-2023-atformer] 299 384 588 712 951

ATFormer-M [bai-2023-atformer] 324 416 605 749 972

Ours 303 389 598 723 963

Table 4.9: Pre-trained models with the converged latency on the Intel CPU platform.

cost model XGBoost LSTM MHA ATFormer-1L [bai-2023-atformer] ATFormer [bai-2023-atformer]

performance (ms / s) latency time latency time latency time latency time latency time

ResNet-18
Traditional Learning 6.13 658 6.16 731 6.12 642 6.22 633 6.15 661

Transfer Learning 6.16 334 6.25 451 6.19 346 6.29 419 6.18 304

ResNet-50
Traditional Learning 19.59 652 21.23 697 17.50 630 17.52 614 16.90 643

Transfer Learning 20.01 342 21.99 461 18.11 338 17.91 362 17.02 318

VGG-16
Traditional Learning 36.92 891 39.85 1004 35.69 839 34.51 826 30.01 840

Transfer Learning 37.51 395 40.17 422 36.79 326 34.87 318 34.88 270

BERT-Tiny
Traditional Learning 17.98 1012 19.22 1433 17.55 1126 16.09 1168 15.11 1232

Transfer Learning 18.05 396 19.57 498 17.91 401 16.41 416 15.16 388

viding optimal search quality during the tuning. Table 4.8 presents the specific

training times (s) of the ATFormer series models on static datasets. Note that our

approach is also suitable for scenarios involving large batch sizes. By incorporating

the proposed design into the new performance model, it can be observed that the

overall training time of the performance model has not increased significantly. Dur-

ing the offline training process, the time required is comparable to that of ATFormer,

maintaining a similar duration.

4.6.6 Other Platforms: Intel CPUs

We use the dataset from Intel Platinum-8272 to verify transferability on Intel E5-2698

CPU with a fixed converged latency (6.13ms) by the same measurement trials for

ResNet-18. More details can be found in Table 4.9. Therefore, ATFormer also

works well for CPU with lots of different DNN benchmarks including ResNet-50,

VGG-16, BERT-Tiny with batch size 1. As for the ResNet-18, we fix the converged

104

latency to 19.59ms, the traditional learning will cost 658s to search the optimal

configuration with XGBoost performance model. But the ATFormer can search the

optimal implementation of ResNet-50 with 643s by the same measurement trials

under the 16.90ms converged latency. We can get the same conclusions from the

VGG-16 and BERT-Tiny neural networks.

4.7 Summary

This chapter introduces a novel performance model for optimizing tensor programs

with tensorized instructions. We propose a set of novel assignment features that

compiles tensor program with computation and memory abstraction to represent

the intrinsics of the hardware accelerators. It enables systematic exploration of

scheduling space and efficient matching with better performance for various tensor

operators. The proposed learned performance model achieves significant speedup

for model deployment on GPU Tensor Cores. Through transfer learning, the perfor-

mance model achieves faster-converged latency and superior transferability across

different hardware platforms, outperforming previous state-of-the-art benchmarks.

105

Chapter 5

ALCOP: Automatic Load-Compute

Pipelining in Compiler for GPUs

5.1 Motivation

Deep learning (DL) has achieved great success in a variety of application fields,

spanning computer vision, natural language processing, and recommendation

systems [he2016deep, devlin2018bert, naumov2019deep]. The widespread use

of GPUs [nvidiav100, nvidiaa100] to accelerate DNNs makes an indispensable

contribution in this AI era.

High-performance tensor programs on GPUs require complex optimization

efforts. When Tensor Core was introduced to GPUs to accelerate deep learn-

ing, harnessing the power of Tensor Cores became the center of GPU software

optimization, motivating the development of a number of libraries and com-

pilers [cutlass, yan2020demystifying, dakkak2019accelerating, feng2021egemm,

chen2018tvm, katel2022mlir]. Because Tensor Core throughput continued to in-

crease but memory bandwidth lagged, research on tiling and fusion to improve data

106

...

(1) Tiling in Matrix Multiplication (2) Inter-Tile Parallelism (3) Intra-Tile Pipeline Parallelism

Compute

Buffer 1

Buffer 2
Buffer 3

Buffer 4

Load

chunk 1

chunk 2
...

...

...

Time

Different Chunks of Input

(a) Concept of tiling, inter-tile parallelism and pipeline parallelism.

32

64

128

256

512

32x32 64x32 64x64 128x64 128x128 256x128

Th
ro

ug
hp

ut
 (T

Fl
op

/s
)

Threadblock Tiling Size

No Pipeline 4-Stage Pipeline

Low Utilization due to
Small Inter-Tile Parallelism

High Utilization from
Pipeline Parallelism

(b) Motivating example: performance of a 2048× 2048× 2048 matrix-multiplication tested on NVIDIA A100
with different tiling and pipelining choices.

Figure 5.1: Motivation of automatic pipelining. (a-3) explains the concepts of pipelining, which
is overlapping data loading with computation. (b) gives a motivating example. With tiling only,
the performance is always sub-optimal. Pipelining unleashes intra-tile parallelism and increases the
performance under large tiling.

re-use surged [niu2021dnnfusion, zhao2022apollo, asplos22-zhenzheng, zheng2020fusionstitching].

However, aggressively large tiling limits the number of tiles and hinders inter-tile

parallelism, a crucial GPU mechanism to achieve high utilization. Restoring the

parallelism lost due to aggressive tiling becomes an important task. Pipelining –

the overlap of data loading and computing – is an ideal mechanism for unleashing

intra-tile parallelism. Figure 5.1 depicts the concept of pipelining and its perfor-

mance advantages. As the difficulty of capitalizing on the ever-growing parallelism

107

Time

Compute

Buffer 1

Buffer 2
Load

Utilization = 55%

(a) Two-stage pipelining

Time

Compute

Buffer 1

Buffer 2
Load

Utilization = 100%

Buffer 3

Buffer 4

(b) Multi-stage pipelining (four-stage here)

Figure 5.2: Concept of multi-stage pipelining. (a) two-stage pipelining (or called double-buffering)
is not enough to hide the data loading latency. (b) Four-stage pipelining can hide the data loading
latency and achieve full utilization of the computing units. ALCOP supports multi-stage pipelining.

in GPUs increases, the study of pipelining becomes essential.

Despite the necessity of pipelining optimization, existing approaches are ei-

ther limited in their design space coverage or their degree of automation. Prior

work [katel2022mlir] has studied double-buffering, a common but far less compli-

cated case of pipelining. However, double-buffering is only a two-stage, one-level

instance of the entire multi-stage, multi-level pipelining design space shown in Fig-

ure 5.2, and simplifying pipelining to double-buffering hinders a major performance

gain (which will be evaluated in Sec. 5.6.1). Although deep learning systems can

access comprehensive pipelining optimization from hand-written libraries [cublas]

or compiler-integrated libraries [xing2022bolt], due to their fundamental difference

from the tensor program generation workflow of DL compilers, they are inexten-

sible to new operators and indecomposable with prior compiler passes such as

108

Streaming
Multiprocessor

(SM)

Global
Memory

Shared
Memory

Threadblock 1

Shared
Memory

Threadblock 2

Warp 1

Warp 2

Warp 1

Warp 2

Reg. File

Reg. File

Reg. File

Reg. File

Tensor
Core

A
sync. C

opy

(a) GPU memory hierarchy.

Shared
Memory

Time

S_Buffer_1
S_Buffer_2

Reg. FileR_Buffer

Tensor Core

load-> use use->load... ...

'Use' of S_Buffer_1 'Use' of S_Buffer_2

...

...

...

...

(b) Single-level pipelining.

Figure 5.3: Concept of multi-level pipelining and inner-pipeline fusion. (a) shows the GPU memory
hierarchy, with two levels of buffers: the shared memory and the register file. (b) shows the execution
timeline of single-level (only shared memory) pipelining.

auto-fusion and auto-tiling.

Automatic pipelining presents three distinct challenges: workload complexity

(diverse DL operators), hardware complexity (multi-level memory hierarchy), and

design space complexity (coherent performance tuning factors).

Our key insight is that, instead of solving everything in a monolithic compiler

pass, we should exploit the progressive lowering structure of DL compilers and

the information exposed at each level. Specifically, we address the aforementioned

three challenges through three decoupled and collaborative compilation modules:

pipeline buffer detection, pipeline program transformation, and analytical-model

109

Shared
Memory

Time

S_Buffer_1
S_Buffer_2

Reg. FileR_Buffer_1

Tensor Core

load-> use use->load
... ...

'Use' of S_Buffer_1

...

...

...

...

R_Buffer_2

(a) Multi-level pipelining without inner-pipeline fusion.

Shared
Memory

Time

S_Buffer_1
S_Buffer_2

Reg. FileR_Buffer_1

Tensor Core

load-> use use->load
... ...

'Use' of S_Buffer_1

...

...

...

...

R_Buffer_2

(b) Multi-level pipelining with inner-pipeline fusion.

Figure 5.4: (a) improves over (b) by pipelining the inner loop: register loading and computing. (b)
improves over (c) via inner-pipeline fusion, which treats the repeated inner loop as a holistic loop and
pipeline it. ALCOP supports multi-level pipelining with inner-pipeline fusion.

guided design space search. Pipeline buffer detection addresses the workload

complexity because it occurs during the scheduling phase when the entire dataflow

is visible. The second module addresses the hardware complexity. During the

program transformation stage, the intricate for-loop structure and data movement

are revealed and modified. This module utilizes the safety check of the preceding

module to execute the robust transformation. The third module addresses the

design space complexity. It happens at the auto-tuning stage, where pipelining

and other techniques are co-optimized. This module makes use of the preceding

parameterized module. We further design an analytical hardware model to expedite

110

ALCOP
Pipeline Buffer Detection Tiling / Fusion …Interact

Schedule Transformation
(Sec.4)

Parse to Dataflow Graph

Lower to IR/AST

Program Transformation
(Sec.5)

ALCOP
Pipeline Transformation Pass

Build and Profile

ALCOP
Analytical Perf. Model

Assistant ML-base Perf. Model

Optimized Tensor
Program

Schedule parameters
e.g. pipeling stage, tiling size, etc

Tensor
Algorithm

Figure 5.5: The overview of ALCOP. It has three important modules including schedule transforma-
tion, program transformation and performance auto-tuning.

the design space search.

5.2 System Overview

In this chapter, we propose ALCOP (Automatic Load-COmpute Pipelining), the

first DL compiler solution (auto-scheduler, program transformation, auto-tuner) for

automated multi-stage, multi-level pipelining; its architecture is shown in Figure 5.5.

Additional contributions include:

• We design methods to examine each buffer for applying pipelining, including

the ordering of pipelining and other schedule transformations to avoid mutual

interference. (Sec. 5.3)

• We design a program transformation pass that handles index manipulation,

synchronization injection, and prologue injection, among other transforma-

111

tions. (Sec. 5.4)

• We propose a pipeline-aware analytical performance model. Combining it

with an existing machine-learning (ML) based tuning algorithm significantly

improves the efficiency of schedule tuning. (Sec. 5.5)

Experiments show that ALCOP pass can bring on average 1.23×, and up to 1.73×
speed-up on DL operators over TVM [chen2018tvm]. ALCOP brings 1.02-1.18×
end-to-end inference speed-up for six DL models over TVM [chen2018tvm], and

1.01-1.64× over XLA [xla]. Through combining the analytical model with ML-based

tuning, we can identify schedules with 99% performance compared to the best

schedule in the entire design space while reducing the number of trials by 40×.

5.3 Scheduling Transformation

Automatic pipelining begins by identifying potential pipelining possibilities. We

implement it through a schedule transformation pass in the compiler, which attaches

the pipelining primitive to buffer variables in the program.

Pipelining can be applied to a load-and-use loop in which the load step copies data

into a buffer and the use step reads data from the buffer. Consequently, the purpose

of the schedule transformation is to identify and record “load-and-use” structures in

a program. The pass marks the buffer variables within such load-and-use loops as

pipelined buffers. Later on, a program transformation pass described in Section 5.4

will turn the load-and-use structure into its pipelined version.

Two important questions must be addressed: First, we must determine is what

rules we should apply to identify the buffers that can be pipelined. The second one

is determining the ordering if pipelining in relation to other schedule transformations,

such as tiling, aware of their mutual effect.

112

5.3.1 Identification of Buffers for Pipelining

Constraints of pipelining come from not only the algorithm, i.e., how the buffer

is used, but also the hardware capabilities, i.e., what forms of memory copy can

be executed asynchronously. For each buffer variable, the following three rules

are evaluated to determine whether pipelining can be applied. Firstly, we do

not pipeline a buffer that is not produced by asynchronous memory copy. An

asynchronous memory copy indicates that the memory copy is non-blocking, so we

can initiate memory copies for future loop iterations in advance and meanwhile

continue with the computation in the present iteration. Only when an explicit

synchronization instruction is encountered does the program block to wait for the

completion of the memory copy. If the data in a buffer is not produced by direct

memory copy but rather by some compute operation, the buffer does not meet this

condition.

Secondly, we do not pipeline a buffer produced outside of a sequential loop. The

purpose of pipelining is to overlap the data-loading operation of future iterations

with the computation of the current iteration. This load-and-use loop must be

sequential and cannot be parallelized (bound to parallel threads) or unrolled. This

condition is typically violated by stencil algorithms that use tiling to increase the

reuse of the input tensor, but the buffer is only filled and used once, as opposed to

being generated in a sequential loop. Consequently, the pipelining approach cannot

be applied to these buffers.

The final rule is about synchronizing the pipeline: If the hardware platform sup-

ports only scope-based synchronizations, we inspect all buffers within the same

scope and refuse to pipeline them if their synchronization positions do not match.

Synchronizing the pipeline requires special memory barriers that await certain

113

loading instructions (e.g., instructions issued in the fourth-last iteration in a 4-stage

pipeline). On NVIDIA Ampere GPUs, such memory barriers are provided for the

shared memory scope. Hence, the hardware is incapable of resolving this conflict

if two buffers are both in the shared memory scope, but their barriers must be

inserted at distinct positions in the program. If this conflict occurs, our schedule

transformation refuses to pipeline these buffers.

5.3.2 Ordering of Schedule Transformations

Pipelining is applicable to three schedule transformations already in existence:

cache-reading, tiling, and fusion. We will briefly introduce these transformations

and then determine whether pipelining should be applied before or after them.

Cache-reading. It means inserting a read buffer for a tensor input. Given an

algorithm and computation tensor S2 from tensor S1, applying cache-reading

means inserting a new tensor S1_buf which is an identical copy of S1 but with a

buffer scope. Cache-reading should be applied before pipelining since pipelining

needs to be applied to buffers generated by the former.

Tiling. It is the process of dividing the output tensor into blocks. In conjunction

with cache-reading, it can cache data within buffers to improve data reuse. Tiling

should also be performed before pipelining. The second condition for a buffer to

qualify pipelining, i.e., whether there exists a sequential load-and-use loop, must be

inspected based on the for-loop sketch after tiling.

Fusion. It means avoiding writing back intermediate data between two operators.

Inlining, a specific type of fusion, should come after pipelining. Inlining a tensor

means producing the value of the tensor precisely where it is used; this technique is

often used on lightweight element-wise operations like datatype casting. Figure 5.6

shows an example in which originally S2 is produced by applying element-wise

114

S1

S2

S2_buffer

S3

Inline Optimization !
f ()

memcpy ()

g ()

S2_buffer

memcpy (f ())

S3

S1

Can be
pipelined ?

g ()

Case 1: Inline before Pipelining
Pipeline cannot apply :<

Program blocks off at f ()
NOT ASYNC!

S2_buffer cannot be pipelined :<

S1

S2

S2_buffer
// pipelined

S3

Inline !
f ()

memcpy ()

g ()

S2_buffer
// pipelined

memcpy (f ())

S3

S1

Can be
pipelined ?

g (f())

Case 2: Pipelining before inline
Both can be applied :)

If S2_buffer is pipelined,
instead of fuse f() into memory (), we

fuse f() into g()

Figure 5.6: The effectiveness study on the optimization order of inlining and pipelining. In
case 1, after inlining, S2_buf can no longer be pipelined because it is no longer produced by an
asynchronous memory copy. In case 2, after pipelining, inlining can still be applied.

function f (·) to S1, and a buffer tensor S2_buf is injected after S2 via cache-read.

Inlining S2 is equivalent to applying f (·) first and then copying the data directly

into S2_buf without writing the data back to memory. According to our first

rule outlined in the previous subsection, a pipelined memory buffer should be

produced from an asynchronous memory copy. However, for S2_buf here, the

operation to produce it is no longer asynchronous, as the explicit f (·) forces the

program to stall, waiting for data to be loaded. And since buffer S2_buf is not

produced asynchronously, it cannot be pipelined. Here in case 1, inlining impedes

the opportunity of pipelining. Nevertheless, if pipelining is applied before inlining,

like in case 2, the inlining of S2 can still be applied, but in a different manner:

Instead of inlining S2 into S2_buf, we cache-read S1 and fuse the computation

f (·) into the production of S3. Thus, we ensure both sides are satisfied: the buffer is

produced through an asynchronous copy and can be pipelined, while computation

f (·) is fused and we avoid explicitly generating an intermediate tensor.

115

5.4 Program Transformation

In this section, we introduce the second component of automatic pipelining: trans-

forming the program IR (Intermediate Representation) to implement pipelining.

After the schedule transformation outlined in Section 5.3, the program is lowered

to its IR form, composed of for-loops and load/store/compute operations. Figure

5.8 gives a sample input and transformed IR of the pipelining pass. Figure 5.7 also

depicts the transformation steps.

5.4.1 Analysis

The First Step. Given a program IR, pipelining begins with the collection of

pipelining hints inserted by the schedule transformation, including the buffer to be

pipelined and the number of stages for each buffer.

The Second Step. Given a set of buffers we want to apply pipelining, the second

analysis task is to reconstruct the producer tensor and consumer tensor(s) of these

buffers. Then we can derive if there are multi-level buffers by deciding if the

producer of a pipeline buffer is also a pipelined buffer. Since pipelined buffers

are always produced via asynchronous memory copy, to determine the producer

tensor, it suffices to retrieve which tensor it copies from. The decision of consumers

happens when IR traversal encounters a load operation from this buffer.

The Third Step. This step is to determine the sequential load-and-use loop for each

pipelined buffer. This identifies the iteration variable to be pipelined and is required

by all the index shifting operations in the transformation steps. The sequential loop

can be determined as follows: starting from the instruction that copies data into

the buffer, traversing all the for-loops from inside to outside, and finding the first

116

Collect Pipelined
Buffer Variables

Input IR Reconstruct Producer
& Consumer Info

Decide the
Pipelined Loop

Decide the Prologue
Injection Position &

Prologue Snippet

Decide whether
buffers in the same

scope can share sync

Increase
Buffer Size

Shift Indices for
Memory Access

Wrap Indices for
Buffer Rolling &

Out-of-bound Access

Prologue
Injection

Primitive Injection
for Non-blocking

Load and Sync

Analysis

Output IR

Transformation

Figure 5.7: Workflow and example input and output of the pipelining program transformation

sequential loop whose iteration variable is not used to index inside this buffer. This

means the buffer is reused for each iteration of this loop, which is the loop we want

to pipeline. Take Figure 5.8 as an example, the pipelined loop for A_shared is with

iteration variable ko, and the pipelined loop for A_reg is with variable ki.

The Fourth Step. We should document the pieces of code that loads and uses this

buffer. This information is required for the injection of synchronization primitives

and prologues. In the Input IR in Figure 5.8, the “loading” part for A_shared is

Line 8, and the “using” part is the ki loop and everything inside. The loading part

for A_reg is Line 13, and the using part is Line 15.

The Fifth Step: We also need to decide where to inject prologues. Since we transform

the program to issue memory copy for future iterations while doing computation

for the current iteration, we need to move the first few stages of memory copy ahead

of the start of the main load-and-use loop. This pre-posed loading code block is

a prologue. Typically, prologues can be injected simply before the pipelined loop.

However, when a multi-level pipeline appears, the prologues of inner pipelines

must be injected into the sequential loop of the outer-most pipeline, in order to

build a holistic pipeline as opposed to a recursive one as shown in Figure 5.4a.

117

1 Algorithm:
2 /* MatMul */
3 C[i, j] = sum(A[i, k] * B[j, k],
4 reduce_axis=(k,))

1 Schedule:
2 /* cache read B is omitted for brevity */
3 A_shared = cache_read(A)
4 A_reg = cache_read(A_read)
5

6 /* tiling */
7 C.tile(TB_tile_i, TB_tile_j, TB_tile_k),
8 (Warp_tile_i, Warp_tile_j, Warp_tile_k)
9

10 /* pipelining */
11 A_shared.pipeline(stage=3)
12 A_reg.pipeline(stage=2)

1 InputIR:
2 /* Declare buffer */
3 alloc A_shared[TB_tile_i, TB_tile_k]
4 alloc A_reg[Warp_tile_i, Warp_tile_k]
5

6 for ko in 0 ... (C_k / TB_tile_k):
7 /* load into shared memory buffer */
8 memcpy(A_shared[...], A[..., ko])
9

10 /* compute with data in shared memory buffer */
11 for ki in 0 ... (TB_tile_k / Warp_tile_k):
12 /* load into register buffer */
13 memcpy(A_reg[...], A_shared[..., ki])
14 /* compute with data in register buffer */
15 wmma(A_reg[...], ...)

1 TransformedIR:
2 /* define loop extents as variables for code brevity */ :
3 extent_ko, extent_ki = (C_k / TB_tile_k), (TB_tile_k / Warp_tile_k)

4 /* Declare buffer size. */
5 alloc A_shared[3][...]
6 alloc A_reg[2][...]

7 /* Prologue for A_shared and A_reg */
8 for ko in 0 .. 2:
9 /* load into shared memory buffer (same as Line 15-17) */

10 for ki in 0 .. 1:
11 /* load into reg. buffer (same as Line 24-27) */

12 for ko in 0 .. extent_ko:

13 /* load into shared memory buffer */
14 /* guard data copy with producer primitives at Line 15 and Line 17 */
15 A_shared.producer_acquire()
16 async_memcpy(A_shared [(ko + 2) % 3][...], A[..., (ko + 2) % extent ko])
17 A_shared.producer_commit()

18 /* compute with data in shared memory buffer */
19 /* guard data usage with consumer primitives at Line 22 and Line 30 */
20 for ki in 0 .. extent_ki:
21 if (ki + 1) % 2 == 0:

22 A_shared.consumer_wait()
23 /* load into register buffer */
24 async_memcpy(
25 A_reg [(ki + 1) % 2][...],

26 A_shared [(ko + ((ki+1) / extent ki)) % 3][..., (ki + 1) % extent ki]
27)
28 /* tensor-core compute with data in register buffer */
29 wmma(A_reg [(ki % 2)] [...], ...)
30 A_shared.consumer_release()

Figure 5.8: An example to illustrate how to transform an original Tensor-IR (left) to its pipelined
version (right).

5.4.2 Transformations

Five steps are required to transform a load-and-use loop into a pipelined loop. The

Transformed IR in Figure 5.8 shows the transformed version of the Input IR in the

same figure.

The First Step. This step increases the size of the memory buffer by the number of

pipeline stages. Relevant transformed code is highlighted in light yellow.

The Second Step. This step shifts the indices used in memory access. The eelevant

code is highlighted in blue. In each load-and-use iteration, we issue asynchronous

memory copy for future iterations rather than the present iteration. Therefore, we

need to increase the pipelining loop variables in the memory access indices. If it is a

3-stage pipeline, for instance, we should load data 2 iterations ahead.

The Third Step. This step handles indices for buffer rolling (circular access) and

out-of-bound wrapping. Relevant code is highlighted in green. There are two cases

118

that we need to wrap indices: first, when we use the pipelining variable to index a

chunk of the buffer, we should use the modulo of pipeline iteration variable divided

by pipeline stages. Secondly, since we increase the pipelining variable, it is possible

that we index out of the bound of its producer tensor. We must take the modulo of

the pipelining variable divided by its own extent to avoid indexing out-of-bound. A

complicated case is in a multi-level pipeline when the overflow of the inner pipeline

causes the increase of the outer pipeline variable. Line 26 in the transformed IR

handles this case.

The Fourth Step. This step injects prologue primitives. The contents of prologues

are the memory copy of the first n_stage -1 chunks of data, where n_stage is

the number of the pipeline stage. We inject prologue at the positions we record in

the preceding analysis pass.

The Fifth Step. The final step injects synchronization primitives. The pipeline is

guarded by four primitives: producer_acquire or commit, consumer_wait,

and consumer_release. producer_commit commits a batch of asynchronous

loading operations. consumer_wait blocks until a previous batch of loading

is completed. When the pipeline is full, producer_acquire blocks until the

execution of consumer_release1. The pairs of producer/consumer primitives

are put around the loading/using part of the buffer, respectively, as shown in Line

15, 17, 22, and 30 of the transformed IR.

1https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
with-memcpy_async-pipeline-pattern-multi

119

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#with-memcpy_async-pipeline-pattern-multi
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#with-memcpy_async-pipeline-pattern-multi

Table 5.1: Analytical Performance Model in ALCOP

Category Model

Kernel Latency Model Tkernel = Tthreadblk × Nthreadblk_batch

Pipeline Latency Model

Input: Tload, Tuse, Nloop, Npipe, Nmplx

Output: Tload_use_loop

If Tload ≤ (Npipe × Nmplx − 1)× Tuse: Tload_use_loop = Tuse × Nloop

Else: Tload_use_loop = (Tload + Tuse)× Nloop ÷ Npipe

Threadblock Latency Model

Tthreadblk = Tinit + Tmain_loop + Tepilogue

Tinit = Tsmem_load + Treg_load

Tmain_loop = PipelineLatencyModel(Tsmem_load, Tsmem_use, Nsmem_loop, Nsmem_pipe_stage, Nthreadblk_per_SM)

Tsmem_use = PipelineLatencyModel(Treg_load, Tcompute, Nreg_loop, Nreg_pipe_stage, Nwarp_per_threadblk)

Computation Latency Model Tcompute =
FLOPsone_reg_loop

ThroughputSM × Util(Nwarp_per_threadblk, Nthreadblk_per_SM)

Memory Latency Model

Tsnen_load = MAX(TLLC_load, TDRAM_load)

TLLC_load = LATLLC_read +
Bytesone_smem_loop × Nthreadblk_per_threadblk_batch

BWLLC

TDRAM_load = LATDRAM_read +
Bytesthreadblk_batch_workset

BWDRAM

Epilogue Model Tepilogue = LATDRAM_write +
Bytesoutput_tile × Nthreadblk_per_threadblk_batch

BWDRAM_write

5.5 Static Analysis Guided Tuning

This section introduces how we combine a static analytical performance model with

existing machine-learning (ML) based auto-tuning [chen2018learning] to choose

schedule parameters. The key component is a novel performance model aware of

pipelining and its interaction with other optimizations, as illustrated in Figure 5.9.

5.5.1 Top-Level Model

Our analytical model is shown in Table 5.1. At the top level, the threadblocks

are grouped into threadblock-batches (threadblk_batch), and one threadblock-batch

occupies all Streaming Multiprocessors (SMs) at a time. Since all threadblocks

execute the same program, the latency of a kernel equals the threadblock latency

multiplied by the number of batches. The number of threadblock-batches in a

kernel depends on the GPU scheduling policy, which we learn through performance

120

Tiling Spatial
Parallelism

Locality v.s. Parallelism

Problem Shape

Previous
ALCOP

Tiling

Buffer Size

Locality v.s. Parallelism

Problem Shape

Pipelining

Spatial
Parallelism

Total Parallelism
Potential

Figure 5.9: A high-level view of the performance model. Compared to prior work [lym2019delta],
our model takes into account the constraints and trade-offs among pipelining, tiling and spatial
parallelism.

profiling. The maximum number of threadblocks per SM is limited by the size of

shared memory and register files that each SM can provide, as well as the request

of threadblock. Our simulated GPU scheduling policy considers all these factors to

decide Nthreadblk_batch.

At the threadblock level, we estimate its final performance by summing the

latencies of three phases: (1) the initial phase Tinit, in which the first chunk of data is

requested and the pipeline waits for it to arrive; (2) the main loop Tmain_loop, in which

the load-and-use pipeline advances at a steady rate; (3) the epilogue phase Tepilogue,

in which the final results are written back into the global memory. Tepilogue is

determined using the Epilogue Model equation proposed in DELTA [lym2019delta].

Let us consider Tmain_loop. It illustrates load-and-use loop at the shared memory

level, which comprises copying data from the device memory to the shared memory,

reading the data into the register, and doing computations with tensor cores. We

employ a Pipeline Latency Model, which is described in the next subsection, to

calculate the latency of the loop. This model considers the pipelining and multiplex-

ing factors, Npipe, Nmplx, which means the number of stages the pipeline has, and

121

the number of parallel workers that can be multiplexed to hide the memory copy

latency. At the shared memory level, these two parameters equal to the number of

stages at the outer load-and-use loop, Nsmem_pipe_stage, and the number of parallel

threadblocks in an SM, Nthreadblk_per_SM.

Calculation of Tmain_loop still needs the latency of the use phase in this loop.

However, the use phase is another pipeline that loads data into the register files

and performs computations with tensor cores. We can calculate the latency of

the use phase by estimating the stable state latency of the inner pipeline through

inner-pipeline fusion. For this inner load-and-use loop, the use latency refers to the

latency of performing arithmetic operations inside one loop on tensor cores. The

pipeline and multiplex factors are determined by the number of stages of this inner

load-and-use loop and the number of parallel warps in a threadblock.

5.5.2 Obtaining Detailed Latencies

Pipeline Latency Model. Now we address the core issue of estimating the latency

of a load-and-use loop in its stable state. Intuitively, the prediction should differ

depending on whether the bottleneck is loading or using. Line 3 in the Pipeline

Latency Model in Table 5.1 is the criterion for determining the bottleneck. Figure 5.10

illustrates the two scenarios in which computation or loading is the bottleneck. The

intuition is that, during the loading of one data chunk, the computation units can

be used to compute other chunks of data in this pipeline (Npipe), or used for other

parallel workers (Nmplx). If the latency of data loading exceeds the latency of all

computations that can overlap with it, the loading becomes the bottleneck, making

the loop latency equal to the latency of one load-and-use iteration, divided by the

number of overlapping streams, i.e., (Tload + Tuse)/Npipe.

Computation and Memory Latency Model. To obtain the computation latency, we

122

Tensor
Core

Buffer 1
Buffer 2

Thread-
block 1

Time

tload tuse

Thread-
block 2

Buffer 1
Buffer 2

Utilization = 1

(a) Case 1: tuse · Nmplx · Npipe ≥ (tload + tuse)

Time

Utilization = (Nmplx * Npipe * tuse) /(tload + tuse)

Buffer 1
Buffer 2

Thread-
block 1

Buffer 1
Buffer 2

Tensor
Core

Thread-
block 2

(b) Case 2: tuse · Nmplx · Npipe < (tload + tuse)

Figure 5.10: Explanation of the pipeline latency model. A load can be overlapped by computing in
other threadblocks, or in other stages of the same threadblock.

can simply divide the number of float-point operations performed inside a loop by

the tensor core throughput in an SM. When determining the latency of memory

copies, four parameters must be considered: the amount of data transferred, the

available bandwidth, the number of parallel workers (threadblocks or warps) to

share with the bandwidth, and a constant round-trip latency LAT . Note that GPU

LLC is shared by all SMs. Hence the DRAM traffic cannot be computed by the

sum of data loaded by all threadblocks because the data may hit in LLC. We model

DRAM traffic by deciding the working set of a threadblock-batch.

123

1.01
1.131.32 1.31 1.34 1.28 1.23 1.17

1.69

1.09 1.08

1.73

1.08 1.19
1.01

1.54

0.95
1.12 1.21 1.22

1.00
1.20

1.36
1.17

1.23

0.0

0.5

1.0

1.5

2.0

MM
_S
qu
are
_1
k

MM
_S
qu
are
_2
k

MM
_S
qu
are
_4
k

MM
_B
ER
T_
MH
A1

MM
_B
ER
T_
MH
A2

MM
_B
ER
T_
FC
1

MM
_B
ER
T_
FC
2

MM
_C
on
v1
x1
_1

MM
_C
on
v1
x1
_2

MM
_R
N5
0_
FC

BM
M_
BE
RT
_Q
K

BM
M_
BE
RT
_S
V

BM
M_
GP
T2
_Q
K

BM
M_
GP
T2
_S
V

Co
nv
2D
_R
N5
0_
1

Co
nv
2D
_R
N5
0_
2

Co
nv
2D
_R
N5
0_
3

Co
nv
2D
_R
N5
0_
4

Co
nv
3D
1

Co
nv
3D
2

Co
nv
3D
3

Co
nv
3D
4

GM
EA
N

MatMul BMM Conv2D Conv3D Average

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

to

 T
V

M
 B

as
el

in
e

TVM Baseline TVM DB ALCOP w/o MS,ML ALCOP w/o ML ALCOP

Figure 5.11: Single operator performance normalized to TVM on A100.

5.5.3 Model-Guided Auto-Tuning

Now, we will discuss how to use the analytical performance model for scheduled

tuning. The workflow of auto-tuning is composed of a cost model to predict per-

formance from schedule, and a sampling method to propose new trials. Unlike the

analytical model we developed, TVM uses not an analytical model but a machine

learning (ML)-based cost model that only learns from the profiled performance

results. Analytical model and ML-based tuning offer complementary benefits: ana-

lytical model does not require the complexity of compiling and running sampled

schedules but cannot be very accurate because it is difficult to capture hardware

factors such as memory system thoroughly. ML-based tuning learns the cost model

from measured performances that incorporate these complex factors, but it requires

a large amount of sampled data, leading to a lengthy tuning process.

Finally, we leverage the analytical performance model’s prediction to pre-train

the ML-based model, allowing the ML model to acquire previous knowledge while

still utilizing profiled data. Table 5.2 compares our method (Model-Assisted XGB)

with other available auto-tuning approaches.

124

Table 5.2: Comparison of compiler search methods.

Grid

Search
XGB

Anal.

Only

Anal.

+ XGB (ours)

Cost Model

N.A.

ML Analytical ML

Prior Knowledge? No Yes Yes

Update Cost Model? Yes No Yes

Sampling Enumerate
Simulated

Annealing

Cost-Model

Ranking

Simulated

Annealing

5.6 Evaluation

5.6.1 Single Operator Performance

This part evaluates pipelining speedup on single operators. Our benchmarks

extracted from real DNN workloads contain four operators with a variety of shapes.

All operators use half-precision and run on Tensor Cores. We run all experiments

on NVIDIA Ampere GPU, as prior generations lack the asynchronous memory-copy

hardware feature. Our evaluation platform is NVIDIA A100-SMX4 with 40GB

device memory. The software we use is CUDA v11.4.

We implement our pipelining framework based on TVM [chen2018tvm] v0.8 and

compare it against the vanilla TVM. We augment both ALCOP and baselines with

shared memory swizzling to avoid bank conflict limitation. We also manually insert

double-buffering primitives into TVM and use it as the second baseline (TVM DB).

We also compare against two downgraded versions of our compiler for ablation

study: ALCOP without multi-level (ML), meaning just pipelining in shared memory

level, and ALCOP without ML and multi-stage (MS), meaning only allowing two-

stage pipelining. Here we exhaustively search the schedule space and give the best

schedule for ours and all baselines.

Figure 5.11 shows the performance of different compilers normalized to TVM.

125

Table 5.3: Model speedup from pipelining

Model Speedup over TVM Speedup over XLA

BERT 1.15 1.27

BERT-Large 1.18 1.16

GPT-2 1.15 1.34

ResNet-18 1.02 1.64

ResNet-50 1.06 1.02

VGG-16 1.10 1.01

Our compiler produces operators that are 0.95-1.73×, on average 1.23×, faster than

TVM. Pipelining is especially effective for operators with small output shapes

but long reduction axis. Take matrix-multiplication (MatMul) as an example,

MM_RN50_FC, the operator that gives the largest speedup, has an output shape

of 1024× 64, and a reduction axis of 2048. Also, for Batched Matrix Multiplication

(BMM), the operators with short reduction axis (e.g., BMM_BERT_QK) show much

smaller speedup than those with long reduction axis (e.g., BMM_BERT_SV).

Insights about when pipelining works well. Problems with small output shapes

(e.g., MM_BERT_FC2, MM_RN50_FC) have limited spatial parallelism, so they

benefit more from pipelining since pipelining uncovers extra parallelism. For

problems with large output shapes (e.g., MM_Conv1x1_1), or with small reduction

dimensions (e.g., BMM_GPT2_QK), pipelining provides limited benefit since the

former already have abundant parallelism and the latter cannot amortize the latency

of initial loading stages in the pipelining schedule.

Ablation study. Multi-level and multi-stage pipelining are both critical to final

speedup. As shown in Figure 5.11, TVM DB does not bring obvious speedup over

TVM. Without multi-level pipelining, ALCOP can only provide an average 1.13×
speedup. Without multi-level and multi-stage pipelining, ALCOP can only give

1.01× speedup over TVM.

126

0.89
1.19

0.96 0.83 0.86 0.83
1.17

0.99 0.87
1.24 1.20

1.29

0.77

0.95 0.86

0.78

0.83 0.93

0.69

0.811.01 0.85 0.93

0

1

MM
_S
qu
are
_1
k

MM
_S
qu
are
_2
k

MM
_S
qu
are
_4
k

MM
_B
ER
T_
MH
A1

MM
_B
ER
T_
MH
A2

MM
_B
ER
T_
FC
1

MM
_B
ER
T_
FC
2

MM
_C
on
v1
x1
_1

MM
_C
on
v1
x1
_2

MM
_R
N5
0_
FC

BM
M_
BE
RT
_Q
K

BM
M_
BE
RT
_S
V

BM
M_
GP
T2
_Q
K

BM
M_
GP
T2
_S
V

Co
nv
2D
_R
N5
0_
1

Co
nv
2D
_R
N5
0_
2

Co
nv
2D
_R
N5
0_
3

Co
nv
2D
_R
N5
0_
4

Co
nv
3D
1

Co
nv
3D
2

Co
nv
3D
3

Co
nv
3D
4

MatMul BMM Conv2D Conv3D

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

to

 L
ib

ra
ry

 K
er

ne
ls

ALCOP Library (cuBLAS/cuDNN)

Figure 5.12: Single operator performance versus libraries.

5.6.2 End-to-End Performance

To evaluate end-to-end model acceleration, we compare against two baselines:

TVM [chen2018tvm] and XLA [xla] (TF v2.9.1). XLA is a compiler integrated

into the Tensorflow framework to optimize models in an end-to-end fashion. We

evaluate six popular deep learning models. BERT, BERT-Large [devlin2018bert] and

GPT-2 [radford2019language] are popular models in Natural Language Processing

(NLP). ResNet-18, ResNet-50 [he2016deep] and VGG-16 [simonyan2014very] are

three convolution neural networks widely used in vision tasks. Pipelining can

be applied to MatMuls, BMMs and Conv2Ds, which are the most computation

intensive operators and consumes a great proportion of the inference latency in

these models. Table 5.3 shows the end-to-end speedup in real models. We achieve

1.02-1.18× end-to-end speedup over TVM and 1.01-1.64× speedup over XLA.

5.6.3 Comparison with Libraries

We compare with kernels in vendor libraries (cuBLAS [cublas]/cuDNN [cudnn]),

which are heavily hand-optimized for the typical problem shapes we evaluate. Note

127

0.75

0.79

0
0.2
0.4
0.6
0.8
1

Best in Model-Ranked Top-10 Bottleneck-based Ours

0.88

0.92

0

0.2

0.4

0.6

0.8

1

MM
_S
qu
are
_1
k

MM
_S
qu
are
_2
k

MM
_S
qu
are
_4
k

MM
_B
ER
T_
MH
A1

MM
_B
ER
T_
MH
A2

MM
_B
ER
T_
FC
1

MM
_B
ER
T_
FC
2

MM
_C
on
v1
x1
_1

MM
_C
on
v1
x1
_2

MM
_R
N5
0_
FC

BM
M_
BE
RT
_Q
K

BM
M_
BE
RT
_S
V

BM
M_
GP
T2
_Q
K

BM
M_
GP
T2
_S
V

Co
nv
2D
_R
N5
0_
1

Co
nv
2D
_R
N5
0_
2

Co
nv
2D
_R
N5
0_
3

Co
nv
2D
_R
N5
0_
4

Co
nv
3D
1

Co
nv
3D
2

Co
nv
3D
3

Co
nv
3D
4

GM
EA
N

MatMul BMM Conv2D Conv3D Average

Best in Model-Ranked Top-50

Pe
rf

or
m

an
ce

 N
or

m
al

iz
ed

 to
B

es
t i

n
Ex

ha
us

tiv
e

Se
ar

ch

C
om

pi
le

 fa
il

C
om

pi
le

 fa
il

C
om

pi
le

 fa
il

Figure 5.13: Best-in-top-k performance of two analytical performance models. The mark ’compile
fail’ means the first 10 or 50 proposed schedules fail to compile into executables.

that despite their high performance, libraries take huge manual efforts due to low

modularity and cannot replace compilers in AI-GPU optimization. Figure 5.12

shows the performance of ALCOP normalized to library kernels. We can achieve

on-par, on average 93% normalized, performance compared with library kernels.

For some operators like BMM_BERT_QK, our compiler even generates faster kernels

than cuBLAS because our compiler can search the entire schedule space and find

the best schedule for input operators.

5.6.4 Performance Model Accuracy

The metric we use to evaluate our performance model is best performance in model-

ranked top-k schedules, or best-in-top-k in short. It means the best performance

within the top k schedules is predicted by the performance model. Compared

to mean-absolute-error among the entire schedule space, best-in-top-k is more

meaningful to schedule tuning because tuning cares about finding efficient schedules

within a limited number of trials.

We compare against bottleneck-based analysis, a simple model that takes the

128

maximum of computation, shared memory loading and device memory loading

time, assuming full utilization of computation throughput and bandwidth. It is

over-simplified in the following ways: (1) assumes an aggregated computation unit,

but in GPUs the Tensor Cores are distributed in different SMs and occupancy of

SMs matters. (2) agnostic to the latency hiding effect, which is what pipelining

mainly benefits.

Figure 5.13 shows the best-in-top-k results for our analytical model and bottleneck-

based analysis for k = 10, k = 50. All results are normalized to exhaustive search,

i.e., the best performance in the entire schedule space. Within the top-10 trials, our

performance model achieves an average of 79% performance compared to the best

in exhaustive search, but the bottleneck-based method only achieves 75%. Within

the top-50 trials, which is a 40× saving of trials compared to exhaustive search, our

model achieves an average 92% performance, whereas the bottleneck-based method

only achieves 88%. Our model also achieves more than 95% performance for all

matrix-multiplication operators.

5.6.5 Analytical-Model-Guided Schedule Tuning

This part evaluates our technique to combine the analytical model with machine

learning (ML) based schedule-tuning. The metric is best-in-k-trials similar as in the

last part. We compare our method with the other three methods, as detailed in

Table 5.2: (1) Grid-Search, which simply grid-search all the parameter configurations

and does not learn anything from the collected performance data. (2) XGB, which is

the default method in TVM [Tavarageri2021], and uses XGBoost [chen2016xgboost]

as a cost model to fit the collected data and uses simulated annealing to propose

new trials. (3) Analytical-only, which ranks all schedules according to their predicted

performance via our analytical model (4) Analytical+XGB, which first pretrains the

129

0.70
0.79

0.95

0
0.2
0.4
0.6
0.8
1

Trial = 10

Grid Search XGB Analytical Only Analytical + XGB Exhaustive (>2000 trials)

0.86

0.92

0.99

0
0.2
0.4
0.6
0.8
1

MM
_S
qu
are
_1
k

MM
_S
qu
are
_2
k

MM
_S
qu
are
_4
k

MM
_B
ER
T_
MH
A1

MM
_B
ER
T_
MH
A2

MM
_B
ER
T_
FC
1

MM
_B
ER
T_
FC
2

MM
_C
on
v1
x1
_1

MM
_C
on
v1
x1
_2

MM
_R
N5
0_
FC

BM
M_
BE
RT
_Q
K

BM
M_
BE
RT
_S
V

BM
M_
GP
T2
_Q
K

BM
M_
GP
T2
_S
V

Co
nv
2D
_R
N5
0_
1

Co
nv
2D
_R
N5
0_
2

Co
nv
2D
_R
N5
0_
3

Co
nv
2D
_R
N5
0_
4

Co
nv
3D
1

Co
nv
3D
2

Co
nv
3D
3

Co
nv
3D
4

GM
EA
N

MatMul BMM Conv2D Conv3D Average

Trial = 50

Th
ro

ug
hp

ut
N

or
m

al
iz

ed
to

Ex
ha

us
tiv

e
Se

ar
ch

Figure 5.14: Search efficiency of schedule tuning methods.

XGB model offline with pairs of schedules and their predicted performance from

the analytical model, and next follows the same workflow as XGB.

Figure 5.14 shows the best-in-k-trials of the four searching methods, normalized

to the best performance in exhaustive search. At a budget of 10 trials, our Model-

Assisted XGB finds schedules that reach 95% of the best performance in exhaustive

search, while sampling purely based on an analytical model or non-pretrained XGB

gives 79% and 70% of the best possible performance accordingly. At a budget of

50 trials, which achieves more than 40× saving of trials compared to an exhaustive

search, our method reaches 99% of the best possible performance, while Model-

Ranking and XGB only obtain 92% and 86%, respectively.

To sum up, we find that (1) analytical model helps ML: Model-Assisted XGB is

better than XGB because it incorporates prior knowledge about the hardware, and

(2) ML helps analytical model: Model-Assisted XGB is better than pure analytical

model because it uses the actual profiled data to fine-tune the performance model.

130

5.7 Summary

This chapter addresses the important need for automatic pipelining in deep learning

compilers. Due to the large tiling size required to mitigate bandwidth constraints,

inter-tile parallelism is inadequate for achieving high utilization, and intra-tile

pipelining becomes essential. We propose the first compiler solution that supports

multi-stage, multi-level pipelining. Through introducing automatic pipelining, our

compiler can generate GPU programs with an average 1.23× and maximally 1.73×
speedup over vanilla TVM [chen2018tvm]. Additionally, we develop an analyti-

cal performance model which significantly improves the search efficiency of the

schedule tuning process.

131

Chapter 6

BACO: Co-exploration of Hardware

Acceleration and Tensor Programs with

Unified Compilation Interface

6.1 Motivation

In recent years, there has been a notable increase in the utilization of domain-

specific accelerators [dally2020domain] to enhance computation performance and

improve energy efficiency in modern machine learning systems. Among the diverse

array of hardware accelerators available, spatial architecture has emerged as a

particularly efficient option. This architecture organizes numerous processing

elements in a structural and hierarchical manner, delivering exceptional efficiency

across various applications, including deep learning [he2016deep, ren2015faster]

and scientific computing [manavski2008cuda]. Developing efficient accelerators

with high-performance kernel libraries in a cost-effective manner has emerged as a

powerful technique.

132

HW Config

Mapping

Perf Model

O
pt

im
iz

at
io

n
Lo

op

Optimization Loop

HW Config

Mapping

Perf Model

Optimization Loop

Tensor Program

Instruction

HW Config

Perf Model

Optimization Loop

(a) (b) (c)

Figure 6.1: (a) Hardware-first exploration with two-loop search; (b) Mapping-first exploration with
one-loop search; (c) Instruction-aware exploration with one-loop search.

The development process entails exploring two distinct design spaces: the hard-

ware space and the software space. The hardware space encompasses accelerator

design parameters, such as interconnect topology, buffer capacity, and spatial array

sizes. On the other hand, the software space involves determining how workloads

are executed on the target accelerator, including decisions related to computation

instructions and data movement orchestration. In both spaces, the objective is

to optimize a performance metric, such as the energy-delay product (EDP). The

developed kernels can then be executed on the selected hardware configuration,

assuming that the memory buffers are adequately sized to accommodate the data

movement optimized by the kernel libraries. Given that these constraints encompass

both hardware and software design aspects, it is essential to optimize these two

spaces simultaneously.

Both the hardware and software design spaces are characterized by high di-

mensionality and consist of categorical and discrete variables. Additionally, eval-

uating the performance of each design point can be computationally expensive.

The size of the combined optimization space, along with the cost of evaluating

each point, presents significant challenges. As depicted in Figure 6.1, prior re-

133

search [sakhuja2023leveraging, huang2022learning, zhang2022full, lin2021naas,

venkatesan2019magnet] has addressed this challenge through a two-loop search ap-

proach. These methods directly explore the design space of potential hardware

configurations. The performance of each hardware configuration is determined by

constraining the programs compatible with that particular hardware configuration.

Program optimization is performed iteratively, resulting in a two-loop search that

iterates over both the hardware and software design spaces. Consequently, they

must grapple with a combinatorial explosion of possible configurations.

Despite the advantages of the one-loop search [kao2022digamma, hong2023dosa,

yang2020interstellar], it primarily optimizes the program without considering

hardware-specific instructions or assembly-level ISA. We refer to this approach

as instruction-agnostic co-exploration. While program transformations with these

instructions play an increasingly critical role, there is a lack of programming lan-

guage or compiler support for users to write them. As a result, the state-of-the-art

kernels are still predominantly manually written in low-level C or assembly with

metaprogramming techniques. This limitation restricts the range of accelerated rou-

tines and creates barriers to exploring new or improved accelerators. Consequently,

the performance achieved in the software space is sub-optimal, thereby limiting the

overall performance of the co-exploration process in the one-loop search approach.

Our Goal: We aim to establish an instruction-aware co-exploration framework that

employs a high-level and flexible interface. This involves taking a set of kernels,

written in a domain-specific language (DSL) and annotated to specify the desired

functionality, as input. These kernels serve as a representation of generality. The

desired outcome is to obtain optimized hardware configurations that are specifically

tailored to the characteristics of the input kernels, along with accelerated programs.

Ideally, a compiler should be capable of targeting the given design. Ultimately, the

134

Productivity

Pe
rf

or
m

an
ce

Ours:
 shorter code
 higher performance

low-level
interface

high-level
interface

Compiler
Optimiation

Block-oriented
Programming

Figure 6.2: The goal of BACO is to achieve both the productivity of a high-level programming
paradigm and the high-performance of manually optimized design.

framework aims to achieve both high-performance and ease of programming for

co-exploration, as illustrated in Figure 6.2.

Challenges: Designing a unified interface for hardware and software co-exploration

presents several challenges. Firstly, it requires the design of a new programming

paradigm and the determination of a suitable granularity for accelerator program-

ming. This paradigm should effectively shield users from the intricate hardware-

specific instructions and details, providing a user-friendly experience. Additionally,

for a given target kernel, an automatic mechanism needs to be devised to construct

an appropriate design space for co-exploration. Secondly, it is crucial to develop

efficient search methods that can effectively navigate and explore the design space.

These methods should be capable of minimizing the computational burden associ-

ated with evaluating numerous design points. Lastly, when targeting multi-layer

DNNs, it is imperative to identify and prioritize the layers that have a significant

impact on the overall end-to-end performance. This prioritization allows for more

focused exploration and optimization efforts within the co-exploration framework.

135

LL
VM

Ba
ck

-e
ndAccelerator

ComputationMemory

Instruction

Minimal Hardware Config.

Multi-level Abstraction
Bl

oc
k-

or
ie

nt
ed

Fr
on

t-
en

d

DNN Models Computation Graph

BACO Compiler

Tensor Program Hardware Config.

Performance Tuner

Learned Perf. Model Analytical Perf. Model

Optimized Tensor Program & Hardware Config.

Importance of each layer

Importance Estimator

Task Scheduler Gradient-based Optimizer

U
pd

at
e

Co
nf

ig
.

Figure 6.3: Overall design of BACO. The black arrows show the flow of extracting layers with
different importance scores from DNNs and generate optimized hardware and software configurations.
The red arrows means the performance tuning updates the status of all components in the framework.

6.2 Overview of BACO

BACO is an end-to-end one-loop search framework which captures key relations

between hardware and software in a unified compilation interface. Figure 6.3 shows

the design of BACO. It has three major components: a compiler, a performance

tuner and an importance estimator.

BACO Compiler. One of the primary challenges that BACO must overcome is to

establish a unified interface that facilitates hardware-specific code generation and

policies. To tackle this challenge, BACO introduces a DSL that revolves around

the notion of a block. By the incorporation of block-level optimization passes, it

seamlessly integrates hardware and software features, thereby enabling a unified

136

BACO DSL

Python AST

Python @JIT

BACO Dialect

Python-based
Front-end Modular Transformation

Linalg
Dialect

Arith
Dialect

InstGem
Dialect

SCF
Dialect

Memref
Dialect

LLVM Dialect

LLVM IR

LLVM Backend
Code Generation

RISC-V GNU

Backend Linker

Acceleration

CPUAccelerator

Tensor
Dialect

Infer Minimal
Hardware Config

PE Capacity

Buffer
Capacity

Dataflow

So
ftw
ar
e

H
ar
dw
ar
e

Figure 6.4: The compilation flow with multi-level IR in BACO.

interface. Meanwhile, a small accelerator-centric schedule space is constructed to

infer the minimal hardware configurations.

Performance Tuner. The performance of compiled programs and inferred hardware

configurations may not always meet desired expectations. The subsequent challenge

lies in the fine-tuning process. In this regard, BACO adopts a novel approach

by formulating the latency and energy performance model as a differentiable

white-box model. This formulation enables the utilization of gradient descent to

simultaneously update design parameters. By ensuring that the objectives are

differentiable with respect to these parameters, BACO achieves high sampling

efficiency.

Importance Estimator. Considering the whole DNN as a single computation graph

has the potential to achieve optimal performance. However, it becomes inefficient

due to the exponential expansion of the design space. To overcome this limitation,

BACO adopts a strategy of dividing the computation graph into a collection of

independent layers. Additionally, it incorporates an importance estimation strategy

that allows for the prioritization of layers based on their significant impact on the

end-to-end performance.

137

6.3 BACO Compiler

6.3.1 Compilation Flow

As depicted in Figure 6.4, the workflow begins by parsing the program into a

Python abstract syntax tree (AST), drawing inspiration from previous Python-based

DSLs [hu2019taichi, tillet2019triton]. The AST then undergoes type checking, infer-

ence, and conversions through a type system that utilizes user-specific annotations.

Python AST functions that are selected for offloading to accelerators are trans-

formed into the MLIR dialect representation. This process gives rise to the BACO

dialect, which serves as the entry point into the MLIR dialect ecosystem. The

BACO dialect functions as a comprehensive solution for program transformations,

assuming the responsibility of determining the program regions to be offloaded

onto hardware-specific components. Subsequently, the BACO dialect is primarily

lowered to the MLIR Linalg and Tensor dialects for block values and the Memref

dialects for memory pointers. Hardware-specific instructions are further lowered to

the InstGem dialect. Finally, all the dialects, comprising a multi-level abstraction,

are compiled into binary code using the LLVM backend. The compiler employs a

hierarchy of abstractions that progressively lowers programs, facilitating program

transformations and hardware optimization at the most appropriate abstraction

level.

6.3.2 Problem Setup

The problem dimensions during computation are described using the following

notations. Let D = {R, S, P, Q, C, K, N} represent the optimization dimensions of

a target workload. For instance, a convolution operator can be represented as a

138

 {input_ptr, weights_ptr, output_ptr} → 0
 {stride_input_m} → 9

 {stride_input_k, stride_weights_k} → 4
 {stride_weights_n} → 9

 {stride_output_m, stride_output_n} → 4

 {N*4+P*2+Q} → i0
 {C*9+R*3+S} → i1

 {K} → i2

 {(N*4+P*2+Q)%2} → i0
 {(C*9+R*3+S)%2} → i1
 {K % 2} → i2
 (N*4+P*2+Q)/2*20+(C*9+R*3+S)/2*4 → {input_ptr}
 (C*9+R*3+S)/2*8+K/2*4 → {weights_ptr}
 (N*4+P*2+Q)/2*8+K/2*4 → {output_ptr}
 2 → {stride_input_m/k}
 2 → {stride_weights_k/n}
 2 → {stride_output_m/n}

WeightsInput

* *

Input WeightsInput Input Weights

*
GEMM: 4 x 9, 9 x 4

1) PE Capacity Requirements
2) Buffer Capacity Requirements
3) Instruction Requirements
4) Target Workloads

Figure 6.5: Tensor to hardware matching with computation abstraction.

7-level nested loop optimization over the height and width of the weight tensor

(R, S), the output tensor (P, Q), the number of input and output channels (C, K),

and the batch size N. It is worth noting that matrix-matrix multiplication (GEMM)

can be represented as convolutions by setting R, S, P, Q to 1, and matrix-vector

multiplication (GEMV) can be represented by setting R, S, P, Q, N to 1. We can

define subsets of D as follows:

• Dw = {C, K, R, S}, which consists of the problem dimensions used to calculate

the size for weights.

• Di = {C, N, P + R− 1, Q + S− 1}, which consists of the problem dimensions

used to calculate the size for inputs.

• Do = {K, N, P, Q}, which consists of the problem dimensions used to calculate

the size for outputs.

Optimization Objective. Given a target workload D, our objective is to explore

a spatial accelerator s with an optimized hardware configuration, consisting of

parameters such as PEs capacity NPE, number of memory levels i, and buffer

139

Moving tensor in and out of
SRAM with mvin and mvout

instructions

DIM

DI
M

DRAM

num_blocks

dram_addr

mvin mvout

local_addr

SR
AM

 B
an

ks

Sc
ra

tc
hp

ad
/

Ac
cu

m
ula

to
r

…

Registers
Accumulator
Scratchpad

DRAM

Memory
Hierarchy Level

0
1
2
3

W I O
Tensor (D)

√
√

√ √
√ √ √

After Conversion

%0 = baco.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32>
%1 = baco.splat %afloat : (!baco.ptr<i8>) -> tensor<128x!baco.ptr<i8>>
%2 = baco.addptr %1, %0 : tensor<128x!baco.ptr<i8>>, tensor<128xi32>
%afm = baco.load %2 : tensor<128x!baco.ptr<i8>>

...
baco.store %res, %3 : !baco.ptr<i8>
baco.return

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

%cst = arith.constant 0.000000e+00 : i32
%reinterpret_cast = memref.reinterpret_cast %arg0 to offset: [0], sizes: [128], strides: [1] :

memref<*xi8> to memref<128xi8, strided<[1]>>
%alloc = memref.alloc() : memref<128xi8>
memref.copy %reinterpret_cast, %alloc : memref<128xi8, strided<[1]>> to memref<128xi8>
%0 = bufferization.to_tensor %alloc restrict writable : memref<128xi8>
%1 = bufferization.alloc_tensor() : tensor<i32>
%inserted = tensor.insert %cst into %1[] : tensor<i32>

...
%extracted = tensor.extract %reduced[] : tensor<i32>
%2 = arith.truncf %extracted : i32 to i8
%reinterpret_cast_0 = memref.reinterpret_cast %arg1 to offset: [0], sizes: [1], strides: [1] :

memref<*xi8> to memref<1xi8, strided<[1]>>
memref.tensor_store %2, %reinterpret_cast_0[0] : memref<1xi8, strided<[1]>>
Return

Figure 6.6: Structured memory access patterns with memory abstraction.

capacity of each memory Ci, as well as optimized program transformations f . Mean-

while, we aim to identify the optimal program transformations f ∗ and accelerator

configuration s∗. It can be formulated as an optimization problem:

f ∗, s∗ = argmin
f∈Ff

Cost(f , s). (6.1)

Our goal is to enable the maximum possible freedom to include different pro-

gramming idioms to define specialized memories, custom instructions and con-

figuration state for users. A general high-level programming interface serves this

purpose better. Therefore, BACO provides a flexible interface which brings block as

the first-class citizen to directly describe target workloads in Python.

6.3.3 Block-oriented Programming Model

Figure 6.7 exemplifies the implementation of the complete GEMM kernel using the

BACO DSL, which necessitates less than 40 lines of Python code. This serves to the

140

@baco.jit
def matmul_kernel(

Pointers to matrices and dimensions
a_ptr, b_ptr, c_ptr, M, N, K,
stride_am, stride_ak, # increase a_ptr by each dimension
stride_bk, stride_bn,
stride_cm, stride_cn,
Meta-parameters
BLOCK_SIZE_M: baco.const, BLOCK_SIZE_N: baco.const, BLOCK_SIZE_K: baco.const):
Map program ids `pid` to the block of C it should compute.
pid = baco.program_id(0)
num_pid_m = baco.cdiv(M, BLOCK_SIZE_M)
num_pid_n = baco.cdiv(N, BLOCK_SIZE_N)
pid_m = pid / num_pid_m
pid_n = pid % num_pid_n
a_ptrs is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
offs_am = pid_m * BLOCK_SIZE_M + baco.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + baco.arange(0, BLOCK_SIZE_N)
offs_k = baco.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
Iterate to compute a block of the C matrix
accumulator = baco.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype="int32")
for k in range(0, K, BLOCK_SIZE_K):

a = baco.load(a_ptrs)
b = baco.load(b_ptrs)
We accumulate along the K dimension
accumulator += baco.dot(a, b)
Advance the ptrs to the next K block
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk

c = accumulator.to("int32")
Write back the block of the output matrix C
offs_cm = pid_m * BLOCK_SIZE_M + baco.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + baco.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
baco.store(c_ptrs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Figure 6.7: The kernel implementation only less than 40 LoC in Python.

productivity benefits provided by the block-centric design approach in , especially

when contrasted with the complexities associated with low-level assembly program-

ming showcased in Figure 2.8. The GEMM kernel is successfully accomplished

through the utilization of block-level matrix multiplication and multi-dimensional

pointer arithmetic, effectively elevating the block to a prominent position in the

programming paradigm. The programming primitives related to this concept are

clearly illustrated in Table 6.1. The block-level matrix multiplication is implemented

as follows (L24-31), where each iteration of the nested for-loop is executed by a

dedicated program instance. The main challenge lies in computing the memory

locations from which blocks of a and b must be read in the inner loop. To address

this challenge, we utilize multi-dimensional pointer arithmetic and define blocks

of pointers for a and b (L20-21). The initialization of the pointers for the blocks

of a and b can be performed (L17-21). It is important to note that an additional

modulo operation is necessary to handle cases where M is not evenly divisible

141

Table 6.1: Instructions and programming primitives in BACO.

Primitive Description Category

mvin(rs1, rs2) Scratchpad[rs2]⇐ DRAM[rs1]

Custom
Hardware

ISA

mvout(rs1, rs2) DRAM[rs1]⇐ Scratchpad[rs2]
flush(rs1, rs2) execute without waiting for other instructions
config_ld(rs1, rs2) stride⇐ rs2, scale⇐ rs1
config_st(rs1, rs2) stride⇐ rs1
config_ex(rs1, rs2) mode⇐ rs1, shift⇐ rs2
fence() Time and spatial synchronization between PEs.
preload(rs1, rs2)
compute(rs1, rs2)

Scrathpad[rs2]⇐ Scrathpad[rs3] * Scrathpad[rs4]+ Scrathpad[rs1]

@jit Decorator for JIT-compiling a function using∼{\name} compiler.
Domain-
Specific

Language

autotune(configs) Automatic block partition by the specific configuration.
program_id The index of current program instance.
make_block_ptr Returns a pointer to a block.

by BLOCK_SIZE_M or N is not evenly divisible by BLOCK_SIZE_N. In such

scenarios, the data can be padded with values that have no impact on the final

results. The pointers are then adjusted within the inner for-loops (L30-31). This

exemplifies how multi-dimensional pointer arithmetic is employed to abstract the

movement of data at the block level, enabling efficient iteration through the data

blocks.

6.3.4 Multi-level Abstraction in BACO

Based on the principles of block-oriented programming, our objective is to establish a

multi-level abstraction that enables the formal specification of specialized memories,

custom instructions, and configuration state. This formal definition allows for the

precise delineation of the behavior of the accelerator, enabling automatic analysis

and optimization. The core idea behind this multi-level abstraction is to convert

low-level accelerator instructions into higher-level representations that are based

on scalar operations, which can then be organized by the block. To accomplish

142

this, BACO introduces four key abstractions: accelerator, computation, memory,

and instruction. These abstractions work together harmoniously to facilitate the

transformation process. To illustrate the effectiveness of these abstractions, we

present a motivating example and provide a more comprehensive description of

each abstraction.

A Motivating Example. We utilize a convolution example depicted in Figure 6.5 to

provide a comprehensive description of our compilation flow. This flow is designed

to generate optimized programs with specialized instructions tailored to specific

accelerators. It is important to note that the proposed method is applicable to other

target workloads as well. The convolution is expressed as:

D = {R = 3, S = 3, P = 2, Q = 2, C = 1, K = 4, N = 1} .

It is transformed into an equivalent GEMM operation with dimensions 4× 9 and

9× 4. Assuming there are no constraints regarding instructions or the accelerator, as

long as a 4×9×4 GEMM operation is executed, it would be sufficient to complete the

convolution computation. The base addresses for the computation are initialized to

0, and the strides are determined based on the matrix shape illustrated in Figure 6.5.

However, the computation capacity of the PEs is limited to generating results of a

fixed shape at any given time. This limitation is determined by the configuration of

specialized instructions and the available resources of the accelerator. The resources

of a custom instruction in the accelerator can be derived from its index range, which

is defined in the computation abstraction.

By taking into account the computation partition factors, which are determined

by the available resources of the accelerator (such as the shape of the PEs), we

can construct an accelerator-centric schedule space by enumerating possible values

within the constraints of the hardware resources. This approach results in a sig-

143

nificantly smaller schedule space compared to traditional methods [chen2018tvm,

zheng2020ansor]. In this example, the number of iterations is constrained by a fac-

tor of 2 due to the 2× 2 shape of the processing elements. Furthermore, the memory

capacity poses a limitation, with each SRAM only able to accommodate a certain

size of tensor. As a result, it is necessary to partition the entire tensor into smaller

blocks and perform multiple load/store operations on these blocks. The movement

of these blocks within the memory is controlled by the base addresses and strides,

which must be adjusted accordingly to facilitate proper tensor movement.

We flatten the base addresses and obtain the expression (n×4+p×2+q)
2 × 20 +

(c×9+r×3+s)
2 × 4. Here, 4 = 2× 2 represents the number of elements within a matrix,

and 20 = 5× 4 indicates that 5 sub-matrices are grouped together for the compu-

tation. The 4× 9 matrix is split into 2× 5 with 2× 2 sub-matrices. Consequently,

there exist trailing sub-matrices during the computation, and BACO automatically

pads them with the value 0. When the number of PEs changes, the addressing and

computation described above will also change accordingly. Hence, by combining

the available resources, instruction configurations, and target workloads within

the accelerator-centric schedule space, we can deduce the minimum hardware

requirements.

Accelerator Abstraction. We specifically target the open-source RISC-V based

DNN accelerator Gemmini [genc2021gemmini], which is composed of the following

architecture templates: i) a systolic array of PEs, ii) an accumulator, iii) a scratchpad,

and iv) a DRAM memory. In the context of Gemmini, the memory buffer levels are

designated as 0, 1, 2, and 3 in Figure 6.6, where 0 corresponds to the per-PE registers.

The hardware instructions are typically applied in conjunction with special memory

scopes, layouts, and the corresponding load/store operations. For our purposes, we

adhere to Gemmini’s assembly-level instruction set, as presented in Table 6.1. This

144

instruction set consists of custom RISC-V instructions that allow for the specification

of the computation and memory configuration. Notably, Gemmini’s instruction

set includes low-level instructions for moving strided matrices to and from the

scratchpad, as well as instructions for calculating dot products. These accelerators

are primarily designed to efficiently execute small and dense GEMM instructions.

Consequently, a target accelerator is modeled based on the notions of the PE capacity

NPE and the buffer capacity Ci at different levels i. As observed in Table 6.1, the

accelerator is equipped with instructions for memory access and computation.

Therefore, when designing the multi-level abstraction, it is essential to decouple

these instructions, as they control distinct hardware units within the accelerator.

Computation Abstraction. The computation abstraction refers to a statement that

encompasses the operands, the arithmetic operation performed on those operands,

and the indices used to access the tensor for the computation instruction in the

accelerator. It is crucial to represent the range of indices within the abstraction,

ensuring a comprehensive and complete specification of the computation. As

depicted in Figure 6.6, DW and DI denote the input tensors, while DO represents

the output tensor. The function F denotes the arithmetic operation, such as a dot-

product operation, and m, n, and k are indices used to access the tensors. Therefore,

we can express the computation abstraction as DO [m, n] = F(DW [m, k] , DI [k, n]).

Memory Abstraction. The memory abstraction is presented as a list of statements,

with each statement providing information about the scope, operands involved, and

indices used for memory access. In Figure 6.6, detailed information is provided

regarding the lowering programs that exhibit structured memory access patterns

in the compilation process. Two crucial analyses are involved in this context.

The first analysis is the pointer analysis, which plays a vital role in extracting

structured memory access patterns from the BACO program during load and

145

store operations. This analysis traverses the intermediate representation (IR) and

examines relevant instructions to construct strided memory accesses using the

Memref dialect. Once the pointer analysis is performed, instructions involved

in memory address calculations become redundant in the BACO program, as

their semantics are effectively captured by the operations in the Memref dialect,

representing the strided memory accesses. To safely remove these instructions, we

employ an analysis that identifies and marks instructions used solely for address

calculation purposes. The computation and memory abstractions in the design

effectively represent the behavior of the accelerator and decompose the obscure

specialized instructions into a sequence of comparable scalar operations. These

operations are then structured into blocks, allowing for comprehensive analysis.

Instruction to Hardware Matching. First, we introduce the concept of tensor

iterations. Tensor program transformation can be represented as optimal for-loop

nests. Therefore, tensor iterations refer to all the instances within the for-loop

nests. Meanwhile, we can define instruction iterations based on the computation

abstraction discussed in Section 6.3.4. Instruction iterations correspond to scalar

operations within the index range of the computation abstraction. For example, in

systolic array computation, there exist three instruction iterations, namely (i0, i1, i2),

as illustrated in Figure 6.5. Given the definitions of tensor and instruction iterations,

as well as computation and memory abstraction, we define the matching between

tensors and instructions, and instructions and hardware.

Tensor[f]→ Instruction[i0, i1, i2, . . .] (6.2)

Tensor[f]→ Operand[ptr0, ptr1, . . .] (6.3)

{ f } ∪ {i0, i1, i2, . . .} ∪ {ptr0, ptr1, . . .} → HW Con f ig. (6.4)

The tensor programs are partitioned into scalar operations, leveraging computation

146

Table 6.2: Analytical Performance Model in BACO.

Category Modeling

Read

Read(l): amount of tensors read from l−level buffer.
BandwidthRead(l): bandwidth of reading tensors from l−level buffer.
Latencyr(l): latency of reading tensors from l−level buffer.
Latencyr(l) = Read(l) / BandwidthRead(l)

Write

Write(l): amount of tensors written to l−level buffer.
BandwidthWrite(l): bandwidth of writing tensor to l−level buffer.
Latencyw(l): latency of writing tensor to l−level buffer.
Latencyw(l) = Write(l) / BandwidthWrite(l)

Latency

Latencyc(l): latency of computation on l−level.
Seq(l): sequential loops for l−level buffer.

Latency(l) =





max
i∈{c,r,w}

[Latencyi(l − 1)]×∏ Seq(l) l > 0

LatencyInstruction×∏ Seq(l) l = 0
Energy Energy = MACs× EPAPE + ∑3

i=0 [Access(i)× EPA(i)].

and memory abstractions. This allows the BACO compiler to establish a correspon-

dence between tensor and instruction iterations. Moreover, explicit control is exerted

over the memory access indices for each operand across various memory scopes. By

combining these factors with tensor program transformations f , the compiler is able

to automatically generate matching between tensors and instructions, encompassing

both computation and memory access. Ultimately, this enables the compiler to infer

the optimal hardware configuration based on these matchings.

To address the obstacles posed by fragmentation, the BACO compiler introduces

a modular and reusable abstraction that acts as a mediator between the hardware and

software layers. This approach allows for the encapsulation of various operations

and types within specific abstractions, while also facilitating the sharing of common

optimizations across both hardware and software components.

147

module {
llvm.func matmul_kernel(
”InstGemdialect.intr.config_ex"
(%64, %65) : (i64, i64) -> ()
"InstGemdialect.intr.config_st"
(%67, %68) : (i64, i64) -> ()
"InstGemdialect.intr.config_ld"
(%70, %69) : (i64, i64) -> ()
"InstGemdialect.intr.loop_ws_config_bounds"
(%79, %80) : (i64, i64) -> ()
"InstGemdialect.intr.loop_ws_config_addrs_ab"
(%57, %59) : (i64, i64) -> ()
"InstGemdialect.intr.loop_ws_config_addrs_dc"
(%63, %61) : (i64, i64) -> ()
"InstGemdialect.intr.loop_ws"
(%85, %86) : (i64, i64) -> ()
"InstGemdialect.intr.flush"
(%87, %87) : (i64, i64) -> ()

llvm.return } }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 6.8: InstGem Dialect with hardware-specific instructions.

6.3.5 Backend Code Generation

To facilitate the implementation of the multi-level abstraction, we introduce a

conversion pass called baco-to-mlir. This pass is responsible for reducing the

operations that are compatible with the MLIR core dialect.

Lowering to specialized instructions: When utilizing DSL, which incorporates a

high-level block abstraction, the user-defined target workload and a set of optimiza-

tions revolving around the blocks are transformed through modular transformations.

This process results in the lowering of the workload to the InstGem dialect. The

InstGem dialect is responsible for modeling and configuring accelerator-specific

instructions. More details can be found in Figure 6.8.

Lowering to LLVM IR: We present a LLVM extension that transforms all accelerator-

specific RISC-V instructions into LLVM IR [lattner2004llvm]. Further details can

be found in Figure 6.9. This conversion enables us to leverage the optimization

capabilities offered by the LLVM backend, thereby augmenting the final code. Si-

148

define void matmul_kernel(
ptr %0, ptr %1, ..., i64 %19, i64 %20) {
call void @llvm.riscv.config.ex(i64 , i64)
call void @llvm.riscv.config.st(i64 , i64)
call void @llvm.riscv.config.ld(i64, i64)
...
call void @llvm.riscv.loop.ws.config.bounds(i64 , i64)
call void @llvm.riscv.loop.ws.config.addrs.ab(i64, i64)
call void @llvm.riscv.loop.ws.config.addrs.dc(i64, i64)
call void @llvm.riscv.loop.ws.config.strides.ab(i64, i64)
call void @llvm.riscv.loop.ws.config.strides.dc(i64, i64)
call void @llvm.riscv.loop.ws(i64, i64)
call void @llvm.riscv.flush(i64, i64)
...
ret void }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 6.9: LLVM IR Extension with hardware-specific instructions.

multaneously, we develop a set of tools to facilitate the optimization and analysis

process. The baco-opt tool functions as a modular optimizer and analyzer. It

accepts source files as input, applies specified optimizations or analyses to them,

and produces optimized files as output. The baco-translate tool is responsible

for converting the source files generated from the MLIR dialect into the LLVM IR

dialect. This conversion is necessary for importing the files into the LLVM backend.

The baco-llc tool generates the object file needed for simulation purposes.

6.4 Performance Fine-tuning

The design of domain-specific accelerators is a complex and resource-intensive

task, involving the exploration of various hardware and software configurations to

optimize the performance of specific workloads. In the case of BACO, our focus

is on co-design, which involves minimizing the energy-delay product (EDP) for

a given DNN model by considering both energy consumption and latency at a

layer-wise level. The overall objective of BACO is to compute the product of the

sums of energy and latency across all layers. The performance models for latency

149

Table 6.3: Details modeling information of the accelerator.

Component Memory Level Bandwidth (words/cycle) Energy (EPA)
PE - - 0.561

Registers 0 2NPE 0.487
Accumulator 1 2

√
NPE 1.94 + 0.1005× C1/

√
NPE

Scratchpad 2 2
√

NPE 0.49 + 0.025× C2
DRAM 3 8 100

and energy are presented in Table 6.2. By treating the total EDP value as the loss

term in a gradient descent optimization process, our aim is to minimize EDP for the

entire DNN model, rather than optimizing individual layers in isolation. Thus, the

performance model can be defined as follows:

EDP = Energy× Latency =

(
n

∑
i=1

ei

)
×
(

n

∑
i=1

li

)
, (6.5)

where n represents the number of layers, and ei and li denote the energy and latency

of the i-th layer, respectively. Thanks to the scalability of gradient descent, we can

optimize Equation (6.5) concurrently with respect to all program transformations,

rather than tackling one program transformation at a time. Based on the accelerator

abstraction defined in Section 6.3.4 and the notations introduced in Section 6.3.2,

the performance model is also formulated on a level-by-level basis. The overall

latency is determined by the maximum value among the read latency, write latency,

and compute latency. The compute latency can be either the latency of inner-level

computation or the latency of a single instruction. The single-instruction latency

can be estimated using simulators. Additionally, the final latency is multiplied by

the trip counts of sequential loops, as these loops are executed sequentially and

are not bound to parallel cores. Further details on the performance model can be

found in Table 6.2. The specific energy per access (EPA) values for each architectural

component are provided in Table 6.3. Note that the differentiable performance

150

Algorithm 6 Unified Compilation Interface for Hardware and Software Co-
Exploration in BACO.
Require: K: Set of target workload kernels for multi-layers
Ensure: Optimized tensor programs and hardware configuration

1: Initialize tensor program T with hardware-specific instructions using BACO compiler
2: Initialize hardware config H with default settings
3: Assign equal importance weight wi to each layer i
4: repeat
5: Compute HW requirements R for layerwise transformation
6: Derive minimal hardware config Hmin from R
7: Calculate arithmetic operations AO and memory accesses MA at each buffer level

using analytical performance model
8: Predict EDP using AO, MA, and Hmin
9: Optimize T and H via gradient descent, update weights wi

10: until Convergence criteria met

model of BACO is inspired by the existing design presented in [hong2023dosa].

6.5 Importance Estimation Strategy

As discussed in Section 6.4, BACO is capable of partitioning a DNN model into

multiple independent layers. However, for certain layers, investing resources in

exploring them does not yield significant improvements in the end-to-end EDP

metric. There are two main reasons for this: i) the layer is not a performance

bottleneck, and ii) the exploration of the layer only leads to marginal enhancements.

To address this, BACO leverages the flexibility of the gradient descent loss function

in Equation (6.5) to dynamically assign different weights to different layers, thereby

avoiding the costly exploration of unimportant layers. Furthermore, for layers that

appear multiple times, knowledge can be shared and reused. The task scheduler

of BACO iteratively assigns different weights to each layer, optimizing the overall

performance.

Problem Formulation. Our objective is to decrease the EDP metric for a given

151

DNN model by minimizing the exploration cost when further optimization does

not significantly improve performance. Let us assume that there are n layers in

the model. We introduce a variable t ∈ Zn, where ti represents the importance

weight assigned to layer i. The minimum EDP achieved by layer i is a function

of the assignment variable gi(t), and the overall optimization cost of the DNNs is

a function of each layer’s values (g1(t), g2(t), . . . , gn(t)). Therefore, our objective

function aims to minimize the end-to-end performance, taking into account the EDP

and the assigned importance weights. It can be represented as follows:

min f (g1(t), g2(t), g3(t), . . . , gn(t)). (6.6)

To minimize the end-to-end EDP, we can define the objective function as: f =

∑n
j=1(wi × gi(t)). Here, wi represents the number of occurrences of the optimization

task i in the DNN model. Therefore, our aim is to fulfill the minimum EDP

requirement for the entire end-to-end DNN, while keeping the exploration cost to a

minimum.

Solution. Based on the given formulation, we propose an approximation algorithm

that utilizes gradient descent to optimize the objective function. To achieve this,

we can compute the gradient of fi with respect to ti, denoted as ∂ fi
∂ti

, using Taylor

expansion. This allows us to make the following approximation:

∂ fi

∂gi
≈ ∂ f

∂gi
(α

gi(ti)− gi(ti − ∆t)
∆t

+ (1− α)
gi(ti + ∆t)− gi(ti)

∆t
). (6.7)

In the given expression, ∆t represents a small backward window size. The values

of gi(ti) and gi(ti − ∆t) can be obtained from the history log file. However, since

we have not assigned ti + ∆t units of resources to this layer, we need to predict the

value of gi(ti + ∆t). To make this prediction, we consider two assumptions:

• Ideal condition: When ti is sufficiently large, the value of gi(ti) tends to become

152

very small, indicating that the EDP of the layer is approximately zero. Based

on this observation, we can approximate gi(ti + 1) as gi(ti) +
gi(ti)

ti
.

• Similar structure: If two layers have a similar structure, they are likely to

have similar FLOPS (floating-point operations per second). Therefore, we can

assume that the value of gi(ti + ∆t) will be similar to gi(ti − ∆t) if the two

layers share a similar structure.

Combining these two assumptions, we can approximate the value of gi(ti + ∆t)

as follows:

gi(ti + 1) ≈ min(gi(ti) +
gi(ti)

ti
, β

FLOPs(i)
maxk∈Y(i)FLOPS(k)

), (6.8)

where Y(i) represents the set of layers similar to layer i, FLOPs(i) denotes the num-

ber of floating-point operations for layer i, and FLOPS(k) represents the computing

performance of BACO in task k measured in floating-point operations per second.

The FLOPS value can be calculated using the formula FLOPS = FLOPs×Freq
Cycles , where

higher FLOPS values indicate faster and more efficient computing performance. Ad-

ditionally, β determines the weight given to the prediction based on layer similarity.

To execute this algorithm, the BACO task scheduler begins with an initial allocation

vector t = (1, 1, . . . , 1) during the warm-up phase. In each iteration, we compute the

gradient for each task and select argmaxi| ∂s
∂ti
|. We then assign the weight to task i

and update it with ti = ti + 1. The optimization process continues until convergence

is achieved.

The optimization process continues until convergence is achieved. The updated

objective function is as follows:

f =

(
n

∑
i=1

wi · ei

)
×
(

n

∑
i=1

wi · li
)

. (6.9)

153

Table 6.4: Benchmarked GEMV/GEMM with different shapes.

Category M N K #Test Cases

Real-World

[1, 256] [1, 256] [1, 256] 100

[1, 256] [1, 256] [257, 65536] 88

[257, 1024] [1, 256] [1, 65536] 64

[257, 1024] [257, 65536] [1, 65536] 98

[1025, 8192] [1, 256] [1, 65536] 66

[1025, 8192] [257, 8192] [1, 65536] 128

With the integration of the new objective function, gradient descent now traverses

a gradient that places high importance on the initial weight of wi. This allows for

the optimization of EDP with a clear understanding of which layer is most suitable

for the current exploration. Moreover, if the scheduler spends a significant number

of iterations on a particular layer without observing a decrease in the EDP metric, it

will abandon the optimization of that layer. This decision is based on the observation

that | ∂ f
∂ti
| is decreasing in comparison to other iterations.

The fundamental concept behind importance estimation is to estimate the impact

of each task on the overall performance by making optimistic predictions and

considering the similarity between tasks. The workflow of hardware and software

co-exploration, where multi-layers are simultaneously compiled using the unified

compilation interface in BACO, is outlined in Algorithm 6.

6.6 Evaluation

6.6.1 Experimental Setup

Implementation. The implementation of BACO consists of approximately 15,000

LoC in C++ and Python. This includes the DSL, MLIR dialect, and backend code

generation. The tool supports DNNs as design entries, which can be specified

154

Table 6.5: Benchmarked convolution with different shapes.

Category Fmap Size Filter Size #Test Cases

U-Net

[280, 568] 3×3 80

[56, 138] 3×3 88

[8, 52] 1×1 64

ResNet-50

[56, 120] 1×1 80

[32, 80] 3×3 120

[4, 40] 1×1 68

[2, 30] 3×3 140

RetinaNet
[2, 28] 1×1 98

[2, 28] 3×3 108

using PyTorch [pytorch] and the DSL. For PyTorch integration, we utilize the

TorchInductor [inductor] compiler backend to generate Triton code [triton-repo].

Additionally, we make use of the Triton-shared library [triton-shared] to lower

the Triton dialect into BACO and the MLIR core dialect for compilation. The im-

portant dialect and optimization passes in the compiler are implemented from

scratch within BACO. All intermediate representations (IR) are compiled into

the LLVM backend [lattner2004llvm] with accelerator-specific instructions. This

allows us to generate executable binaries using the RISC-V GNU toolchain in chip-

yard [amid2020chipyard]. To incorporate differentiability, we utilize the PyTorch

automatic differentiation mechanism. Random hardware configurations are used to

generate starting points for gradient descent. The dimensions of processing elements

(PEs) are limited to a maximum size of 128×128. Additionally, the sizes of SRAM

are rounded up to increments of 1KB. Ensuring the correctness of the generated code

is crucial, and BACO leverages the CPU backend to conduct functional simulation

testing. The input data type is set to int8, while the accumulate data type is set to

int32 for all evaluations.

Software and Hardware. The experiments are conducted on a server that is

155

Ey
eri

ss

NVDLA
-S

NVDLA
-L

Gem
-D

efa
ult

Gem
-D

OSA

Gem
-B

AC
O

1

4

7

10

12
N
or
m
al
iz
ed

E
D
P

(1
e1

0
)

(a) ResNet-50

Ey
eri

ss

NVDLA
-S

NVDLA
-L

Gem
-D

efa
ult

Gem
-D

OSA

Gem
-B

AC
O

1

5

15

20

30

N
or
m
al
iz
ed

E
D
P

(1
e1

5
)

(b) U-NET

Ey
eri

ss

NVDLA
-S

NVDLA
-L

Gem
-D

efa
ult

Gem
-D

OSA

Gem
-B

AC
O

1

5

15

20

30

N
or
m
al
iz
ed

E
D
P

(1
e1

5
)

(c) BERT

Ey
eri

ss

NVDLA
-S

NVDLA
-L

Gem
-D

efa
ult

Gem
-D

OSA

Gem
-B

AC
O

1

5

15

20

25

N
or
m
a
li
ze
d
E
D
P

(1
e1

2
)

(d) RetinaNet

Ey
eri

ss

NVDLA
-S

NVDLA
-L

Gem
-D

efa
ult

Gem
-D

OSA

Gem
-B

AC
O

1

5

10

15

20

N
or
m
al
iz
ed

E
D
P

(1
e1

2
)

(e) DeepBench

Ey
eri

ss

NVDLA
-S

NVDLA
-L

Gem
-D

efa
ult

Gem
-D

OSA

Gem
-B

AC
O

1

5

15

20

30

N
or
m
a
li
ze
d
E
D
P

(1
e1

0
)

(f) Geo-Mean

Figure 6.10: End-to-end benchmark for Energy-delay product (EDP) of baseline accelerators.

equipped with a 16-core, 24-thread Intel i9-12900K CPU with hyper-threading. The

server runs on Ubuntu LTS 22.04. For evaluation purposes, we employ both state-of-

the-art performance models and real hardware designs. To assess latency and energy,

we utilize the Timeloop-Accelergy [wu2019accelergy] and DOSA [hong2023dosa]

performance models. In addition to the performance models, BACO also supports

simulation using the Spike [spike] and Verilator [verilator]. Regarding the accelera-

tor, we utilize the Gemmini accelerator generators in conjunction with Timeloop.

These generators define the architectural specifications of the hardware accelera-

tor, similar to Gemmini. For the RTL implementation of the Gemmini accelerator,

we utilize Gemmini with the Chisel hardware description language (Gemmini-

RTL)[gemmini-repo] and RISC-V custom instructions[rocc-software-isa]. To evalu-

ate the latency of RTL simulation, we utilize FireSim [karandikar2018firesim].

156

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

Samples

L
og

-s
ca
le

E
D
P

(1
e1

1
)

BACO
DOSA
Random
BB-BO

(a) ResNet-50

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

Samples

L
og

-s
ca
le

E
D
P

(1
e1

4
)

BACO
DOSA
Random
BB-BO

(b) U-NET

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

Samples

L
og

-s
ca
le

E
D
P

(1
e1

0
)

BACO
DOSA
Random
BB-BO

(c) BERT

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

Samples

L
og

-s
ca
le

E
D
P

(1
e1

0
)

BACO
DOSA
Random
BB-BO

(d) RetinaNet

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

Samples

L
og

-s
ca
le

E
D
P

(1
e1

0
)

BACO
DOSA
Random
BB-BO

(e) DeepBench

0 1,000 2,000 3,000 4,000 5,000
0

10

20

30

40

Samples

L
og

-s
ca
le

E
D
P

(1
e1

1
)

BACO
DOSA
Random
BB-BO

(f) Geo-Mean

Figure 6.11: End-to-end search efficiency for Energy-delay product (EDP) of baseline methods.

6.6.2 Single Operator Benchmark

Workloads. We begin by evaluating BACO on a range of common DL opera-

tors, which include GEMM, GEMV, 1D convolution, and 2D convolution. Ta-

ble 6.4 and Table 6.5 present the benchmarks for these operators. Each test

case is characterized by a unique shape size, and the range of values is denoted

as [min, max]. For matrix operations, we consider a total of 544 test cases de-

rived from real-world applications, specifically Transformer-based models such as

BERT [devlin2018bert], DistilBERT [sanh2019distilbert], RoBERTa [liu2019roberta],

Llama2-7B [touvron2023llama], GPT-2 [radford2019language], and ViT-B/16 [dosovitskiy2021an].

To evaluate efficiency in language model (LLM) scenarios, we select Llama2-7B from

HuggingFace as the benchmark. The input sequence lengths range from 1 to 512,

157

Table 6.6: Single Operator Benchmark on BACO.

Benchmark Accelerators #Test
Cases Cycles Energy EDP

GEMM

Eyeriss

170

200433 41992.83 13.95×
NVDLA-Small 21498335 810.24 28.87×
NVDLA-Large 476818 5010.85 3.96×

Gemmini-Default 3193494 923.87 4.89×
Gemmini-DOSA 1630720 547.58 1.48×
Gemmini-BACO 1358934 443.98 1.00×

GEMV

Eyeriss

174

74868 127692.71 16.72×
NVDLA-Small 156342 130050.54 35.56×
NVDLA-Large 37985 62921.04 4.18×

Gemmini-Default 25874 119776.11 5.42×
Gemmini-DOSA 13432 81304.068 1.91×
Gemmini-BACO 11010 51930.26 1.00×

Conv1D

Eyeriss

68

226024 1888590.39 7.52×
NVDLA-Small 521507 2155167.18 19.81×
NVDLA-Large 49119 2981569 2.58×

Gemmini-Default 72527 2715832.08 3.47×
Gemmini-DOSA 65934 1231124.96 1.43×
Gemmini-BACO 38374 1479228.38 1.00×

Conv2D

Eyeriss

128

315838.85 13864679.81 8.49×
NVDLA-Small 493789.35 20943070.61 20.05×
NVDLA-Large 240372.93 7338516.07 3.42×

Gemmini-Default 231056 8906827.97 3.99×
Gemmini-DOSA 101552 6501077.18 1.28×
Gemmini-BACO 93168 5536073.53 1.00×

and the batch sizes range from 1 to 8. The output sequence length is fixed at 512,

which aligns with common practices in serving LLMs.

Baselines and settings. We focus on optimizing the default architecture template

of Gemmini, which consists of a 16×16 systolic array for block matrix multipli-

cation, a 256KB scratchpad memory for input and output tensors, and a 64KB

accumulator for partial sums. The low-level instruction format of Gemmini remains

unchanged, including the movement of strided tensors to and from the scratchpad

and the instructions for calculating dot products. In our evaluation, we compare

the performance of Gemmini with different optimization approaches. These in-

clude Gemmini with the default heuristic-based optimization (Gemmini-Default),

Gemmini with BACO optimization (Gemmini-BACO), Gemmini with DOSA opti-

mization (Gemmini-DOSA), and other expert-optimized accelerator baselines such

as Eyeriss [chen2016eyeriss] and NVDLA Small/Large [zhou2018research].

158

Table 6.7: Ablation study of BACO on ResNet-50.

Setting
BACO

(a) (b) (c) (d) (e) (f)

Block Partition ✓ ✓ ✓ ✓ ✓

Infer HW Config ✓ ✓ ✓ ✓

Analytical Perf. Model ✓ ✓ ✓

Learned Perf. Model ✓ ✓

Importance Estimation ✓

Improvement 1.00× 1.44× 1.87× 1.98× 2.17× 2.32×

Results. We have randomly selected 170 cases from the GEMM benchmark, 174

cases from the GEMV benchmark, 68 cases from the 1D convolution benchmark, and

128 cases from the 2D convolution benchmark for our evaluation. The performance

of the single operator benchmark is presented in Table 6.6. Our findings indicate

that the mappings and hardware optimized by BACO exhibit greater consistency

with the baseline compared to DOSA, with improvements of up to 1.91×, and the

default Gemmini, with improvements of up to 5.42×. To evaluate these accelerators,

we utilize Timeloop and perform a search of 5,000 valid mappings per operator

using the random-pruned mapper. The reported results represent the geometric

mean of the improvements in Energy-Delay Product (EDP) for all evaluations.

6.6.3 End-to-End Network Benchmark

Workloads. We assess the performance of our design across a diverse range of target

DNN models that cover various tasks, including image classification, object detec-

tion, image segmentation, and natural language processing. The models include

ResNet-50, U-Net, RetinaNet, BERT, and DeepBench with OCR and face recognition

tasks [deepbench]. For these evaluations, we utilize the model implementations

provided in the torchvision and transformers packages. The reported results are

159

obtained using a batch size of 1. It should be noted that the parameters α and

β introduced in Section 6.5 are consistently set to 0.2 and 2, respectively, for all

evaluations.

Results. We apply the same settings and accelerator baselines as described in Sec-

tion 6.6.2 to evaluate the performance of the five target workloads. The results of

the end-to-end performance with a single batch are presented in Figure 6.10. For

these end-to-end workloads, we utilize Timeloop and search 10,000 valid mappings

per layer using the random-pruner mapper. In terms of the EDP metric, BACO con-

sistently outperforms the baselines. Compared to Gemmini-DOSA, BACO achieves

a maximum improvement of 1.64×. Moreover, when compared to Gemmini-default,

the highest improvement observed is 5.23×. Note that the primary distinction

between single operator benchmarks and end-to-end benchmarks lies in the intro-

duction of an importance estimator based on the gradient descent algorithm.

Ablation Study. We run five variants of BACO on the ResNet-50 and report the final

improvement achieved in Table 6.7. “Block Partition”: Autotuning is used to deter-

mine the optimal partitioning strategy. “Infer HW Config”: The compiler is utilized

to infer the minimal hardware configurations. “Learned Perf.Model”: We employ a

DNN-based model [bai-2023-atformer] to enhance the original performance model

and capture real hardware performance characteristics. “Importance Estimation”:

Different weights are assigned to different layers to prioritize their impact on the

end-to-end improvement. Compared to Gemmini-default, the combination of all

proposed optimizations resulted in a significant improvement of 2.32× in the EDP

metric.

160

102 103 104 105 106 107 108 109 1010

102

104

106

108

1010

Gemmini-RTL Latency (cycles)

P
re
d
ic
te
d
L
at
en
cy

(c
y
cl
es
)

corr.=0.85

(a) Analytical Model

102 103 104 105 106 107 108 109 1010

102

104

106

108

1010

Gemmini-RTL Latency (cycles)

P
re
d
ic
te
d
L
at
en
cy

(c
y
cl
es
)

corr.=0.93

(b) Analytical Model with DNN

Figure 6.12: Gemmini RTL latency v.s. predicted latency.

6.6.4 Exploration Efficiency

Figure 6.11 illustrates the exploration efficiency of BACO compared to other state-

of-the-art search methods, including one-loop search DOSA, random search, and

black-box Bayesian optimization (BB-BO), for the five target workloads. All of the

searchers are executed with 24 threads. Our findings demonstrate that BACO is

capable of identifying optimal co-design points more effectively than other methods,

despite using a similar number of samples. Initially, when the number of samples is

relatively small, BB-BO outperforms the other methods. However, as the number

of samples increases, BACO gradually exhibits superior performance. When the

number of samples reaches 5,000, BACO has already converged to a very low EDP.

This conclusion is further supported by the geometric mean of the results. To ensure

a fair comparison, we employ the same setting as described in [hong2023dosa] for

the other search methods. Our results clearly demonstrate that BACO not only

reduces the convergence time but also generates high-quality schedules even with a

large number of samples.

161

6.6.5 Performance Model Evaluation

To evaluate the quality of predictions, we generate a dataset consisting of 1,000

samples. These samples correspond to cycle-accurate Gemmini-RTL measurements

obtained from FireSim. The samples are distributed evenly among the layers listed

in Table 6.4 and Table 6.5. The dataset is divided into a training set (80% of the

samples) and a test set (remaining 20%). Note that analytical models may not

capture real hardware performance completely, as complex hardware-software

interactions can be challenging to mathematically represent. To address this, one

potential solution is to enhance analytical models with learned surrogate models. In

our case, we employ an encoder-based DNN model [bai-2023-atformer] to augment

the analytical model. The model is trained using the Adam optimizer for 30,000

epochs. Figure 6.12 shows the predicted performance compared to the Gemmini-

RTL performance of ResNet-50 on the test set. The scatter points are distributed

around the diagonal line, indicating that the model provides accurate predictions.

The analytical model combined with the encoder-based DNN model achieves the

highest accuracy, with a correlation coefficient of 0.93. The analytical model alone

achieves a correlation coefficient of 0.85 on the test set.

6.7 Summary

This chapter proposes BACO, a comprehensive framework for co-exploration of hard-

ware and software through an end-to-end one-loop search approach, accompanied

by a unified compilation interface. We discover that block-level design granularity

is well-suited for co-exploration purposes. Building upon this insight, BACO em-

ploys multi-level abstraction to clearly define the behavior of customized hardware

162

instructions, specialized memory management, and accelerator configuration state.

Additionally, BACO provides programming language and compiler support to auto-

matically explore diverse high-performance designs using differentiable analytical

performance models based on gradient descent. We believe that BACO has the

potential to greatly enhance co-design opportunities for performance engineers,

compiler writers, computer architects, and simulation tool developers.

163

Chapter 7

Discussions

In the final section of this dissertation, we shall encapsulate the key insights gained

from the works explored in the preceding chapters. Subsequently, we shall delve

into the unresolved inquiries pertaining to the realm of design automation with

compiler research.

7.1 Tensor Program Generation with Compilation

In the realm of automating tensor program generation through compilation opti-

mization techniques, there exists the potential to broaden the scope of optimization

beyond a single operator, thereby transcending the boundaries of deep learning

alone. This can be accomplished by extending the design space to encompass

the computation graph and integrating the interdependencies between operators

within said graph. This expansion serves to augment the size of the solution space

for compilation. Furthermore, in the context of time-intensive on-device testing,

the combination of transfer learning can be leveraged to expedite the extension

of compilation across diverse hardware platforms. By employing a performance

164

model as an intermediary, imbued with explicit instructions and characteristics of

the hardware platform, the productivity of the compiler can be heightened.

7.2 Reforming Accelerator Design with Compilation

The research endeavors presented in this dissertation are primarily focused on

pushing the boundaries of full-stack tensor program generation and specialized

accelerator design through the use of a compiler. Our main objective is to propose a

reformulation of the design paradigm for hardware specification, where previously

co-designed software/hardware innovations are modularized and integrated into a

cohesive design space for future reusability. By identifying commonalities between

tensor programs and accelerators, we have designed a user-friendly workflow that

serves as a unified programming interface with manageable extensions. However, it

should be noted that this approach poses significant challenges in the development

of high-level compilation techniques.

An alternative approach to constructing software stacks for novel specialized

hardware accelerators is the development of domain-specific programming lan-

guages. By bridging the gap between software and hardware design, these lan-

guages inherently encode the intricate details of accelerator designs within the

top-level computation application. Leveraging the capabilities of the compiler, this

automated design flow enables the realization of specialized hardware accelerators.

Moreover, our dissertation demonstrates how optimization techniques developed

for these new specialized hardware accelerators and general-purpose processors

can mutually enhance one another throughout the design process. For instance,

tensorized instructions such as Intel AVX512, ARM NEON, and NVIDIA WMMA

can be utilized to analyze and model the specific behavior of memory access patterns

165

during compilation.

7.3 Future Research and Open Questions

Another avenue for future research within this dissertation lies in expanding the

applicability of full-stack specialized accelerators. We envision a promising area of

exploration to be the design of mobile Systems-on-Chips (SoCs) that incorporate

automatic generation of the software stack. Over the past decade, mobile SoCs

developed by prominent companies like Apple and Qualcomm have integrated

numerous specialized accelerator blocks, with their quantity continuing to prolifer-

ate. These specialized blocks consume a significant amount of on-chip power and

occupy substantial area resources.

Previous research has demonstrated that a unified programmable accelerator

has the potential to achieve performance levels comparable to those of individual

specialized blocks, while still offering flexibility with a moderate power/area over-

head, in contrast to a combination of specialized blocks. Therefore, we posit that the

present moment presents an opportune time to reevaluate the design of specialized

blocks on SoCs by embracing unified programmable compilation. This approach

would not only save considerable effort in developing new accelerators for each

generation but also enable scenarios where performance requirements can be met

through software tuning alone.

7.4 Conclusion

The design of an accelerator and its corresponding software stack is not solely

dictated by the application domain, but rather by the specific tensor program within

166

those applications. Building upon this understanding, this dissertation introduces

the concept of automated and programmable tensor program and accelerator design.

Through a meticulous co-design process, each software/hardware innovation is

carefully constructed, allowing for modularization and encapsulation within a

comprehensive and universally defined design space. Moreover, the relationship

between software and hardware can be comprehended by a domain-specific compiler

and programming language. This compiler serves a dual purpose: acting as a bridge

between software and hardware, while also guiding the exploration of the hardware

design space. By leveraging the compiler’s understanding of the synergies between

software and hardware, in conjunction with the design requirements inherent in the

applications, effective exploration of the design space can be achieved. Beyond mere

automation, we propose that the true transformative potential lies in reshaping the

fundamental design principles of specialized accelerators. By expanding this design

space, subsequent innovations can be realized, rendering them applicable across

various application domains. We propose four key innovations that are centered

around compiler-based approaches:

First, we describe GTCO [bai2023gtco] in Chapter 3, a new graph and tensor

co-design compiler that addresses operator fusion issue from two perspectives. A

dynamic programming algorithm is introduced to explore operator fusion patterns.

Then, a search policy is proposed that includes new sketch generation rules and a

novel hardware abstraction with register-level optimization, enabling more flexible

mapping for tensor computation and better performance. We apply our approach

to optimize fused matrix multiplication and softmax operators utilizing WMMA

instructions. To achieve an end-to-end flow automatically, we utilize a regression-

based learned model to fine-tune the performance of each kernel. Overall, GTCO

demonstrates remarkable results. It achieves up to 1.73× inference speedups com-

167

pared to the high-performance inference engine TensorRT with Tensor Cores, and

1.38× speedups with CUDA Cores.

Second, we describe ATFormer [bai2023atformer] in Chapter 4, an innovative

and efficient design for optimizing tensor programs. ATFormer leverages hierarchi-

cal features with different levels of granularity to effectively model the end-to-end

compilation process. Additionally, self-attention blocks are employed to capture

global dependencies within a complete tensor program, enabling high-quality evalu-

ation. By utilizing transfer learning techniques, ATFormer achieves faster-converged

latency and demonstrates superior transferability across various hardware platforms.

Our approach outperforms previous state-of-the-art benchmarks, establishing its

effectiveness and superiority in the field.

Third, we describe ALCOP [huang2023alcop] in Chapter 5, a deep learning

compiler that addresses the crucial need for automatic pipelining. In order to

mitigate bandwidth constraints, a large tiling size is often required. However, inter-

tile parallelism alone is insufficient for achieving high utilization, making intra-tile

pipelining essential.Our proposal is the first compiler solution that supports multi-

stage, multi-level pipelining. By introducing automatic pipelining, our compiler

is capable of generating GPU programs that exhibit an average speedup of 1.23×
over vanilla TVM [chen2018tvm], with a maximum speedup of 1.73×. Furthermore,

we develop an analytical performance model that significantly enhances the search

efficiency of the schedule tuning process. This model contributes to the overall

effectiveness and efficiency of ALCOP, enabling it to deliver impressive results in

optimizing deep learning computations.

Finally, we describe BACO in Chapter 6, a comprehensive framework that

facilitates the co-exploration of hardware and software through an end-to-end one-

loop search approach. This framework is accompanied by a unified compilation

168

interface, providing a seamless and convenient experience for users. Through our

research, we have discovered that block-level design granularity is particularly well-

suited for co-exploration purposes. Building upon this insight, BACO adopts a multi-

level abstraction approach to clearly define the behavior of customized hardware

instructions, specialized memory management, and accelerator configuration state.

Furthermore, BACO offers programming language and compiler support, enabling

the automatic exploration of diverse high-performance designs. This is achieved

through the utilization of differentiable analytical performance models based on

gradient descent. We firmly believe that BACO has immense potential in enhancing

co-design opportunities for performance engineers, compiler writers, computer

architects, and simulation tool developers. By providing a comprehensive framework

and powerful tools, BACO empowers these professionals to push the boundaries of

performance optimization and innovation.

We aim for our contributions to serve as a foundational platform for future

research endeavors focused on the development of advanced compilers with design

automation, specifically aimed at achieving high efficiency.

169

	Abstract
	List of Tables
	List of Figures
	Acknowledgments
	Introduction
	Goal: Automatic Generation of Programs and Hardware Acceleration
	Main Contributions
	Produced Publications
	Dissertation Outline

	Background and Related Work
	Transformer-based Model Architecture
	GPU Architecture and Programming Model
	Machine Learning Compilation
	Performance Model
	Multi-level Pipelining Optimization
	Domain-Specific Accelerator
	MLIR Compilation Infrastructure
	Programmable Spatial Accelerator
	Computation on Spatial Accelerator
	Complex Hardware and Software Interfaces
	Hardware-Software Co-design Framework

	GTCO: Graph and Tensor Co-Design for Transformers on GPUs
	Motivation
	System Overview
	Problem Formulation
	Workflow of GTCO
	Dynamic Programming-based Operator Fusion
	Subgraph Scheduler
	Program Sampler
	Performance Tuner

	Hardware Abstraction and Mapping on Tensor Cores
	Domain Specific Accelerators on GPU
	Standard Attention Implementation on CUDA Cores
	Register-Level Abstraction
	Auto-Scheduling on Tensor Cores

	Evaluation
	Experimental Setup
	End-to-End Performance
	Subgraph Benchmark
	Graph Partition and Tuning Time

	Summary

	ATFormer: A Learned Performance Model with Transfer Learning Across Devices for Deep Learning Tensor Programs
	Motivation
	Problem Formulation
	Performance Model
	Transfer Learning
	Extension with Tensorized Instruction
	Tensorized Instruction on NVIDIA GPUs
	Assignment features for Tensor Program Characterization
	Auto-Scheduling with Tensorized Instruction

	Evaluation
	Implementation Details
	Dataset and Benchmark
	End-to-End Execution Evaluations
	Transfer Learning Evaluations
	Ablation Study
	Other Platforms: Intel CPUs

	Summary

	ALCOP: Automatic Load-Compute Pipelining in Compiler for GPUs
	Motivation
	System Overview
	Scheduling Transformation
	Identification of Buffers for Pipelining
	Ordering of Schedule Transformations

	Program Transformation
	Analysis
	Transformations

	Static Analysis Guided Tuning
	Top-Level Model
	Obtaining Detailed Latencies
	Model-Guided Auto-Tuning

	Evaluation
	Single Operator Performance
	End-to-End Performance
	Comparison with Libraries
	Performance Model Accuracy
	Analytical-Model-Guided Schedule Tuning

	Summary

	BACO: Co-exploration of Hardware Acceleration and Tensor Programs with Unified Compilation Interface
	Motivation
	Overview of BACO
	BACO Compiler
	Compilation Flow
	Problem Setup
	Block-oriented Programming Model
	Multi-level Abstraction in BACO
	Backend Code Generation

	Performance Fine-tuning
	Importance Estimation Strategy
	Evaluation
	Experimental Setup
	Single Operator Benchmark
	End-to-End Network Benchmark
	Exploration Efficiency
	Performance Model Evaluation

	Summary

	Discussions
	Tensor Program Generation with Compilation
	Reforming Accelerator Design with Compilation
	Future Research and Open Questions
	Conclusion

