Trilogy of Microprocessor
Microarchitecture Design Space

Exploration: Delving into the
Depths

BAI, Chen

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
July 2024

Thesis Assessment Committee

Professor XU Hong (Chair)
Professor YU Bei (Thesis Supervisor)
Professor WONG Martin Ding Fat (Thesis Co-Supervisor)
Professor LO Chi Lik Eric (Committee Member)

Professor XIE Yuan (External Examiner)

Abstract

Microprocessor, skilled at general computing, shapes human being’s digitalized world.
Traditional microprocessor design flow requires high cost and human labor workforce
input, including architecture design, microarchitecture design, logic design, circuit
design, and physical design stages. Microarchitecture design, at the very early stage
of the design flow, can affect the design quality with a small change. Hence, a good
microarchitecture generated at the early stage can yield twice the result with half the
effort, and benefit the entire microprocessor design flow.

Microarchitecture, also termed computer organization, determines the implemen-
tation of a particular microprocessor based on an instruction set architecture (ISA). It
sets the foundation for the microprocessor’s overarching design aspects: performance,
power, and area (PPA). Microarchitecture exploration is a design space exploration
(DSE) problem in the microarchitecture design stage, aiming to find microprocessor
parameters that achieve Pareto-optimal PPA trade-offs. Computer architects often
face parameter combinations ranging in the billions or trillions. Moreover, obtaining
PPA results for each parameter combination through detailed simulations is highly
time-consuming. To address these challenges, a practical DSE algorithm is required to

explore promising solutions within a limited time. Hence, architects can accomplish

11

aggressive PPA design goals, reduce non-recurring engineering costs throughout the
microprocessor design cycle, and meet product delivery deadlines to satisfy customer
demands.

The problem is not new. The industry and academia have proposed numerous
solutions. In this thesis, standing on the shoulders of giants, we present a series of
works termed the trilogy of microprocessor microarchitecture design space exploration
to delve deeper into the problem. We provide new perspectives and advance solution
quality through our years of recent research outcomes.

Specifically, the trilogy of works includes a customized Bayesian optimization-
based DSE algorithm, a reinforcement learning pathway, and an interpretable DSE
process via bottleneck analysis. Besides, this thesis introduces a microarchitecture
DSE open benchmarking platform, used in the Computer-Aided-Design (CAD) con-
test of the International Conference on Computer-Aided Design (ICCAD) in 2022,
enabling fair comparisons of various black-box methodologies proposed by researchers
worldwide. In this thesis, our proposed methodologies cover the breakthroughs from
the black-box perspective to the white-box perspective, delving into the problem
stepwise.

Furthermore, the trilogy of works is open-sourced to the research community, help-
ing researchers worldwide to reproduce published experimental results and innovate

based on our existing achievements.

111

LS

B EE AT F R GRS S T AR BT I 5 - AR E S SRR 2
FEAMATI N - ARG - OMERGT EERGT » BT A B R AT
BB o TZRMERRET - AERUR ARG IR R EIRE B » AR N8 (il ol LA
EETEE o B R AR — (E RO GRS FT LU IO 1 - A S B
R A i AR o

B ARG - AR R - EPNMES BRI (ISA) ZRHEE 1 e Tl IR As
EH o ERMEME SRR H RITERE ~ DRI (PPA) B2 T &M -
fUES RETIR R E—HEFT SHRR (DSE) BIME - B EHEIE B PPARESHIIH
FASENMEERSHACE - SRR m R E & EH 28
B o AN EEEEA T B E G EE 2B A RIPPAR AR EHRERGRY o R TE
HHE PR TR EE ARG SRR REIE AR RIR R ARRE RS
RIS o AL - FHRGRIEREAT AT LU BIBUERITERE - DhRERI ARG BAR - B&
REE M R B s i a T IR A A A AR AR M AR ROAS » A 2 A S (DA L B BB 52
PR ge AT AR B PR K o

i 8 PR ANETEE o TSRFUMERMT SR TR 2RI o fERam L » uh
HEEARBEE L » BAZBH T — RS - G5 HUaEas e R st = H
HR R > DURAIRETE(EMRE - M8 2 5 a9 s bt 78 R R i il 52 gt

v

THRIALIER TR RAVEE

HEEME » E=TH LB ERMEN R EEB R ZHEREE - &R
PCER R R AR TR A o AT Y AT AR RV e T S IR R BE » eoh - ASOENAA T
—E R R T = IR R B R & o 327 & A 202248 B Bt B AR B B
#Et K& (ICCAD) RIFHEAREHBIGT (CAD) BiFE » BEAU -l ELac it 575 4t
R ABRBSER ST - EERR T » BB T IERE TREET
L RE A&7 IR ISR BRI T E R -

Beoh B ARY =R TR ST F PR - HEE R SR N BES C #5%
AVEBRAS R » WA A SCRAEERE LT AT -

Acknowledgments

I would like to express my gratitude to my supervisor, Prof Bei YU, for his support
and guidance throughout my Ph.D. study. Prof. YU is energetic, intelligent, and
amiable. He has inspired me to brainstorm potential research directions, suggested
beautiful methodologies, and supported me in pursuing what problems I would like
to study. Without Prof. YU, I could never accomplish my thesis based on these
years of research outcomes. I learned a lot from Prof. YU, not only in philosophical
thinking but also in how to become a better person. I would like to thank my co-
supervisor, Prof. Martin Ding Fat WONG, for giving me valuable comments and
suggestions. Besides, I would like to thank Prof. Yuan XIE, who has shown me the
pathway towards the elite in my career. His ABCDE principle serves as a golden
guide, shedding light on the necessities for success.

I would like to thank my thesis committee members for constructive comments.
Prof. Herry Xu HONG and Prof. Eric Chi Lik LO recommend how to improve my
thesis further.

It is my great honor to work with many talented collaborators during my Ph.D.
study. Thanks to Prof. Qi SUN, Prof. Jianwang ZHAI, Prof. Yuzhe MA, Prof. Jiayi
HUANG, Dr. Xuechao WEI, Prof. Youwei ZHUQO, Dr. Sicheng LI, Dr. Yi CAI, for
our intimate collaborations. These collaborations achieve the series of works focusing
on research topics from microprocessor microarchitecture design space exploration via
black-box or analytical methodologies to DNN orchestration with dataflow architec-
ture accelerators. I also thank my mentors and superiors during my internship, who

have provided me valuable industrial data and working experience, and also helped

me a lot. Dr. Xuangi CHEN, Dr. Winnie Wing Yee LO, and Dr. Kevin Kai Yuan

vi

CHAO from Huawei HiSilicon (HK) Turing & Key Technologies Development Depart-
ment. Dr. Xuechao WEI, Dr. Hongzhong ZHENG, and Dr. Yen Kuang CHEN from
computing technology laboratory of Alibaba DAMO Academy. Besides, I would like
to thank my labmates for thought-provoking discussions and cooperations. Thanks
to Dr. Haoyu YANG, Prof. Tinghuan CHEN, Prof. Hao GENG, Dr. Leon Zhuolun
HE, Dr. Ran CHEN, Dr. Wenqgian ZHAO, Dr. Binwu ZHU, Mr. Ziyi WANG, Mr.
Ziyang YU, Mr. Yuxuan ZHAO, Mr. Xinyun ZHANG, Mr. Shuo YIN, Mr. Peng
XU, Mr. Su ZHENG, Mr. Shixin CHEN, Mr. Yuan PU, Mr. Lancheng ZOU, Ms.
Yuntao LU and all other CUDA members.

Furthermore, I owe my deepest gratitude to my parents. Their everlasting en-

couragement and support allow me to pursue somebody I want to be in my lifetime.

vil

This work is dedicated to my loving parents.

viil

Contents

Abstract

Acknowledgmentso

Introduction
1.1 A General Problem Formulation
1.2 Major Challenges of Microarchitecture Design Space Exploration . . .

1.3 Thesis Structure and Contributions

Preliminaries
2.1 Microprocessor Microarchitecture
2.2 Representative RISC-V Microprocessor Implementations

2.3 Literature Review

BOOM-Explorer

3.1 Introduction

3.2 Preliminaries
3.2.1 RISC-V BOOM Microarchitecture Design Space
3.2.2 Bayesian Optimization
3.2.3 Problem Formulation for BOOM-Explorer

3.3 The BOOM-Explorer Framework
3.3.1 Overview of BOOM-Explorer
3.3.2 Microarchitecture-aware Active Learning Algorithm
3.3.3 Gaussian Process with Deep Kernel Learning
3.3.4 Correlated Multi-Objective Optimization
3.3.5 Diversity-Guided Parallel Exploration

3.4 Experiments

1X

il

vi

T = W =

©o ©

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

Experiments Settings L.
Benchmarks, Baselines & Evaluation Metrics

Evaluation Results

Comparison of Pareto-Optimal BOOM Microarchitectures

Effectiveness of MicroAL

3.5 Summary

Reinforcement Learning Pathway

4.1 Introduction
4.2 Preliminaries
Microarchitecture PPA Modeling
Microarchitecture Scaling Graph

4.2.1
4.2.2
4.2.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6

4.6 Summary

Problem Formulation for Reinforcement Learning Pathway . .
4.3 Methodology
Overview
Combine RL w. Microarchitecture Scaling Graph
Dynamic-weighted Reward
Embed Preference Space into RL
Conditioned Actor-Critic Network
Accelerate Learning via Lightweight Environment
Training Details oL
4.4 Why RL?
4.5 Experiments
Our Microarchitecture Design Space Specification
Experimental Settings & Baselines
Accuracy of Lightweight PPA Models
RL Training
Comparison w. Human Efforts & Prior Arts

Analysis w. More Workloads

Microarchitecture DSE Open Benchmarking Platform

5.1 Introduction
5.2 Contest Objective

55
25
59
29
29
60
61
61
62
64
65
68
68
69
71
73
73
73
75
76
79
82
85

5.2.1 Problem Formulation for CAD Contest 88

5.3 Benchmark Suite 89
5.3.1 Microarchitecture Design Space in the Benchmark Suite. . . . 89
5.3.2 Dataset Format o000 91

54 Evaluation 94
5.4.1 Overview of Benchmarking Platform 94
5.4.2 Benchmarking Platform Solution Implementation 96
5.4.3 Application Programming Interface for Design Space 101
5.4.4 Benchmarking Platform Command Usage. 102
5.4.5 Benchmarking Platform Evaluation Metrics 102
5.4.6 Online Ranking 105

5.5 Summary 105

ArchExplorer 106

6.1 Introduction 106

6.2 Motivation 110
6.2.1 Bottleneck Analysis Mattersin DSE 110
6.2.2 Critical Path Analysis 113

6.3 Lessons Learned & Design Principles 114

6.4 The ArchExplorer Approach 117
6.4.1 New DEG Formulation of Microexecution 119
6.4.2 Induced DEG & Critical Path Construction 124
6.4.3 Bottleneck-removal-driven DSE 128

6.5 Experimental Setup & Evaluation Metrics 131
6.5.1 Simulation Environment 131
6.5.2 Evaluation Metrics 0oL 133

6.6 Results. 135
6.6.1 Comparison w. DSE Methodologies 135
6.6.2 Comparison w. Best Balanced Designs 140
6.6.3 Comparison w. Calipers 142

6.7 Discussions 144

6.8 Additional Related Work 144

6.9 Summary 145

x1

6.10 Artifact Appendix L 146

6.10.1 Abstract 146

6.10.2 Artifact check-list (meta-information) 146

6.10.3 Description 149

6.10.4 Installation 149

6.10.5 Experiment workflowo 151

6.10.6 Evaluation and expected results 153

6.10.7 Notes 153

7 Conclusion and Future Work 155
7.1 Summary . o.o. ... 155
7.2 Future Work 157
References 160

xii

List of Tables

3.1
3.2
3.3

3.4

4.1
4.2

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

Microarchitecture design space of BOOM. 22
Constraints of BOOM design specifications. 23
Normalized Experimental Results for Pareto hypervolume, ADRS &

ORT. . . . 47
Performance and power comparison with the two-wide BOOM. 50
RISC-V Microarchitecture Design Space 74
Comparison with Human Efforts and Prior Arts 81
Microarchitecture Design Space of RISC-V BOOM 90
Components I 92
Components IT 93
A baseline microarchitecture specification 111
The dependence specification, 122
Workloads used for evaluation 133
Microarchitecture design space specification 134
Comparison under two cases. 137
Key parameters of Pareto designs 143

xlil

List of Figures

1.1

2.1

2.2

3.1

3.2

3.3
3.4

3.5

The overview of microprocessor design cycle. Engineers spare much
effort to optimize a given microarchitecture in the loop. Determine a
better microarchitecture can reduce the non-recurring engineering cost
[126]. . . .

Pipeline timing diagram of MIPS R10000. Figure is adapted from
Yeager et al. [206]. BOOM is a RISC-V implementation based on
R10000 [22, 44, 214].
BOOM implements a ten-stage pipeline that includes Fetch, Decode,
Register Rename, Dispatch, Issue, Register Read, Ezecute, Memory,
Writeback, and Commit.,

An example of Bayesian optimization (with the EI function): find z,
which attains the maximal value of f(z).
Overview of the proposed BOOM-Explorer.
Visualization of clusters w.r.t. DecodeWidth.
An example of hypervolume is shown in the power-performance space.
(a) The region covered in orange is dominated by the currently explored
Pareto-optimal objective values denoted as circles in blue. Circles in
purple denote dominated objective values. (b) The circle in green de-
notes an explored potential point belonging to the Pareto-optimal set
among the entire design space. EIPV is represented as the area of the
sub-region colored in light green.
The DecodeWidth equals 1 for the sampled microarchitectures, and the
Pareto frontier they formulated disperses across different sub-regions,

colored in red.

Xiv

10

12

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

The change of performance and power dissipation w.r.t. IntPhyRegister
on dhrystone and whetstone.
Comparisons between the predicted Pareto frontier and the real Pareto
frontier of BOOM microarchitectures.
Performance and power comparisons of explored BOOM microarchi-
tectures for different methodologies with more benchmarks.

We integrate MicroAL into chosen baselines to investigate the Mi-

croAL’s effectiveness on the normalized Pareto hypervolume and ADRS.

An overview of an example microarchitecture. Instructions fetched
from I-cache are sent to functional units (e.g., ALU, LD/ST, etc.) for
execution. Register files (RF) save temporary data. Reorder buffer
(ROB) achieves precise interrupts [181]. Components are highlighted
with diverse colors, and the same color denotes a similar function.

An overview of the microarchitecture scaling graph. Colors are matched
with Figure 4.1.
Overview of our RL framework. s denotes a state, a is an action, and
T represents an immediate vectorized reward.
Optimization procedure with Equation (4.4).
Overview of the PPA calibration.
Four SonicBOOM microarchitectures” PPA values of six benchmarks
reported from EDA tools, and the visualization of embeddings dis-
tances. ... Lo
The accuracy of lightweight PPA models, and MAPE and Kendall 7
curves w.r.t. the calibration data size.
The accuracy of lightweight PPA models, and MAPE and Kendall 7
curves w.r.t. the calibration data size.
RL training status of Large SonicBOOM.
RL training status of Rocket and different scales of SonicBOOM.
Analysis w. more workloads on Rocket and different scales of Sonic-
BOOM I

Analysis w. more workloads on different scales of SonicBOOM II.

XV

39

44

49

23

56

60

63

66

69

72

76

7

78
80

84

5.1

5.2

5.3

6.1

6.2

6.3

6.4
6.5

6.6
6.7

6.8

(a) Offline design space exploration flow. (b) Online design space ex-
ploration flow.o
(a). An example overview of the Pareto hypervolume in the two di-
mensional space (b). An example overview of the Pareto hypervolume
in the three dimensional space, i.e., power, performance, and area.

An overview of the online ranking.

A visualization of the design space for 458.sjeng. Each microarchitec-
ture is reduced to two-dimension through t-SNE [188] to facilitate the
visualization of PPA distributions.
Each bar represents the microarchitecture’s metric in %. The bar,
e.g., “ROB %27, indicates the microarchitecture is the same as the
baseline except that it doubles ROB. Perf?/(Power x Area) denotes
the PPA trade-off.

111

Search following series of small changes stepwise. PPA denotes Perf? /(Power x

Area). . ..
An overview of the dynamic event-dependence graph.
(a) and (b) uses Calipers [75], the representative DEG formulation, to
demonstrate three kinds of error sources, with critical paths highlighted
in red. (a) illustrates errors including incorrect weights and false de-
pendence due to static assignment without following actual microex-
ecutions. (b) manifests false dependence owing to indistinguishable
concurrent events. oL L L0 L oL Lo
An overview of the ArchExplorer approach.
An overview of the new DEG formulation of microexecution. The crit-
ical path is highlighted in red. The cause of each edge in the critical
path is attributed to a particular resource (shaded with colors for vi-
sualization purposes).
The new DEG formulation is applied w.r.t. the code snippet as shown
in Figure 6.5b. And it identifies the true read/write ports usage
dependencies, i.e., I(I;) — I(1y), I(I4) — I(I5), I(I;) — I(Is), and
I(Ig) = I(To). - v v v o

Xvi

112

115
117

118

6.9

6.10

6.11

6.12

6.13

6.14
6.15

(a) An example code snippet and its corresponding new DEG formula-
tion. (b) The overview of induced DEG with edge cost extracted from
DEG. . . . e
An overview of a search path.
The visualization of Pareto hypervolume in Perf-Power space. Pareto
hypervolume is the area bounded by P(Y) = {y1, Y2, Y3, y4} and the
reference point vg.
The visualization of Pareto hypervolume curves in terms of the number
of simulations.
The visualization of Pareto frontiers and the distributions of PPA
trade-offs for all methods.
Comparisons between the Pareto designs in performance and power. .

Comparisons w. Calipers [75].

xXvil

126
131

133

Chapter 1

Introduction

The size of present-day applications demands higher performance and energy-efficient
computing systems [145]. The microprocessor currently serves as the only commer-
cially available computer architecture that can speed up general computing, including
irregular programs [108]. It consists of the arithmetic, logic, and control circuitry to
perform the functions of a computer’s central processing unit (CPU).

However, the microprocessor design cycle consists of numerous complicated steps,
requiring high cost and workforce input, as shown in Figure 1.1. In the design cy-
cle, computer architects formulate customer demands as system specifications, and
appropriate computer architecture is conceived to meet those requirements. Microar-
chitecture is a detailed architecture implementation meticulously designed based on
architectural descriptions. Massive formal documents are produced, and reliability,
availability, and serviceability (RAS) are heavily discussed [86, 64]. Hardware en-
gineers work on functional and logic implementation based on formal documents to

generate the register-transfer-level (RTL) design. Logic synthesis is introduced to

Customer Demands H Architecture Design H Mlcroarchltecture
Design

Satisfy predefined performance, power, and

. Microprocessor Design
area design goals?

Cycle

Circuit Design
N

Microprocessor Manufacture & .
Product Package & Testing }‘_ Signoff Checks /

Physical Design

Figure 1.1: The overview of microprocessor design cycle. Engineers spare much effort to
optimize a given microarchitecture in the loop. Determine a better microarchitecture can
reduce the non-recurring engineering cost [126].

optimize and transfer the RTL design into a circuit implementation, i.e., a netlist
composed of primitive standard cells associated with a specific technology [163]. The
physical design places the standard cells, routes wires, synthesizes the power delivery
network, implements a clock tree, etc. [162]. Various signoff checks, including func-
tional verification, timing analysis, IR drop analysis, signal integrity analysis, design
rule checking (DRC), layout versus schematic (LVS), etc, intensely investigate the
validity of the circuit [102]. After back-end signoff, the microprocessor can be taped
out and fabricated as a commercial product.

Unfortunately, the ever-increasing competitive pressure from business rivals and
the long microprocessor design cycle push higher requirements for engineers to satisfy
the strict time-to-market product delivery deadline. The efforts are spared in the de-

sign loop until the predetermined overarching metrics: performance, power, and area

(PPA) design targets are attained. In this design cycle, changes made at an earlier
design phase have a greater impact on PPA. Meanwhile, accurate estimation of PPA
at an earlier design phase is also more difficult. For example, compared to functional
engineering change order (ECO), the architecture or microarchitecture design phase
sets the cornerstone for PPA [11]. Therefore, a correct decision at the earlier design
phase will yield twice the result with half the effort for the entire microprocessor de-
sign cycle. Microarchitecture design space exploration (DSE), a problem root in the
microarchitecture design phase, aiming to decide optimal microarchitecture configu-
rations, is a pivot stage that affects the entire flow. The problem is not new and has
been discussed in industry and academia for many years. Standing on the shoulders
of giants, this thesis aims to tackle the problem from new perspectives. Furthermore,
this thesis presents a trilogy of works that delve deeper into the problem, providing
new insights and advancing solution quality through the years of recent research.
Section 1.1 presents a general problem formulation. Section 1.2 manifests the ma-

jor challenges of the problem. Section 1.3 lists the thesis structure and contributions.

1.1 A General Problem Formulation

We leverage a general problem formulation as a background. The formulations of
related microarchitecture exploration problems stem from the general problem for-

mulation.

Problem 1 (Microarchitecture Design Space Exploration). Given the microproces-
sor microarchitecture design space and test cases, how do we efficiently search for

the optimal microprocessor microarchitecture design configurations that meet specific

performance, power, and area (PPA) design goals?

Problem 1 lists the general problem formulation. The solution process expects to
develop a search algorithm, termed the DSE algorithm. As shown below, two basic

requirements are necessary for the practical “silver bullet” solution.

e Achieving high solution quality: the output results of the DSE algorithm should
enable the microarchitecture of a microprocessor to achieve the predetermined

PPA design targes.
e Low running time: the DSE algorithm should achieve the goal efficiently.

It is worth noting that more requirements appear for particular problem formu-
lations, e.g., the accuracy of PPA prediction models, the size of used history data,
etc. In later chapters, this thesis presents more problem formulations based on the

general problem formulation, and corresponding solutions are also proposed.

1.2 Major Challenges of Microarchitecture Design
Space Exploration

The major challenges of the Problem 1 are summarized in two factors.

e Extremely large design space: the microarchitecture consists of complicated
components such as the overall instruction pipeline, cache hierarchy, branch
predictors, execution units, etc. The formulated microarchitecture design space

size can be more than 1 x 100 [210].

e High runtime in PPA evaluations: it requires high runtime to evaluate the PPA
values of a microarchitecture for workloads with an acceptable fidelity using

tools like cycle-accurate simulators.

The challenges mentioned above restrict traversing the entire microarchitecture
design space and retrieving the optimal solutions. Previous researchers and engineers
from industry or academia have proposed many methodologies. The industry solu-
tions heavily rely on the expertise of computer architects. Academic solutions have
conducted many experiments to analyze the relationship between a microarchitecture
design space and PPA values. As the applications are changing, microarchitectures
of modern microprocessors are increasingly complicated, and advanced DSE algo-
rithms are evolving, new solutions are presented in this thesis to overcome the major

challenges.

1.3 Thesis Structure and Contributions

Starting from Problem 1, this thesis investigates the methodologies discussed by re-
searchers from industry and academia, aiming to tackle the problem by combining
contemporary technologies, improving the solution quality and efficiency, and provid-
ing new understandings and insights into the problem.

The rest of this thesis is organized as follows. In Chapter 2, we provide prelimi-
naries of the problem. In particular, we illustrate the meanings of some terminologies,
categorize the prior methodologies, summarize the limitations of the state-of-the-arts,
and provide rationales for the directions of improvement.

In Chapter 3, we present the first microarchitecture design space exploration

framework, BOOM-Explorer, which focuses on RISC-V Berkeley Out-of-Order Ma-
chine (BOOM) with Bayesian optimization. We view the BOOM microarchitecture
as a black box and propose several algorithms from a statistics perspective to combine
expert knowledge. Three dedicated designed algorithms are highlighted in BOOM-
Explorer. First, a microarchitecture-aware active learning algorithm, MicroAL, is
introduced to initialize samples from the entire design space with domain knowl-
edge. Second, a deep kernel learning-based Gaussian process model, DKL-GP, is
proposed to effectively characterize the microarchitecture design space. Third, a neg-
atively correlated multi-objective exploration flow is provided to probe the potential
Pareto-optimal solutions as much as possible. The flow is further enhanced by a
diversity-guided strategy to embrace the benefits of parallelism efficiency.

In Chapter 4, we analyze the mathematical limitations of the Gaussian process
and its contradiction to the characteristics of the microarchitecture design space.
Following the previous data-driven approach, we propose a new methodology but with
key distinctions. First, by leveraging the extraordinarily high black-box modeling
power of deep learning (DL), we formulate the design space exploration as a Markov
decision process (MDP) and propose a reinforcement-learning (RL) pathway toward
automated RISC-V microarchitecture design. Second, we tightly couple the expertise
and RL utilizing the microarchitecture scaling graph. A single RL agent is trained and
applied for the exploration w.r.t. different PPA design preferences, e.g., emphasizing
higher performance or power and area efficiency.

In Chapter 5, we build up a microarchitecture DSE open benchmarking platform
for all researchers worldwide to fairly compare different black-box methodologies.

The microarchitecture DSE open benchmarking platform is used in the 2022 CAD

Contest at ICCAD. We serve as the topic chair in the contest. The problem pro-
vides challenges of enhancing microprocessor microarchitecture design ability by effi-
ciently trading off PPA metrics in a short time. The contest attracts 166 registered
teams from 8 countries/regions. We provide contest benchmarking tools, a post-
logic-synthesized dataset including more than ten thousand microarchitectures, and
an online team ranking platform. We expect the release and organization of the CAD
Contest problem to ignite the research passion for the topic and researchers world-
wide to provide more practical, efficient, and accurate solutions to improve baseline
algorithms further.

In Chapter 6, we open the black box of the microarchitecture, and tackle the prob-
lem with a proposed explanable DSE approach, ArchExplorer. The massive analysis
of microexecutions lead to two design principles for ArchExplorer. Besides, we point
out the limitations of previous wide-used critical path analysis methodology, and
present a new graph representation of microexecution. The new formal graph-based
microexecution analysis provides more design insights into the microarchitecture for
computer architects. We firmly believe that the research value of the graph represen-
tation proposed in ArchExplorer goes beyond the microarchitecture DSE problem.
The related formal microexecution analytical methodology will guide us in studying
other problems, including microprocessor performance modeling, instruction issuing,
a combination of machine-learning techniques for architecture modeling, etc.

In Chapter 7, we provide future work and conclude this thesis.

The contributions of this thesis are briefly summarized as follows. First, during
years of recent research into this problem, we propose methodologies from the black-

box perspective to the white-box perspective. From data-driven statistical analysis

to interpretable formal analysis, we delve into the problem. The related experi-
mental results, discussions, and conclusions provide abundant design insights into
microarchitecture and microexecutions. Second, our latest research outcomes receive
promising experimental results. Compared to previous analytical methodologies, we
reduce demands for expert access. Compared to previous black-box methodologies,
our approaches ask for fewer computing demands for training data. Third, we pro-
vide a new graph representation methodology of formal analysis for microexecutions.
Fourth, we open source all the code to help our community reproduce published ex-
perimental results, research into the problem deeper, and continue to innovate based

on our existing achievements.

Chapter 2

Preliminaries

2.1 Microprocessor Microarchitecture

Microarchitecture determines how a microprocessor is implemented given an instruc-
tion set architecture (ISA). It encompasses the intricate details of how a micropro-
cessor carries out instructions, manages data flow, and executes computations.

The microprocessor microarchitecture is usually represented as block diagrams
that describe the memory hierarchy, interconnections of the various components, in-
cluding the data path and control path, and timing information of the instruction
pipeline, as shown in Figure 2.1. We use MIPS R10000, a dynamic, super-scalar
microprocessor that implements the 64-bit MIPS ISA, as an example to illustrate
the execution of a microarchitecture [206]. R10000 is designed for high-performance
applications even with poor memory locality. It fetches and decodes four instructions
per cycle and dynamically issues them to five fully pipelined, low-latency execution

units. The five execution pipelines begin to execute when they receive instructions is-

External interface Data cache refill and write-back

6-bit physical register numbers 6-bit data paths
L (l |
System I I I
Interface > | —>] FP Adder J
(64 bits) FP Queue FP Register | Align [Add/N] Pack
)] (16 Entries) File
Seconda Register renaming | o (64x64) [—»] FP Multiplier J
Czsl(ie Ct?l, Sread —{ Mult [Sum/N] Pack
Ctrl. [<«= 3 writ
(128 bits) Active List Free FE— e = ov H
; usy-bi [
(32 Entries)| | Ri%;izer ™| Tables LSart |
\ l Load
Store DS
Tnstr. : (32 Kbytes) [
Instr. I$ Decode || Register || Load
Pre-decode (32 Kbytes) Map Tables Address Store
Branch TLB
r —I ™ Queue Address
(16 Entries) Calc. (64?<2
Instruction Instruction Instruction | FP Register Entries)
cache refill fetch decode File NT
} | || (64x64) ALU 1
5-bit logical register numbers Integer 5 read
> Queue 3 write
(16 Entries) INT
ALU 2
Instruction issue 5 pipelined execution units

Figure 2.1: Pipeline timing diagram of MIPS R10000. Figure is adapted from Yeager et
al. [206]. BOOM is a RISC-V implementation based on R10000 [22, 44, 214].

sued from a queue, and operands are read out from register files. R10000 aggressively
looks ahead to find instructions from a two-way associative I-cache to issue out-of-
order. Misaligned instructions are handled, and the core front end implements a 2-bit
branch prediction algorithm. To support the out-of-order execution and remove false
dependencies (viz., write after write and write after read), R10000 dynamically maps
the logical register numbers into physical register numbers. The mechanism allows for
the transparent tracking of dependencies on register operands and memory addresses,
i.€., it is invisible to programmers. To achieve register renaming, R10000 implements
register map tables, free lists, active lists, and busy-bit tables. Decoded instructions
are put into three instruction queues w.r.t. the instruction type. R10000 schedules

instructions based on instructions’ locations in the queue instead of instruction age.

10

Besides, the round-robin request circuit can raise the priority for old instructions. Two
integer algorithm logical units (ALU), a floating-point adder, a floating-point multi-
plier, a floating-point divide and square root serve as the pool of functional units. The
load/store unit decouples the functional unit and D-cache. R10000 archives in-order
instruction commits for precise interruptions [181] and maintains cache coherence
using snoopy or directory-based protocols.

Different components include various design options. For example, the number of
rows, set associations, and line size together determines a cache design’s compulsory
miss, capacity miss, and conflict miss [84]. The instruction fetch width and decode
width decide the pipeline width of a microarchitecture. The number of re-order buffer
entries can constrain the number of in-flight instructions in the pipeline, i.e., the in-
struction window that microarchitecture used to track and extract instruction-level
parallelism. In addition, how many physical registers, number of specific functional
units, and depth of issue queues are required in the microarchitecture? Different
applications require diverse trade-offs between PPA values. Hence, the optimal con-

figurations for these components remain to be answered.

2.2 Representative RISC-V Microprocessor Imple-
mentations

Unlike other ISAs (ARM, x86, etc.), RISC-V is free for commercial usage. The free
license drives the appearance of many RISC-V microprocessors, some of which are
representatives. Rocket [23] is a six-stage pipeline in-order microprocessor. Son-

icBOOM (often shorted as BOOM) [214] is a ten-stage pipeline out-of-order design.

11

XiangShan [200] features advanced microarchitecture optimizations. Xuantie-910 [46]
is an open-source implementation from the industry.

BOOM is an open-source superscalar out-of-order RISC-V microprocessor in academia,
and it has proved to be industry-competitive in low-power, embedded application sce-

narios [22, 44, 214].

I-Cache BTB
| Tag || BIM || RAS |
| Tag Data
Tagged Geometric + Loop BP
| I-TLB | | BHR | | Fetch Target Queue |
| . ____Fetch Buffer . |
¥ i ;
| Decoder | | Decoder | e | Decoder || Reorder
Buffer
| Rename |
| Dispatch | l——
§ ¥
MEM Issue Queue INT Issue Queue FP Issue Queue
Lo uop tags uop ags uop tags
Cache { I } { I } { I }
| INT Physical PF || FP Physical RF |
| Bypass Network |
| Addr Calc | | Addr Calc | INT
ALU MUL BR FPU FDiv
by
L] ' ¥
STQ LDQ
v
| D-TLB | R DA-Cache
| Line Fill Buffer || MSHR | Tag Data
I]]] I
Frontend IDU EU LSU

Figure 2.2: BOOM implements a ten-stage pipeline that includes Fetch, Decode, Register
Rename, Dispatch, Issue, Register Read, Fxecute, Memory, Writeback, and Commit.

Figure 2.2 demonstrates the organization of BOOM. BOOM is mainly composed

12

of a front end (FrontEnd), an instruction decoding unit (IDU), an execution unit
(EU), and a load-store unit (LSU). FrontEnd fetches instructions from I-cache, pre-
dicting branch target addresses, handling return addresses, and packing consecutive
instructions as a fetch packet to the fetch buffer. IDU decodes instructions retrieved
from the fetch buffer as micro-ops, and dispatch, schedule, and issue them accord-
ing to instruction types. EU integrates various functional units, including dividers,
multipliers, accelerator interfaces, etc. LSU interacts with EU and D-cache, deciding
when to fire memory instructions to D-cache. BOOM implements explicit renaming
logic, short-forward branch optimizations, an advanced branch predictor [172], a loop
branch predictor [171], etc., to improve its overall performance. With high-level hard-
ware description language like Chisel [26], many components and their connections
can be parameterized to support various BOOM microarchitectures. For example,
the parameterization of the size of the branch target buffer [152], return address
stack [180], branch prediction history tables [45], etc., broadens BOOM’s potential to
balance the performance and power dissipation in FrontEnd. We can achieve diver-
gent trade-offs by adjusting these parameters to meet design requirements involving

low-power and embedded computation applications.

2.3 Literature Review

Regarding the problem, researchers and engineers have discussed and proposed many
methodologies.
The industrial solutions primarily rely on the expertise of computer architects.

Simulation environments and PPA models are built for the design space exploration

13

[133, 39, 38]. Computer architects decide the optimal microarchitecture configura-
tions based on the experience of historical commercial products and massive analysis
reports from those internal simulation results. IBM T.J. Watson Research Center
developed Turandot, a trace-driven parameterized microprocessor model, and Aria,
an execution-driven trace generator [132, 133]. The simulation environments sup-
port early exploration for microarchitecture issue width, branch prediction algorithm,
cache configurations, etc. The PowerTimer toolset has also been developed for use
in the early-stage microarchitecture power-performance analysis.[39]. The merits of
PowerTimer are the relatively accurate power models derived from analytical equa-
tions with circuit and technology parameters. Hewlett-Packard Laboratories launched
the PICO (program in, chip out) project to automate the design of computer systems
[103]. PICO integrates a parameterized architectural template, a constructor to gen-
erate design from a component library, and an evaluator to measure the quality of
the design [14, 167].

In academia, the methodologies can be categorized as white-box and black-box
approaches. The white-box methodologies investigate the relations between the mi-
croarchitecture design space and PPA values and construct interpretable equations
or rely on graph-based models to characterize [111, 129, 101, 116, 93, 75]. The inter-
pretable equations are built from a first-order microprocessor performance model or
throughput model [141, 100, 62, 185, 63, 43], analytical power model [197, 40, 41, 134,
128, 119, 98], and area model [135, 178]. For example, Karkhanis et al. proposed a
design framework that takes as inputs the design targets, design alternatives, and one
or more application programs [101]. The framework output is the set of out-of-order

superscalar microprocessors that are Pareto-optimal w.r.t. PPA values. On the other

14

hand, the graph-based models are from critical path analysis, which is leveraged to
unveil the bottlenecks of a microarchitecture during microexecutions [68, 67, 69, 1377
, 156]. The insights into the microarchitecture derived from the graph-based models
can be utilized as exploration guidance [116, 143, 144, 186, 75, 27]. Lee et al. identify
the microarchitecture’s key performance bottlenecks and estimate the exact impacts
of latency adjustments without launching an extra step of simulations [116]. The
related methodologies are extended to multi-core microprocessors [93].

The black-box methodologies reduce the demand for microexecution analysis and
view the microarchitecture as a black box. With machine learning-based (ML) meth-
ods, black-box methodologies construct PPA prediction models and conduct design
space exploration for microarchitectures [91, 94, 115, 59, 92, 48, 118, 28, 120, 29, 210,
31]. Ipek et al. proposed an exploration algorithm with artificial neural networks
[130]. The models produce highly accurate performance estimates for unknown mi-
croarchitectures in the design space, i.e., achieving 4 ~ 5% average error using 1%
samples from the complete design space [91]. Lee et al. provided a non-linear re-
gression solution to find Pareto-optimal solutions in the microarchitecture design
space [114, 115]. Different non-linear operators are proposed, including square-root
transformation, log transformation, cubic splines, etc. ArchRanker argues that the
information computer architect mostly needs during the DSE process is whether a
given configuration will perform better than another rather than precisely estimating
the performance of that configuration [48]. Therefore, ArchRanker proposed a DSE
algorithm based on RankBoost [70]. RankBoost, an ML model combining ensem-
ble learning and boosting algorithms, is employed to rank predicted PPA values of

different microarchitectures from the design space [215, 166]. Li et al. leverage the

15

orthogonal array (OA) sampling [65] and ActBoost algorithm [179] to conduct the
DSE for the GEM5 [36] microarchitecture design space [118].

16

Chapter 3

BOOM-Explorer

3.1 Introduction

Recently, RISC-V, an open-source instruction set architecture (ISA), gained much
attention and received strong support from academia and industry. Berkeley Out-of-
Order Machine (BOOM) [22, 44, 214], a RISC-V design fully compliant with RV64GC
instructions [4, 5], is competitive in power and performance against low-power, em-
bedded out-of-order microprocessors in academia. By adopting Chisel hardware con-
struction language [26], BOOM can be parametric, providing great opportunities to
explore a series of microarchitecture designs that better balance power and perfor-
mance for different purposes of use.

Microarchitecture defines the implementation of an ISA in a processor. Due to
different organizations and combinations of components inside a microprocessor, mi-
croarchitecture designs under a specific technology process can affect a micropro-

cessor’s performance, power dissipation, chip area, etc. [159, 78]. Finding a good

17

microarchitecture that can accommodate a good balance between power and per-
formance is a notorious problem because of two restrictions. On the one hand, the
design space is extremely large. Its size can be exponential with more components
to consider, e.g., special queues [155], buffers [181], branch predictors [207], vector
execution units [109], external co-processors [23], etc. Thus, we cannot traverse and
evaluate each microarchitecture to retrieve the best one. On the other hand, acquir-
ing metrics, e.g., power, performance, etc., costs a lot of time when we verify one
microarchitecture with diverse benchmarks.

In industry, the traditional solution is based on prior engineering experience from
computer architects [133]. However, it lacks scalability for newly emerged proces-
sors. In academia, to overcome these two obstacles, researchers proposed various
arts, which can be categorized as two kinds of methodologies. First, in view of
the difficulty in constructing an analytical model, researchers can otherwise char-
acterize a microarchitecture design space with fewer samples as much as possible
by leveraging statistical sampling and predictive black-box models. Li et al. [118]
proposed AdaBoost Learning with novel sampling algorithms to explore the design
space. Second, to search for more designs within a limited time budget, researchers
often rely on coarse-grained simulation infrastructure rather than a very-large-scale-
integration (VLSI) flow for register-transfer level designs (RTL) to accelerate the pro-
cess [132, 24, 39, 36]. Moreover, the simulation can be further sped up by decreasing
redundant overhead [151, 106, 33, 66].

Unfortunately, both of these academic solutions contain several limitations. In the
first place, despite the fact that statistical analysis performs well when highly reliable

prediction models can be constructed, it fails to embed prior knowledge of microar-

18

chitectures to improve design space exploration further [91, 59, 115]. For another,
coarse-grained simulation infrastructure is used widely to accelerate the simulation.
Nevertheless, most of them lose sufficient accuracy, especially for distinct processors
[80, 18]. The low quality of results is often generated due to the misalignment between
simulation and real running behaviors of processors. More importantly, because it
is difficult to model the power dissipation of modern processors at the architecture
level [119], some infrastructure cannot provide power value [24, 36]. Because of the
aforementioned limitations, academia lacks sufficient discussions on methodologies
that can explore microarchitecture designs, achieving a good trade-off between power
and performance.

In this chapter, following the first strategy, we propose a BOOM-Explorer frame-
work to address these issues. In BOOM-Explorer, without sacrificing the accuracy of
a predictive model, we embed prior knowledge of BOOM to form a microarchitecture-
aware active learning (MicroAL) algorithm based on transductive experimental design
by utilizing BOOM RTL samples among the entire design space as few as possible
[209]. Secondly, a novel Gaussian process model with deep kernel learning functions
(DKL-GP) initialized through MicroAL is proposed to characterize the features of
different microarchitectures. The design space is then explored via correlated multi-
objective Bayesian optimization flow based on DKL-GP [183]. Our framework can not
only take advantage of fewer microarchitecture designs as much as possible but also
help us find superior designs with a better balance between power and performance.

Our contributions are summarized as follows:

e A microarchitecture-aware active learning methodology based on transductive

experimental design is introduced to attain the most representative designs from

19

an enormous RISC-V BOOM design space.

e A novel Gaussian process model with deep kernel learning and correlated multi-
objective Bayesian optimization is leveraged to characterize the microarchitec-
ture design space. With the help of DKL-GP, Pareto optimal solutions for

performance and power are explored.

e We verify our framework with BOOM under advanced 7-nm technology. The ex-
perimental results demonstrate the outstanding performance of BOOM-Explorer

on various BOOM microarchitectures.

The remainder of this chapter is organized as follows. Section 3.2 presents pre-
liminaries for BOOM-Explorer. Section 3.3 provides detailed explanations of the
framework. Section 3.4 conducts several experiments on BOOM microprocessor to
confirm the outstanding performance of the proposed framework. Finally, Section 3.5

summarizes this chapter.

3.2 Preliminaries

In this section, we present some preliminaris for BOOM-Explorer, including our mi-
croarchitecture design space, Bayesian optimization, and our problem formulation

based on Problem 2.

3.2.1 RISC-V BOOM Microarchitecture Design Space

As introduced in Section 2.2, microarchitecture design space of BOOM is constructed

according to BOOM’s overall architecture, as listed in Table 3.1. The design space

20

of each module is composed of various components, the structure of which can affect
the performance power trade-off and deserve to be optimized. As shown in Table 3.1,
different entries of RAS (RasEntry), branch counters (BranchCount), organization of
I-cache/D-cache (associativity, block width, and size [84]), translation lookaside buffer
(TLB) structures are considered in this section. The column of “Candidate values”
in Table 3.1 denote supported hardware resources. For example, the reorder buffer
is provided to support 32, 64, or 96 entries, and so on. Performance and power are
negatively correlated. Assigning more hardware resources often improves performance
and brings considerable power dissipation. Hence, a good microarchitecture demands
an appropriate compromise across all components’ hardware resources.

Some combinations in Table 3.1 are illegal. A legal combination should observe the
constraints of BOOM design specifications as in Table 3.2. Otherwise, it would fail
to generate reasonable RTL designs. For example, DecodeWidth defines the maximal
instructions to be decoded simultaneously. If a BOOM microarchitecture breaks rule
2 in Table 3.2, the reorder buffer may not reserve enough entries for each decoded
instruction or contain redundant entries that we cannot fully utilize. The last three
rules in Table 3.2 are added to simplify the design space. Their incorporations do not
affect the design of a design space exploration (DSE) algorithm. After we prune the
design space w.r.t. rules in Table 3.2, the size of the legal microarchitecture design

space is approximately 1.6 x 10%.

3.2.2 Bayesian Optimization

Bayesian optimization [213, 183] is widely applied in design space exploration prob-

lems when an evaluation process like the VLSI flow is expensive, as shown in Equa-

21

ce9T’s oPed~(17T 10§ (1L) WPNq opIse-y00] Jo sdem ar, ISURELEEeIE
A (YHSIN) 109s1301 SUI[pUeY] SNe)s SSTU JO SIDQUINT 9], YHSINPY2RO A
A oyoRI-(T [T JO S10S OAIJRIDOSSE oY J, Kepyoyoe)) (I NST
cEVTIT'Y (DILS) enenb o103 oY Jo sOLTYUL O, AuEd LS
ceEVT IS (DAT) enenb peoy a1y jo soLryus A, ANugdAT
Al 0[S ONSST SUOIIONIISUL pajepI-jutod SUIROp JO IoquInu oy T, yipraenssid,g
CTeTT 0[S 9NSST SUOTIONIJSUL PIJR[OI-IOFIUIL JO IdQUINU dY T, UIPIANONSSTIUT nA
o1 0[S ONSST SUOIIOILIISUL PIJR[AI-AIOUWOUW JO [IPIM dY T, UIPIA\ONSSTWSA
ZIT°96 ‘08 ‘79 ‘|% s193s1801 Jurod-Furyrop eotsAyd Jo Iequunu oy, 1038180 Aygd q
ZIT°96 ‘08 ‘79 ‘|% SI9)SIFI I9Gojur [ROSAYd Jo Ioquunu oy J, I93SISNAY JIUT
0€T ‘82T 96 ‘79 ‘T€ I9PNq I9pIOal 913} JO SLIjUL oY T, Anugqoy adr
CPeTT 9OTUO 9POISP URD JTUN FUTPOIAP O SUOIPIILIJSUL JO IOQUINT [RUIIXRUL 9 T, TIPTAARPODS(T
v Ky1oeded aurl opPRO-T T 94T, SRS L PIER ELplg) |
ce9T’s Ped-T T 107 (f'1L) WPNq dPISe-3{00[Jo shem oY, ISUNELREO]
A ooRI-] 1T JO S}0S DAI}RIDOSSE O T, Aepyoyoe)|
09T ‘Z1°‘S A[snoauejnuirs pajyenoads oq ued sorpuURI(JO JOQUINU [RWIXBW O T, unoHYouRIg puqIuoIg
28 %% ‘91 (SYY) Yoe)s SSoIppe WINJAI oY) JO SOLIYUD oY, Anjuysey
0F ‘Ce‘CE ‘T 9T ‘S IoPN(Q DI9F UOIJONIISUL 9 JO SOLIJUD O T, AU IDPNG U0
Ry 9OUO0 OADLIJOI URD JIUN [[D)9] UOIIONIISUL O} SUOTIONIISUT JO IOQUINU O[T, TIPIM U2
sonyeA dyepIpuR)) 7 suorydriosa(J Juouodwo)) 7 9[MPOIN

TNOOY Jo 9oeds UuSIsop oInj09IYOIROIIN (T°¢ 9[qR],

22

Table 3.2: Constraints of BOOM design specifications.

Rule ‘ Descriptions

1 FetchWdith > DecodeWidth
RobEntry | DecodeWidth *
FetchBufferEntry > FetchWidth
FetchBufferEntry | DecodeWidth
fetchWidth = 2x ICacheFetchBytes
IntPhyRegister = FpPhyRegister
LDQEntry = STQEntry
MemlIssueWidth = FplssueWidth

T “” means RobEntry should be divisible by De-
codeWidth.

00 ~J O U = W N

tion (3.1), where we use minimization as an example.

x* = argmin f(z), (3.1)

reX

where X is the solution space (design space), and f represents the evaluation process,
which maps x to a metric value. The optimal solution z* attains the minimal value
of f(z). The main idea of Bayesian optimization is only to select the potentially
promising microarchitectures for evaluation using the VLSI flow. These solutions are
predicted promising based on what we have known in previous searched samples. A
distinction between DSE using Bayesian optimization and previous black-box meth-
ods is the absence of the need to construct a large dataset for training a black-box
model. We instead progressively explore the design space in an online fashion.
Bayesian optimization consists of a surrogate model and an acquisition function.
A surrogate model is often constructed from the Gaussian process (GP) [195]. It
models f in Equation (3.1) as a generated probability distribution from the GP. The

acquisition function is designed to characterize the relative rankings between differ-

23

f(x) Prediction EI

15)
= 1 - -~
= 05 M5 =2
| |] 0 | | J
0) 10 0 5 10
X X

Figure 3.1: An example of Bayesian optimization (with the EI function): find x, which
attains the maximal value of f(z).

ent solutions based on the probability distribution. In other words, the acquisition
function answers whether x; is better than xy without considering exactly how much
better x; performs than xs. The solution that achieves the acquisition function’s op-
timum is selected as a potential promising/optimal solution. The potential optimal
solutions are then evaluated using the VLSI flow and their corresponding perfor-
mance and power values are utilized to tune the surrogate model. Better solutions
are expected to be explored using the tuned surrogate model with a more accurate
modeled probability distribution. Suppose & denotes a microarchitecture embedding
(??), 7 denotes the current explored best performance/power value. GP character-
izes the evaluation flow with the mean u(x) and the covariance o%(x). The expected

improvement (EI), a popular acquisition function, is shown in Equation (3.2),

El(x) = E[min(f(x) — 7,0)]

. fl@) —p(=) T ()
= E|[min — ,0)] - v o%(x

= o(x)(Ae(z) + ¢(x)),

T—§— p(z)
o(x)

(3.2)

A:

where ®(x) and ¢(x) are the cumulative distribution function and the probabil-

24

ity density function of GP, and ¢ is a coefficient to improve the numerical ability.
Figure 3.1 visualizes the optimization procedure for maximizing f(z) with Bayesian
optimization. A surrogate model with GP is built in the z — f(x) space from already-
known samples represented by red dots. The red curve denotes the golden values
(ground truths) for each input x, and the dashed blue curve denotes GP predictions.
The band colored in orange shows the GP prediction uncertainty of each x. If the
band is wider, the uncertainty is larger. The potential optimal solution is selected
according to EI. Namely, point x = 2, which achieves the maximal EI, is chosen as a

potential optimal solution, as shown in the x — EI space.

3.2.3 Problem Formulation for BOOM-Explorer

Definition 1 (Microarchitecture Embedding). Microarchitecture embedding is a fea-
ture vector x, denoting a combination of candidate values given in Table 3.1, and it

satisfies all constraints, as referred to in Table 3.2.

Definition 2 (Clock Cycle). The clock cycle is defined as the clock cycles spent when

a BOOM ezecutes a benchmark. It serves as a proxy for performance measurement.

Definition 3 (Power). Power is defined as the summation of dynamic, short-circuit,

and leakage power dissipation.

With the same benchmark, clock cycle and power are a pair of trade-off metrics.
The lower the cycles, the more power will dissipate when a design integrates more
hardware resources to accelerate instructions execution. Together, they reflect on
whether a microarchitecture design is good or not. Power and clock cycle are denoted

as y.

25

Definition 4 (Pareto Optimality). For an n-objective minimization problem, a vector

of objective values f(x) is said to dominate f(x') if

Vie[l,n], fi(z)< fi(x);

Elj € [Ln]? f](iﬂ) < fj(m/>’

(3.3)

where & and x' are two microarchitecture embeddings. Hence, we denote f(x) =
f(x'). Otherwise, f(x) # f(x'). A set of objective values that are not dominated
by any other is called the Pareto frontier. Their corresponding microarchitectures are

termed Pareto-optimal set.

This section aims to explore Pareto optimality defined in Definition 4 w.r.t. clock
cycle and power for various BOOM microarchitectures. A microarchitecture whose
objective values belong to the Pareto frontier cannot improve performance without
sacrificing power, and vice versa. Based on the above definitions, we formulate the

problem.

Problem 2 (BOOM Microarchitecture Design Space Exploration). Given a design
space D, each microarchitecture embedding x € D corresponds to objective values y
in the clock cycle-power space Y. BOOM microarchitecture design space exploration
is to find the Pareto-optimal microarchitecture embeddings set X = {xy, xa, ..., x,},

whose objective values Y = {y1, Yz, ..., yn} C Y formulate the Pareto frontier.

26

MicroAL L,

Section 3.3.2 Bayesian Optimization » Pareto Frontier
A 7 \ 4 \
e S A Y
e R
BOOM | Q/' > =\ e o !
. . | v | Q—t Q [O2NNG) o |
Microarchitecture | 1 || . >< - ! W . !
Design Space ! d : ! oL
31N B % : Doy !
T e e .0 Clock Cycles
EIPY DKL-GP Section 3.3.3

Section 3.3.4

A

Batch Selection
Section 3.3.5

Sampled Data Set
VLSI Flow

Figure 3.2: Overview of the proposed BOOM-Explorer.

3.3 The BOOM-Explorer Framework

3.3.1 Overview of BOOM-Explorer

Figure 3.2 shows an overview of BOOM-Explorer. Firstly, the active learning algo-
rithm MicroAL (Section 3.3.2) is adopted to sample a set of initial microarchitectures
from the design space. Domain-specific knowledge is embedded in the initialization
based on the first learned lesson. Secondly, a Gaussian process model with deep ker-
nel learning (DKL-GP) (Section 3.3.3) is then built on the initial set as a surrogate
model. Thirdly, the expectation improvement of Pareto hypervolume (Section 3.3.4)
is applied as the acquisition function. During the DSE procedure, BOOM-Explorer
interacts with the VLSI flow to acquire performance and power values for the se-

lected microarchitectures. Due to the customized algorithm flow, such interactions

27

Algorithm 1 TED (U, p,b)

Require: U is the unsampled microarchitecture design space, p is a normalization
coefficient, and b is the number of samples to draw.
Ensure: X: the sampled set with | X | =b.
LX<« 0, Kyy < f(u,v), Vu,u' € U,
2: fort=1—0bdo

3: T, < arg max Tr[Kz (Kze + pI) 7 Kyl > Kz, Kzr and Ky are
xel
calculated via f w.r.t. corresponding columns in K.

X+~ XUz, U+ U\ xy;

K < K — Kz, (K:c*m* + NI)ilKac*u;
end for
return The sampled set X;

make the DSE at the RTL level feasible. Moreover, we improve the exploration with
diversity-guided sampling to handle different sub-regions (Section 3.3.5). Finally,
The outputs of BOOM-Explorer are the predicted Pareto frontier and corresponding

Pareto-optimal microarchitectures.

3.3.2 Microarchitecture-aware Active Learning Algorithm

The initial microarchitectures sampled from the design space are critical to construct-
ing a surrogate model for later exploration. A naive solution is to sample microar-
chitecture embeddings randomly [91, 115]. Some advanced sampling techniques with
statistic analysis like orthogonal design [118] are also applied in previous works. Nev-
ertheless, the methods mentioned above are less effective since they require many
VLSI flow interactions while the runtime cost of the VLSI flow is much higher. We
follow two guidelines to design the initialization algorithm. First, the initial microar-
chitecture embeddings should uniformly scatter in the entire design space. Different

PPA trade-offs should be captured via uniform scattering. Second, the diversity of

28

these microarchitecture embeddings should represent different characteristics of the
design space as much as possible. Simple characteristics can be described with a few
samples, while complex ones can be described with more samples. Besides, combin-
ing with prior knowledge helps us remove samples unworthy to be evaluated with the
VLSI flow.

In MicroAL, we first perform clustering w.r.t. the decode width (DecodeWidth),
then we conduct transductive experimental design with samples per each cluster.
DecodeWidth in IDU, as referred to in Table 3.1, decides the maximal numbers of
instructions that can be decoded simultaneously, i.e., it determines the width of the
pipeline, as shown in Figure 2.2. It allows more instruction execution parallelism in
the pipeline if DecodeWidth is assigned a considerable value in BOOM, and we also
allocate appropriate hardware resources to other components accordingly. Although
large DecodeWidth leads to remarkable performance improvement, in most cases,
power dissipation increases correspondingly due to more transistors integrated. We
find that the impact of a PPA trade-off by configuring DecodeWidth is significant.

Figure 3.3 visualizes the objective space by clustering w.r.t. DecodeWdith on sam-
pled microarchitecture embeddings. Better microarchitectures will be closer to the
original point in Figure 3.3, indicating higher performance and lower power dissi-
pation. Figure 3.3 demonstrates that the distributions of clusters are highly corre-
lated with the potential Pareto frontier. The entire design space is discrete and non-
smooth. Nonetheless, many microarchitectures with the same DecodeWidth achieve
similar performance-power characteristics within their clusters. We embed this do-
main knowledge in the initialization algorithm. Additionally, within each cluster, we

adopt the transductive experimental design (TED) [209] to sample microarchitectures

29

:@ DecodeWidth =1
§ 0.08 | DecodeWidth = 2
S DecodeWidth = 3
'E DecodeWidth = 4
Z 0.04 DecodeWidth = 5
:
S
[ant

7 8
Clock Cycles -10*

Figure 3.3: Visualization of clusters w.r.t. DecodeWidth.

that best reflect the characteristics of their groups.

The method of TED is a widely used algorithm to construct samples that deserve
to be evaluated with an expensive flow. It tends to choose microarchitecture embed-
dings that can spread across the design space to retain the most information [209]. We
can acquire a pool of representative samples with high mutual divergences by itera-
tively maximizing the trace of the distance matrix constructed on newly sampled and
unsampled microarchitecture embeddings. Algorithm 1 shows the backbone of TED,
where f represents the distance function used in computing the distance matrix K.
It should be noted that there are no restrictions on the choice of distance functions.
The microarchitecture embeddings can be clustered based on DecodeWidth, allowing
us to identify clusters that are most closely related to the Pareto frontier. Within
each cluster, TED is performed to create representative samples. This process leads
to the formulation of MicroAL as described in detail in Algorithm 2.

In Algorithm 2, firstly, we cluster the entire design space according to ®, which
is the distance function with a higher penalty along the dimension of DecodeWidth.

One possible alternative can be ® = (z; — ¢;) " A(x; — ¢;), with i € {1,--- ,|U|} and

30

Algorithm 2 MicroAL (U, u,b,n)

Require: U is the unsampled microarchitecture design space, p is a normalization

coefficient, b is the number of samples to draw, n is the number of pre-determined
iterations.

Ensure: X: the initial set with | X| = b.

1:
2:

X «—0;

Randomly initialize k centroids {ecy, ¢, ..., ¢ } from U with k equal to the number
of candidate values of DecodeWidth.

while7 =1 —n do

¢« argmin @ (x; — ¢), Vo; € U; > ® is a designed distance function
jef{L,2,...k}
considering DecodeWidth.

Assign x; to C.i, the centroid of which is c.;

121)
z]l{CZ:j}:I:i

¢ B € (1,2, k};
‘21 1{ei=5}

7. end while
8: Clusters C « {C1,Cs, ...,Ci} are formulated.

9: for C; C C do
10: X « TED (Ci, 1, L%J), > Algorithm 1
11: X+ X, UX;
12: end for
13: return The initial microarchitecture embedding set X;
j €{1,--- k}, where A is a pre-defined diagonal weight matrix. The procedure runs

n rounds to make the design space sufficiently clustered. Secondly, we apply TED

to each cluster to perform sampling, i.e., line 10 in Algorithm 2. Finally, the initial

microarchitectures that are worth to be estimated with the VLSI flow are constructed.

Each microarchitecture is estimated using the VLSI flow. Our acquisition function is

built based on these microarchitectures and their respective performance and power

values.

31

3.3.3 Gaussian Process with Deep Kernel Learning

It is common to build GP models for the initial microarchitectures due to the non-
parametric approximation in terms of reliability in uncertainty estimation, and robust
performance for many applications [124, 125].

Without loss of generality, let X = {@1, xs, ...z, } denote a set of microarchitec-

ture embeddings. The corresponding objective values formulate a matrix,

Yin Y12 - Yim
Yo1 Y22 .- Yom

Y = , (3.4)
ynl ynQ o ynm

where m denotes the number of objectives, and Y is an n x m matrix. The objective
functions { f1, fs, ..., fm}, which characterize how we get the objective values, map an
x toy ={v1,vy2, ..., Ym}. We place an appropriate GP prior on each f, i.e., fi(x) ~
GP(pi,0?), where p; and o? are the mean value function and the covariance function
for the i-th objective, respectively. A non-trivial problem is that the objectives in our
problem are not orthogonal since higher performance often comes with higher power
dissipation. Characterizing individual objectives using independent GP models could
degrade the overall modeling performance. Hence, we introduce multi-task GP models
to handle the difficulty [194]. The main idea of multi-task GP is to model the hidden
mappings based on the objective identities and the observed objective values for each
microarchitecture. Objective identities are scalars utilized to distinguish different

objectives. Hence, a GP prior is also placed between each objective function, as

32

shown in Equation (3.5).
cov(fi(z), f;(x) = K[K*(z, '), (3.5)

where cov(f;(x), fj(x')) is a covariance between f; and f; on two microarchitecture
embeddings « and ', K ZJ; is a positive semi-definite matrix specifying the similarities
between objective i and j, and K7 is a covariance function over & and x’.

Given a newly-sampled microarchitecture embedding x*, the mean value repre-

senting the prediction of an objective value is shown in Equation (3.6)
pi(a®) = i+ (K] @ K* (@, X)) 'S (Y; —), (3.6)

where Kf is the i-th column of K7 defined in Equation (3.5), p; denote a vector
of i-th objective mean values, and Y; is the i-th column of Y denoting the i-th
objective values in the training data set. The uncertainty of the prediction p;(x*) in

Equation (3.6) is calculated by Equation (3.7).

oi(z") = (K] @ K* (2", a"))~

(2

(3.7)
(K] © K*(2", X)) (K] © K"(X,2"),
where ¥ in Equation (3.6) and Equation (3.7) is obtained from Equation (3.8).
Y= (Ko K*(X,X))+D®1I. (3.8)

The operator ® denotes Kronecker product. In Equation (3.8), D is an m x m
diagonal matrix with o7 as the k-th diagonal element, and I is the identity matrix.

Therefore, the posterior distribution is f;(z* | X,Y;, K, K*) ~ GP(u;(z*), 02(x*)).

)

33

The likelihood estimation of the multi-task GP is as shown in Equation (3.9)

_mn
2

5 ()T (R (39)

[= og27r—%log|Kf]—%log|K$|

n < o 1 -1 T
—§;logcri—§Tr[(Y—F)D (Y —-1)7],

where T is a matrix of p;; corresponding to Y. The parameters describing K/ and
K* are optimized via the maximization of Equation (3.9).

We use deep kernels [196] stacked by multiple linear perceptrons (MLP) with non-
linear transformations to construct the Gaussian kernels, i.e., K and K*. We term
our surrogate model DKL-GP due to the construction of the GP and deep kernel
functions. The use of deep kernels can result in improved performance due to their

strong modeling ability. Thus far, K/ and K* are described by Equation (3.10).

K — (p(g(=,0)),¢(g(z',0))), (3.10)

where ¢ denotes non-linear transformation functions, e.g., the ReLLU activation func-

tion [16], etc., and the MLP g is parameterized by 6.

3.3.4 Correlated Multi-Objective Optimization

Although DKL-GP, as demonstrated in Section 3.3.3, can be utilized to characterize
the uncertainty of predicted clock cycles and power, designing a suitable acquisi-
tion function to find the Pareto frontier remains an unsolved problem. Since clock
cycles and power are a pair of negatively-correlated metrics, we introduce the ex-

pected improvement of Pareto hypervolume (EIPV) [173] to model the trade-off in

34

aj ay aj aj Uref a;ay aj aj aj Uref
Power| {1 r Power| | 7§ e
O Qoo @t A G RS N RS T aj
z . o o
0% | o ©
. Oio | | O:o
PR S L FUNN T B R o2
o . o %
O T - Qg O fo a5
Ok 4 O
. 42 >
0 Clock Cycles 0 Clock Cycles
(a) (b)

Figure 3.4: An example of hypervolume is shown in the power-performance space. (a) The
region covered in orange is dominated by the currently explored Pareto-optimal objective
values denoted as circles in blue. Circles in purple denote dominated objective values. (b)
The circle in green denotes an explored potential point belonging to the Pareto-optimal set
among the entire design space. EIPV is represented as the area of the sub-region colored
in light green.

the performance-power space.

We denote the points in the performance-power space as Y = {y1,¥ys,...Yn}. As
Figure 5.2 shows, a better performance and power trade-off lies closer to the origin.
Pareto hypervolume is the volume of the area bounded by the Pareto frontier and a
reference point. The reference point is a self-defined point dominated by all objective
values. We use P(Y") to represent the Pareto frontier, i.e., P(Y) ={y; € Y | y; #
vi,Vy; € Y \ {y;}}. Given a reference point v, in the objective space, which is
dominated by P(Y'). The Pareto hypervolume [173] bounded by v, and P(Y), as
the orange region highlighted in Figure 3.4a, can be computed by Equation (3.11).

PVol, (P(Y)) :/ Ly = ved[1—] Ly 7 ylldy, (3.11)
Y y«€P(Y)

35

where 1(-) is the indicator function, which outputs one if its argument is true and
zero otherwise. The integral characterized by Equation (3.11) sums up all bounded
regions. Intuitively, if a new point y,,; is searched out, and y,; is not dominated
by any points in Y, then PVol, (P(Y U{y,+1})) is increased. The increased part is
specified as the improvement of Pareto hypervolume. The larger the increased part,
the better the improvement of Pareto hypervolume is. The EIPV is the expectation
of the improvement w.r.t. potential solution candidates at the (n+ 1)-th optimization

steps. Formally, the EIPV is computed as Equation (3.12).

EIPV(@ 11 | D) = Ey(s(@ns1)p) [PVOlo (P(Y) U f(@n11)) — PVoly, (P(Y))],
(3.12)
where f is the DKL-GP mentioned in Section 3.3.3, D = {x;, y;}_, is the data set,
and x,; is a newly sampled microarchitecture embedding at the step n + 1. Fig-
ure 3.4b visualizes the EIPV based on Figure 3.4a, where the green region highlights
EIPV(x,.1 | D).

In the performance-power space, we can simplify Equation (3.12) to make EIPV
better computable by decomposing the space as grid cells. Assume vt = {(a?,a3)}.
The union of grid cells can be phrased as C = [a},a?) X [a},a9) x [a2,a}) x [a3,ad) X
LJat),ay™! x [ay,ay). Denote Chg = {C € C |y % y,Vy € C,y € P(Y)} as
non-dominated cells. Hence, the simplified version of EIPV computation is derived,
as shown in Equation (3.13).

EIPV(Zyi1 | D) =) / PVol,. (y)p(y | D)dy. (3.13)
CeCya V¢
The relative relations between microarchitecture embeddings x; and @, i.e., whether

x, is better than @, can be precisely described by EIPV. The microarchitecture em-

36

bedding a*, which achieves the maximal EIPV, explicitly demonstrates that f(a*) is
the potential Pareto-optimal solution, as shown in Equation (3.14).

x" = argmax EIPV(x | D). (3.14)

xeD

We sample x* each time and evaluate its performance and power values y* via the
VLSI flow. If a generous time budget is available, we can sweep the design space
D using DKL-GP to obtain x*. The advantage of using DKL-GP is that it has low
runtime, making the estimation highly efficient. The pair (*, y*) is added to D. And
we utilize the aggregated D to tune DKL-GP, hoping to sample the following * with

better y* that can dominate already explored points in the design space.

3.3.5 Diversity-Guided Parallel Exploration

Despite the benefits from MicroAL and the negatively-correlated multi-objective
Bayesian optimization flow, we also propose diversity-guided parallel exploration to
further improve the algorithm’s efficiency. With the technique, we can sample and
evaluate more microarchitecture embeddings at the same time. And we also improve
the overall DSE performance effectively.

Although exploring with EIPV is mostly effective, a limitation is also viewed. We
notice that searching via EIPV can lead to local optimum, i.e., it cannot recover the
complete Pareto frontier due to potential “outliers”. Outliers have good properties
in performance and power trade-off but may not have high EIPV. The reason behind
this is that the Pareto frontier tends to group in various regions due to components
impacting the performance and power trade-off in various degrees. Some objective

values with relatively higher EIPV can hide outliers when we do not have a large

37

optimization budget. In other words, exploring with EIPV misses such outliers when
insufficient optimization is applied.

Two methodologies can be integrated to explore those outliers with higher Pareto
hypervolume. First, improve the number of samples while maintaining an unchanged
optimization budget with batch optimization. Applying parallel VLSI estimations in
the batch optimization instead of original sequential optimization is necessary. And
the parallelism depends on the number of available EDA tools licenses. Second, em-
bedding domain knowledge or heuristics in the exploration is a good supplement to
the exploration with original acquisition design (discussed in Section 3.3.4). Conse-
quently, we propose a parallel-based exploration by combining two pathways.

In the exploration, we select multiple microarchitectures simultaneously to con-
duct parallel estimations using the VLSI flow. Intuitively, a straightforward way to
select microarchitectures can be achieved according to the ranking of EIPV w.r.t. each
design, as introduced in Section 3.3.4. Conversely, we provide some prior knowledge in
the selection. DecodeWidth (mentioned in Section 3.3.2) contributes more to the per-
formance and power trade-off than other components since modifying DecodeWidth
can lead to distinct clusters shown in Figure 3.3. Except for DecodeWidth, another
component IntPhyRegister, determining the number of integer physical registers, can
also distinctly affect performance and power if a benchmark contains considerable
integer-related instructions. Hence, the Pareto frontier is scattered in multiple sub-
regions, as shown in Figure 3.5. In Figure 3.5, the DecodeWidth equals 1, and other
components differ. We can observe that the Pareto frontier spread across multiple
sub-regions, highlighted in red ribbons in Figure 3.5. An algorithm should inspect

those sub-regions and sample microarchitecture embeddings across them, circumvent-

38

1072
Data
> Pareto Frontier

o Sy N 00

7.6 8.2
Clock Cycles .04

Power (unit: watts)

Figure 3.5: The DecodeWidth equals 1 for the sampled microarchitectures, and the Pareto
frontier they formulated disperses across different sub-regions, colored in red.

dhrystone whetstone
O)
£ |
n - < =
gl g
- + |
° 108 +
3 - =
2 5 B
© 38} = i
L \ \ i 1 D? C \ \ [\
SN R AN ¥ P P
IntPhyRegister IntPhyRegister

Figure 3.6: The change of performance and power dissipation w.r.t. IntPhyRegister on
dhrystone and whetstone.
ing trapping into local optimum. Therefore, we propose the diversity-guided parallel
exploration.

MicroAL leverages DecodeWidth as a critical factor to capture the main char-
acteristics of the design space. Similarly, we also notice that IntPhyRegister can

significantly affect the trade-off. Figure 3.6 visualizes such impacts. Dhrystone and

39

Algorithm 3 Partition (i)

Require: U is the data set already clustered by MicroAL.
Ensure: The partitioned data set I/’
U +— @;
2: C <+ extract_clusters (U); > C is obtained from line 8 of Algorithm 2
3: for C; C C do
4 for x € C; do
5: U'[C;|[x. IntPhyRegister| « x;
6
7
8

end for
. end for
. return U’;

whetstone are integer instructions-intensive and floating-point instructions-intensive
benchmarks, respectively. When the microarchitecture selects IntPhyRegister from
48 to 112, the performance is improved by 8.52% and dissipates 6.86% more power.
Since whetstone is mainly composed of floating-point instructions, increasing Int-
PhyRegister introduces no change to the performance but worsens power dissipation
more. BOOM implements the unified integer physical register files design, i.e., the
registers hold both committed and speculative values/states.

More integer physical registers help to resolve more integer-related instructions
conflicts, e.g., data dependencies, and provide more support for instruction paral-
lelism. Most commonly-used benchmarks contain many integer-related instructions,
e.g., dhrystone, mm, median, etc. Thus, the impact on the trade-off between per-
formance and power can highly correlate with IntPhyRegister on these benchmarks.
The findings motivate us to propose the backbone for diversity guidance.

We leverage IntPhyRegister to partition the clustered design space by MicroAL,
as demonstrated in Algorithm 3. In Algorithm 3, the clusters are obtained from

MicroAL (line 2), and partitions within each cluster are formulated according to

40

Algorithm 4 Diversity-Guided BOOM-Explorer (D, T, u,b,n)

Require: D is the microarchitecture design space, T' is the number of maximal iter-

ations, p is a normalization coefficient and b is the number of samples to draw, n
is the number of pre-determined iterations for Algorithm 2.

Ensure: The microarchitectures X that form the Pareto optimality in D.

1:
2:

10:
11:
12:

13:
14:
15:
16:

Xy + MicroAL (D, u,b,n); > Algorithm 2
Push X to the VLSI verification flow to obtain corresponding clock cycles and
power values Y';
L+ Xo; U<+ D\L;
P « Partition (U); > Algorithm 3
fori=1—T do
Establish and train DKL-GP with (£,Y);
Select b unvisited partitions randomly from P;
for j=1—0bdo
X < argmax EIPV(x | P;); > Equation (3.13)
xzeP;
end for ’
T, < {.’Bl*, Loy o-ny wb*},
Push «, to the VLSI flow to obtain corresponding clock cycles and power
values and add results to Y
L+ LUz, U+ U\ x,;
end for
Construct X from £ that form the Pareto optimality, according to Equation (3.3);
return Pareto-optimal set X;

IntPhyRegister (line 5). Different sub-regions are constructed based on Algorithm 3.

We sample microarchitecture embeddings according to the highest EIPV from each

sub-region, respectively, as Equation (3.15) shows,

' = {argmax EIPV(z' | P;) | j =1,2,..., N}, (3.15)

m’GPj

where P; denotes the partition j, and N is the total number of partitions. The

sampled batch x* is evaluated with the VLSI flow in parallel.

Algorithm 4 details the whole framework. Line 4 performs the partition. Com-

bined with Table 3.1 and MicroAL, the partition operation incurs 25 different sub-

41

regions for the design space. We establish and train the surrogate model, DKL-GP,
for each optimization round (line 6) and select unvisited partitions to aggregate the
explored data set (line 7). We maintain a wvisited buffer to record the access times to
a specific partition in line 7. The framework extends the explored data set gradually
(line 13). Finally, the predicted Pareto frontier and corresponding microarchitecture
embeddings are obtained. It is worth noting that Algorithm 4 requires at least b
available EDA tools licenses to implement.

Other solutions could also be leveraged in Algorithm 3 to further improve the per-
formance. First, some partitions can be directly pruned by the expertise. Architects
have predetermined performance or power design goals. The selection of partitions
can be made based on these goals. For example, we prefer to use a wider microar-
chitecture to pursue higher performance. So, we can only focus on partitions with
decode width attaining the maximal value while neglecting other partitions, i.e., we
only focus on “important” partitions. Second, the exploration-exploitation heuristic
can be utilized, similar to the action selection in reinforcement learning [184]. We
decide whether to exploit the current best-known partition that effectively achieves
higher Pareto hypervolume or explore new partitions. The decision could be based
on epsilon-greedy heuristics, upper confidence bound, etc. We leave these discussed

solutions in our future work.

3.4 Experiments

In this section, we conduct comprehensive experiments to evaluate BOOM-Explorer.

42

3.4.1 Experiments Settings

We conduct comprehensive experiments to evaluate the proposed BOOM-Explorer.
Chipyard framework [19] is leveraged to compile various BOOM RTL designs. We
utilize 7-nm ASAP7 PDK [190] for the VLSI flow. Cadence Genus 18.12-e012_1 is
used to synthesize every sampled RTL design, and Synopsys VCS M-2017.03 is used
to simulate the design running at 2GHz with different benchmarks. PrimeTime PX
R-2020.09-SP1 is finally used to get power value for all benchmarks.

We utilize Chipyard [19] to generate various BOOM RTL designs. And we use
7-nm ASAP7 PDK [53, 190] for the VLSI flow. Cadence Genus 18.12-e012_1 is used
to synthesize every sampled RTL design with 1 GHz timing constraints, and Synopsys
VCS M-2017.03 is used to simulate the design with different benchmarks. PrimeTime
PX R-2020.09-SP1 is leveraged to get power values for all benchmarks. All experi-
ments are conducted in 80 cores of Intel(R) Xeon(R) CPU ET7-4830 v2 @ 2.20GHz
with 1 TB main memory.

In the settings of BOOM-Explorer, DKL-GP is stacked with three hidden layers,
each of which has 1000, 500, and 50 hidden neurons, respectively, and it adopts
ReLU as the non-linear transformation for deep kernels. The Adam optimizer [107] is
used, with an initial learning rate equal to 0.001. BOOM-Explorer performs Bayesian
exploration with 9 iterations. All experiments together with baselines are repeated

10 times, and we report corresponding average results.

3.4.2 Benchmarks, Baselines & Evaluation Metrics

To assess each microarchitecture, we employ a set of benchmarks selected from

bare models [1]. These benchmarks include median, mt-vvadd, whetstone, mm, etc.

43

. Data
s Pareto Frontier
+SVR
s+ Random Forest
» XGBoost
ASPLOS’06 [91]
° sHPCA’07 [115]
*NIPS’11 [35]
DAC’16 [118]
eDAC'19 [121]
. *NIPS’19 [34]
N ‘& " * NIPS’22 [187]
. *«BOOM-Explorer [28]
0.04 1 LA a Diversity-guided BOOM-Explorer

0.08 |

Power (unit: watts)

62 64 66 68 T T2 T4 76 T8 8 82 84
Clock Cycles .10%

Figure 3.7: Comparisons between the predicted Pareto frontier and the real Pareto frontier
of BOOM microarchitectures.

The benchmarks have covered all kinds of RV64G instructions, e.q., integer-related,
floating-point numbers-related, memory-related instructions, etc., and each bench-
mark focuses on testing specific instruction features. For example, mm focuses on
multi-threaded memory reads and writes operations. Since a BOOM design needs
to handle various applications rather than specific instruction categories, we average
the clock cycles and power values from these benchmarks to denote the design’s per-
formance and power. After warming up the design by executing the benchmark, we
proceed to measure the performance and power for a specific BOOM configuration.
This process allows us to obtain accurate performance and power values for the given
microarchitecture, taking into account any initial variability or transient effects that

may occur during the warm-up phase.

44

Several representative baselines are compared with the diversity-guided BOOM-
Explorer. The ANN-based method [91] (shorted as ASPLOS’06) stacks ANN as
the performance model for a multiprocessor to conduct DSE. The regression-based
method [115] (termed HPCA’07) leverages regression models with non-linear trans-
formations to explore the performance-power Pareto frontier for POWER micropro-
cessors. The AdaBoost-RT-based method [118] (abbreviated as DAC’16) utilizes
the orthogonal design sampling [65] and active learning-based AdaBoost regression
tree models [179] to explore an Alpha21264-like microprocessor 36, 123]. The arts
mentioned above proved effective in exploring microarchitecture parameters in their
works, respectively. Therefore, it is requisite to compare these methodologies with
our proposed methodology. The high-level synthesis (HLS) predictive model-based
method [121] (named DAC’19) exploring the HLS design is also chosen as our baseline.
Although the starting point is different, their method proved robust and transferable.
We also compare diversity-guided BOOM-Explorer with traditional machine learn-
ing models, including support vector regression (SVR) and tree-based approaches
such as random forest, XGBoost [47], and tree-structured Parzen estimator approach
(abbreviated as NIPS’11) [35]. In addition, we compare previous state-of-the-art
Bayesian optimization approaches [34, 187] with our proposed methodology since
both methods adopt the same optimization framework but are distinct in the design
of initialization, surrogate model, and acquisition function. We name the two state-
of-the-art approaches as NIPS'19 and NIPS’22, respectively. For fair comparisons,
the experimental settings of the baselines are the same as those mentioned in their
papers. In traditional machine learning algorithms (SVR, random forest, and XG-

Boost), since they are not fit for Bayesian optimization due to unavailable predictive

45

uncertainties, we leverage simulated annealing [189] to explore the design space. We
also compare the proposed methodology with the sequential optimization version of
BOOM-Explorer [28]. All algorithms explore the same design space, as defined in
Table 3.1. In our future work, we will delve into more intricate design spaces that en-
compass branch prediction algorithms, prefetching, and additional objectives, such as
area metrics. However, one caveat is that there is a resemblance between microarchi-
tecture and area values, akin to power values, where a larger area usually corresponds
to higher power dissipation. Meeting higher performance requirements often entails
employing more hardware resources, which, in turn, leads to a larger area.

To compare the diversity-guided BOOM-Explorer with all baselines, we utilize
multiple metrics. These metrics include the Pareto hypervolume, the average distance
to the reference set (ADRS), and the overall running time (ORT). Pareto hypervolume
and ADRS are two widely used metrics in estimating the performance of DSE among
multiple objectives. As mentioned in Section 3.3.4, the Pareto hypervolume measures
the volume of the space enclosed by all solutions on the explored Pareto frontier and a
user-defined reference point, where the computation of Pareto hypervolume is defined
in Equation (3.11). The ADRS computes the average distance between the predicted
Pareto frontier and the real Pareto frontier, providing insights into the quality and
proximity of the solutions to the golden results. Equation (3.16) lists the computation

of ADRS.

1 :
ADRS(T', Q) =] > min f(7, w), (3.16)
vel’

where f is the Euclidean distance function, I' is the real Pareto frontier, and € is the
predicted Pareto frontier. The ORT measures the total running time of algorithms,

including initialization, exploring, and the VLSI runtime cost. The higher the Pareto

46

Table 3.3: Normalized Experimental Results for Pareto hypervolume, ADRS & ORT.

Methodologies N;)/r;i' P‘dreto Hg;igolume Vlii). rm‘. AEI;?O Norm. ORT
SVR 1.1519 1.0000x 0.2400 | 1.0000x 1.0000x
Random Forest 1.1794 1.0238x 0.2263 | 0.9430x 0.9763 x
XGBoost 1.3152 1.1417x 0.2171 | 0.9046x 1.0102x
ASPLOS’06 [91] 1.3266 1.1516x 0.1948 | 0.8116x 0.9436 %
HPCA’07 [115] 1.3218 1.1475% 0.1907 | 0.7949x 0.8544 x
NIPS’11 [35] 1.3547 1.1760x 0.1723 | 0.7181x 0.7506 %
DAC’16 [118] 1.3886 1.2055x 0.1473 | 0.6141x 3.0102x
DAC’19 [121] 1.3395 1.1628 x 0.1884 | 0.7852x 0.8973x
NIPS’19 [34] 1.5496 1.3452x 0.1178 | 0.4908x 0.3567 %
NIPS’22 [187] 1.5625 1.3564 x 0.1426 | 0.5944x 0.4436x
BOOM-Explorer w/o MicroAL [28] | 1.4665 1.2731x 0.1441 | 0.6006x 0.3307x
BOOM-Explorer [28] 1.6280 1.4132x 0.1145 | 0.4773x 0.3555 %
Diversity-guided BOOM-Explorer | 1.6362 1.4203 % 0.0915 | 0.3815x% 0.3533x

hypervolume, the lower the ADRS and ORT, the better the DSE algorithm is.

3.4.3 Evaluation Results

Figure 3.7 shows the predicted Pareto frontier obtained by the baselines and diversity-
guided BOOM-Explorer. The results show that the Pareto frontier generated by
BOOM-Explorer and its diversity-guided version is much closer to the actual Pareto
frontier in general. Moreover, the diversity-guided BOOM-Explorer improves the
results visually.

The normalized Pareto hypervolume, ADRS, and ORT results are listed in Ta-
ble 3.3. Three summaries can be drawn from Table 3.3. First, BOOM-Explorer
achieves an average of 18.75% higher Pareto hypervolume, 35.47% less ADRS, and
65.38% less ORT compared to all baselines. Specifically, BOOM-Explorer outper-
forms ASPLOS’06, HPCA’07, DAC’16, and DAC’19 by 70.13%, 66.55%, 28.65%, and

64.54% in ADRS, respectively. Meanwhile, it accelerates the exploration by more than

47

88.19% compared with DAC’16. The improvement achieved by our method over pre-
vious approaches stems from a customized algorithm design explicitly tailored to the
problem at hand. Our method asks for fewer estimations using the VLSI flow while
effectively modeling the design space with as few samples as possible. Second, Mi-
croAL contributes 11.00% and 20.53% to exalt the Pareto hypervolume and ADRS.
The results are obtained from the comparison between BOOM-Explorer and BOOM-
Explorer w/o MicroAL. It also illustrates that without MicroAL, the performance
of BOOM-Explorer would be close to DAC’16. If more time budget is allowed, we
expect better results received from BOOM-Explorer. Third, incorporating diversity
guidance as a key enhancement, we achieve a significant improvement in the ADRS,
surpassing BOOM-Explorer by 20.09% with comparable ORT. The improvement on
ADRS is larger than the Pareto hypervolume, demonstrating that “outliers” can be
explored. As discussed in Section 3.3.5, these outliers pertain to similar or smaller
EIPV but closer to the real Pareto frontier. It is worth noting that we partition the
design space w.r.t. IntPhyRegister, as discussed in Section 3.3.5. Hence, the proposed
method has a better effect when we target to optimize for integer-intensive applica-
tions. Additionally, previous state-of-the-art approaches (NIPS’19 and NIPS’22) re-
ceive a relatively good Pareto hypervolume and smaller ADRS more efficiently than
other baselines. Like random forest and XGBoost, the NIPS’11 baseline [35] adopts
tree-based structures as the surrogate model but uses Bayesian optimization. The
NIPS’19 [34] and NIPS’22 baselines [187] leverage information-theoretic acquisition
function designs. Although, these baselines perform well in general DSE problems.
They achieve mediocre results compared to diversity-guided BOOM-Explorer largely

due to the missing customization in the algorithm design such as tightly coupled with

48

== Two-wide BOOM ==mBOOM-Explorer =3 Diversity-guided BOOM-Explorer
0 . 10 T

g

£ 0.05

a¥

0.0 > 5 5
X

LIS Q XS s, 4 LR S
SO N SRS &qyeo@% R %&9@ &&,&Q&\& &%@

L

— 6.00 —

X

< 4.00 .

S,

@)

~ 2.00 ﬂ A

o

S ALl 1 ol b o ol 0 o0 e B A

20 . X

2 O T S A R S S S e

W ST TS FRIT RS S S

5 '&\O&/ N &@QO % R %}660 @{‘QQJC)@Q'J\',Q%

Figure 3.8: Performance and power comparisons of explored BOOM microarchitectures for
different methodologies with more benchmarks.

expert knowledge.

3.4.4 Comparison of Pareto-Optimal BOOM Microarchitec-

tures

We compare Pareto-optimal microarchitectures explored by proposed algorithms and

human implementations [22, 44, 214] on more benchmarks to study how each BOOM

49

T°¢ 9[qe], Se IopIo sures 9y) Ul aIe mHmvu@EﬁHmQ o T, 4

z—0T X 0028°S 0Z8T 6LTEL 8SVSVT VT T T TFITITETT YT SIT Q1P| | WIodXT-INOOH POPMS-AISIOAL(]

0T X 0098°G | L0PL€eeeL 8% ‘QFT ¥ T €T 'F9¥9°CE ‘T T8 ‘891 ‘9T ‘F] (82| 1010[dXH-INOOY
-—0T X 00,09 €96C°CI6TL | [STTOTOT TC T FO08SF9°CT T8V eI ce 91V | [F1T FF ‘22l INOOY opim-om],
(s392) S9PAD 4 SUIPPOqUI 9INI00ITYIIBOIIIA] AS0[OPOYIOIN

IoMOJ 98RISAY | YOO[)) 9FRIoAY

INOOG opIm-om) o) s uostredwiod emod pue 9dURULIONSJ ¢ 9[qe],

20

microarchitecture balance the performance and power. The Pareto-optimal microar-
chitectures have similar parameter settings, as listed in Table 3.4.

Pareto-optimal designs found by BOOM-Explorer and diversity-guided BOOM-
Explorer have the same decode width as the two-wide BOOM. However, the Pareto-
optimal design reduces hardware components on the branch predictor (i.e., RasEntry,
BranchCount, etc.), entries of the reorder buffer, etc., but enlarges instructions issue
width, load queue (LDQ), store queue (STQ), etc. Moreover, it has different cache
organizations, e.g., different associate sets. Because LSU introduced in Section 2.2
tends to become a bottleneck of the microarchitecture, the Pareto-optimal design
increases hardware resources for LDQ and STQ), increasing associate sets and miss
status handling register (MSHR) entries for D-cache to overcome more data conflicts.
Furthermore, the Pareto-optimal design found by diversity-guided BOOM-Explorer
reduces the resources of return address stack (RAS) and branch target buffer (BTB)
since they affect the trade-off less for the same branch prediction algorithm [172].
It also reduces the instruction issue slot but increases the I-cache associative sets.
Both Pareto-optimal designs achieve a better trade-off on power and performance
by reducing redundant hardware resources while increasing necessary components on
critical paths [68].

We evaluate these microarchitectures with more benchmarks. Table 3.4 shows the
average clock cycles and power values for all these benchmarks. These benchmarks
are chosen from different application scenarios, e.g., add-int, add-fp, etc. are from
ISA basic instructions, iir, firdim, etc. are from DSP-oriented algorithms [216],
compress, duff, efc. are from real-time computing applications [112], etc. Figure 3.8

shows the comparison of performance and power values, respectively. For all of these

o1

benchmarks, BOOM-Explorer’s design runs approximately 2.11% faster and, at the
same time, dissipates 3.45% less power than the two-wide BOOM. The solution from
diversity-guided BOOM-Explorer achieves 2.18% faster and 3.99% better on power

dissipation than human implementations.

3.4.5 Effectiveness of MicroAL

To assess the effectiveness of MicroAL, we conduct an ablation study on the effective-
ness of MicroAL. We investigate the integration of MicroAL to some baselines, which
allows us to modify the initialization algorithm that is not tightly coupled with the
exploration procedure. Specifically, we conduct MicroAL with SVR, random forest,
XGBoost, ASPLOS’06 [91], HPCA’07 [115], NIPS’11 [35], NIPS19 [34], and NIPS’22
[187].

Figure 3.9 lists the comparative results on the Pareto hypervolume and ADRS
when we integrate MicroAL to baselines. Two summaries are drawn from Figure 3.9.
First, integrating MicroAL into baselines can improve an average of 8.06% Pareto
hypervolume, and 12.15% ADRS. For example, when we integrate MicroAL into
SVR, the Pareto hypervolume can be increased by approximately 18.08% while the
ADRS is reduced by a large margin. Second, MicroAL can have negative effects
on some benchmarks like NIPS’19 [34]. Although integrating MicroAL to NIPS’19
[34] results in a similar Pareto hypervolume, it degrades the ADRS by 25.16%. We
argue that the reason behind the phenomenon is that we leverage single-task GP
models to individually model the performance and power. In contrast, the samples
generated by MicroAL are highly different. Therefore, the built surrogate models

are rather “weak”. On the other hand, objective-related features can be utilized to

92

"SYAV pue swnjoaledAy ojered
POZI[RULION OY[} UO SSAUIAIJIRPD S, TYOIDIN O} 9)BSIISOAUT 0} SOUI[OSB(UISOYD OJUT YOI 93RISOIUL dA\ :6'¢ INSI

YAV "WIoN own(oARdA 019IRJ "TWLION
¥¢'0 [44Y [qY 8T°0 91’0 454 ¢l’o 9T 64T ¢T1 ST ¥1 ST €1 ST g1 GI'l
T T T T T

; == HAS
_ _ TVODIN + UAS
1)S010,] WopuwryY
TYOIIA + 18010, Wopuey
e ; 15001 HX
_ _ TVOBIN + 1800gDX
90.SO0'1dSV
TVOLIN + 90.SOTdSV
L0.VDdH
TVODIN + L0.VOdH
_ : TT.SdIN
= ! TVOLIN + TT.SdIN
= : 6T.SdIN
— [TVOIIN + 6T1.SAIN
| C 2¢.SAIN

[— I TVOWLIN + g¢.SAIN

SHAV "WION JO SNsoYy awn[oARdA[0joIeJ "UIION JO SHNSAY

53

capture the distinctions between MicroAL’s samples. So, a good co-design between

the initialization and the surrogate model is significant.

3.5 Summary

In this chapter, BOOM-Explorer is proposed to search for Pareto optimality among
the microarchitecture design space within a short time. We develop MicroAL and
DKL-GP embedded in Bayesian optimization, through which we can learn good de-
signs with a better trade-off between power and performance via maximization of
EIPV. To the best of our knowledge, this is the first work introducing automatic
design space exploration solution to the RISC-V community. We expect to see a lot
of researches in our community to further improve microarchitecture design space

explorations of processors.

o4

Chapter 4

Reinforcement Learning Pathway

4.1 Introduction

The instruction set architecture (ISA) is the interface between software and hard-
ware. RISC-V, an open standard ISA, has garnered significant attention from both
academia and industry nowadays. The microarchitecture determines how a particular
microprocessor is implemented given an ISA. It sets the cornerstone for a micropro-
cessor’s overarching design points: performance, power, and area (PPA).
Nevertheless, it is challenging to design a microarchitecture efficiently to achieve
pre-determined PPA design goals for target workloads (computation-bound or memory-
bound programs) with manual efforts. Computer architects often rely on design space
exploration (DSE) to find appropriate solutions. Those solutions can maximize per-
formance and minimize power and area for target workloads. DSE is an iterative,
trial-and-error, and non-trivial procedure due to two factors. First, the design space

is enormous and complicated. It comes from the high complexity of a microarchitec-

95

Branch } ’ SoC/

Predictor I-cache B L2 cache n<Interconnect
v 4 v
Fetch ¥ Memory
Front-end buffer |: subsystem D-cache
' :::Z::::::::Z:::Z::::Z:::Z*::::::Z:*:Z:: --------------------------
Decode > Fp ™| LD/ST Front-end
.................................. | > i
. g Re [—
= Dispatch/Issue > g_ N Branch Back-end
& : INT '.'_'.'_'.'.'R'/_'I_'ff_'_'.'.'f_'.'ff_'_'f
> ROB < RF ™ AL emory
By > v subsystem

Figure 4.1: An overview of an example microarchitecture. Instructions fetched from I-cache
are sent to functional units (e.g., ALU, LD/ST, etc.) for execution. Register files (RF) save
temporary data. Reorder buffer (ROB) achieves precise interrupts [181]. Components are
highlighted with diverse colors, and the same color denotes a similar function.

ture, such as shown in Figure 4.1, which includes different components responsible
for implementing specific functions [46, 78]. Second, evaluating the PPA values of
a single microarchitecture design requires an extremely high runtime. For example,
cycle-accurate simulators or EDA tools are often leveraged in the evaluation, resulting
in several days, even weeks to get PPA values for one design. Thus, it is a fond dream
for architects to iterate the design space and retrieve optimal solutions.

Previous methodologies have been proposed. In industry, architects’ expert knowl-
edge is a heuristic to guide the DSE. However, it is a concern that personal bias can
lead to sub-optimal solutions. In academia, both analytical and data-driven meth-
ods have been proposed. The analytical methods conduct interpretable equations to
describe relations between microarchitectures and PPA values for various workloads.
Karkhanis and Smith (2007) adopted interval analysis to construct such equations.

However, the analytical model requires much expert knowledge, and is unscalable for

o6

newly-emerged microprocessors. Data-driven methods are utilized accordingly when
we lack accesses to experts. The microarchitecture is viewed as a black box. Chen et
al. (2014) employed a ranking model. Li et al. (2016) applied statistical sampling and
AdaBoost learning. Bai et al. (2021, 2023b) proposed a Bayesian optimization-based
framework. Such data-driven methods generally outperform analytical methods ow-
ing to many advanced machine-learning techniques [120, 210]. However, they are not
free of criticism. Blindly exploring microarchitectures (purely driven by the algorithm
rather than tightly coupled with expertise) can be naive since architects already know
the characteristics of most designs [27].

In this chapter, we follow the approach of previous data-driven methods but with
key distinctions: our method removes prior unrealistic assumptions, and our solu-
tion is deeply integrated with expert knowledge. Previous data-driven methods often
assume a positive correlation between the PPA difference and feature embeddings
of microarchitectures. On the contrary, the assumption does not hold in general.
Our RL solution is free of such assumptions. Moreover, using the microarchitecture
scaling graph, we tightly embed the expert knowledge to formulate the Markov deci-
sion process (MDP). The scaling graph encodes the sequential decision precedences
of the microarchitecture components. Accordingly, we propose a multi-objective RL
framework based on the MDP. The framework enables the automated RISC-V mi-
croarchitecture design with a single agent for different PPA design preferences. It
is worth noting that our solution focuses on RISC-V to promote chip agile design
methodology [117] due to the forecast that RISC-V could motivate competitive com-
mercial products over x86, ARM, etc., for many applications in the future. Our main

contributions are as follows:

57

1) We propose an MDP model with the microarchitecture scaling graph, embracing
architects’ expertise and providing strong prior knowledge for our agent.

2) We embed the PPA design preferences into RL and re-formulate the multi-
objective optimization to a unified dynamic-weighted reward signal. It is helpful
since this feature allows agents to explore microarchitectures for different PPA design
preferences online.

3) We propose a lightweight environment to accelerate the learning process. With
calibrated PPA models, we accelerate the learning process by over 100x times com-
pared to using EDA tools only [211].

4) Our experiments use representative RISC-V microprocessors and evaluate with
commercial EDA tools at 7-nm technology. Results show that our method can
achieve an average of 16.03% PPA trade-off improvement over prior state-of-the-
art approaches with 4.07x higher efficiency. And the solution qualities outperform
human implementations by at most 2.03x in the PPA trade-off.

The remainder of this chapter is organized as follows. Section 4.2 presents prelim-
inaries for the reinforcement learning pathway. Section 4.3 provides detailed descrip-
tions of our reinforcement learning framework. Section 4.4 illustrates the rationales
of our methodology. Section 4.5 conducts several experiments on BOOM micropro-
cessor to confirm the outstanding performance of the proposed framework. Finally,

Section 4.6 summarizes this chapter.

o8

4.2 Preliminaries

In this section, we introduce preliminaries for the reinforcement learning pathway,
including microarchitecture PPA modeling, microarchitecture scaling graph, and cor-

responding problem formulation.

4.2.1 Microarchitecture PPA Modeling

Computer architects use various tools to evaluate PPA values of microarchitecture
designs. When the register-transfer-level design (RTL) ! is available, EDA tools are
necessary to report PPA values. The PPA evaluation flow with EDA tools includes
steps like logic synthesis, placement and routing, netlist simulation, etc. When the
RTL implementation is unavailable, pre-RTL simulation infrastructures like micropro-
cessor performance simulators are used to report first-hand PPA values. Compared
to EDA tools, pre-RTL simulation infrastructures are less accurate. In this section,
we propose a lightweight RL environment to couple the pre-RTL simulation infras-
tructures with EDA tools, i.e., improve the modeling accuracy of pre-RTL simulation
infrastructures without sacrificing efficiency. Specifically, we leverage GEM5 [36, 123],

a performance simulator, and McPAT [119] as our fundamental PPA modeling tools.

4.2.2 Microarchitecture Scaling Graph

Since the microarchitecture scaling graph first appeared [63], computer architects

relied on it to study mechanistic microexecutions [42, 43].

'Register-transfer level design (RTL) is a description of hardware implementations using pro-
gramming languages such as Verilog and VHDL.

29

Issue Width

PR

\ A

Pipeline Depth

y

LFsieln Commit Width | R ROB Size
Resources Units /
Issue Buffer # Rename LD/ST Bufter
Size Registers Size

Figure 4.2: An overview of the microarchitecture scaling graph. Colors are matched with
Figure 4.1.

The microarchitecture scaling graph is directed, elucidating the scaling precedence
constraints between components, as shown in Figure 4.2. Nodes are components, and
directed edges are scaling precedences. According to Figure 4.2, an interplay exists
between the pipeline width and issue width. The pipeline width and issue width
determine the ROB size, while the ROB size decides the issue buffer size, load/store
(LD/ST) buffer size, etc. The scaling graph is derived from extensive simulations
and architects’ discussions. The relations unfolded by the scaling graph are general
for mainstream microarchitectures due to a widely applied typical von Neumann

architecture.

4.2.3 Problem Formulation for Reinforcement Learning Path-
way

Given the microarchitecture design space, the problem is to find the solution to Equa-

tion (4.1) within a limited time budget.

m%)a:[Perf(s), —Power(s), —Area(s)],
sebn

60

where D is an n-dimensional microarchitecture design space, and s is a vector to
parameterize a design (feature embedding of a microarchitecture). Perf, Power, and

Area are PPA values, respectively.

4.3 Methodology

In this section, we introduce our reinforcement learning framework.

4.3.1 Overview

We propose an RL solution framework with customized MDP (S, A, P, R) formula-
tion, as shown in Figure 4.3. The state space S is the design space. The action space
A is the candidate set of components’ types or corresponding hardware resources
listed in Table 5.1. The components’ types refer to a type of branch predictor, cache
replacement policy, etc., and hardware resources specify the queue, buffer, or stack
sizes. P is the state transition. The reward space R involves all the vectorized PPA
values. In the training, the agent learns to generate appropriate partial components
stepwise given sampled PPA preference vectors to formulate the complete microar-
chitecture. In the DSE, the trained agent produces solutions w.r.t. a fixed PPA
preference specified by architects.

The PPA preference space is incorporated into our framework since the microar-
chitecture design is faced with diverse workloads. High-performance computing sce-
narios emphasize performance more, while embedded applications push pressure on
high power efficiency and area efficiency. Different PPA preference vectors denote

architects’ design goals, and our single agent benefits from the PPA preference-aware

61

DSE with the proposed framework.

4.3.2 Combine RL w. Microarchitecture Scaling Graph

We combine RL with the microarchitecture scaling graph via a practical episode
design. In each step of an episode, the agent produces partial components. The
episode ends until a complete microarchitecture is formulated.

The state of a microarchitecture is encoded as a vector with each element de-
noting a selection of a particular component parameter. Elements are masked for
undefined components and masks are removed progressively as more components are
determined by advancing the step. The action space is correlated with the step
since different components relate to distinct action candidates. Each step determines
one component. Once the complete microarchitecture is generated, we adopt the
lightweight environment to evaluate the reward r(Perf, Power, Area). Otherwise, the
reward is zero. The precedence of decision-making among components follows the
scaling graph, as the graph unveils cause-and-effect relations between different com-
ponents. Another noteworthy point is that the action space is changed in each step,
leading to the output misalignment for a single agent. We apply a typical engineering
trick: the normalization of action probability to deal with it [168].

The rationale for the episode design is that we place strong prior knowledge for
the agent. The prior knowledge is derived from the scaling graph, revealing the com-
ponents’ decision priority. For example, the pipeline width determines the maximal
instructions fetched simultaneously. And the structure of the issue unit is then de-
cided based on the width. Because the issue unit adjusts instruction issue rates based

on how many instructions are fetched by the front-end and buffers those instructions

62

‘pIemal
9)e)S © S9)OUSD § "NIOMIWIRIJ T} INO JO MIIAIOA() :€'F OINSI

PoZ110300A 9jeIpowl UR sjuaserdal « pur ‘UOIOR Ue SI D ¢

QINJOONYOIBOIOIA

JUSWUOIIAUH
WSMIYSIT

ourjedig

(eo1y ‘10MOJ ‘JI9J) L

63

for the back-end (see Figure 4.1). Hence, our episode design explicitly provides such
domain knowledge for the agent. As shown in Figure 4.3, once a PPA preference
and the pipeline width are specified, the agent first determines the appropriate issue
queue sizes, with the following determinations involving fetch queue size, type of a
branch predictor, etc., sequentially. Although relations between some components
are not uncovered from the scaling graph (e.g., the issue buffer size and the number
of physical registers indicated in Figure 4.2), we determine their structures in a fixed

order within an episode.

4.3.3 Dynamic-weighted Reward

Since a single agent cannot handle multiple objectives simultaneously, a weighted

summation is applied in the reward computation, as listed in Equation (4.2).

r = r(Perf, Power, Area) - (o, 3,7)" (4.2)

where «, 3, and v are weights controlling the PPA trade-off. We align the reward
optimization with our objectives via normalizing Perf, Power, and Area, i.e., max-
imizing the reward equals maximizing the performance, and minimizing the power
and area.

However, weights can be changed as architects’ PPA design goals vary. A trans-
parent limitation is that the agent needs to be retrained once the weights are changed.
Accordingly, an online adaptation for changed weights is necessary. That is, the single
agent can handle the changing coefficients «, 5, and v without learning from scratch.

It motivates us to embed the PPA preference space into the framework.

64

4.3.4 Embed Preference Space into RL

The PPA preference space @ is the set of preference vectors ¢ = («, 3,), which bal-
ance the PPA values in various degrees and satisfy the simplex constraints, i.e., Vi, ¢; >
0, > ,¢; =1. We embed ® into RL, making the agent learn the convex coverage set
(CCS) w.r.t. Equation (4.2) [158, 157]. Hence, a single agent can maximize r without
retraining or fine-tuning in the DSE when ¢ is changed.

CCS is the convex subset of the Pareto frontier, as formulated in Equation (4.3).

CCS = {r € PF(R) | s

Jp c d,rep’ >7'¢p" \Vr' € PF(R)},

where PF(R) is the Pareto frontier of R, and PF(R) = {r | #r' = v ,Vr,¥r' € R}
2. Pareto frontier is a set of microarchitectures whose PPA values represent the best
trade-off. Equation (4.3) indicates that optimal solutions can attain the maximal r
(see Equation (4.2)) for a specific ¢.

To facilitate the agent’s learning of the CCS during training, a generalized Bellman
optimality equality is applied [204]. The generalized equality is an extension from the
single objective Bellman optimality. The main idea is to optimize the policy towards

maximal r given a particular ¢, as shown in Equation (4.4).

Q(S, a, d)) = T(S7 a) + CES’NP(-|8,G)T(Q(8,7 a, d)))a
T(Q(S/’ a, ¢)) =arg maxr Q(Slv alv ¢/)¢T’

Q decaplce

(4.4)

where (is a discount factor. Q(s,a, ¢) is the state-action vector when s is the state,

a is the action, and ¢ is the preference vector. T(Q(s,a, ¢)) is Q, which attains the

2" > r denotes that each element of 7’ is better than 7.

65

! lQ(s, a1, ¢) Reward ;
Power | ° b/‘ ¢, —> Preference vector:!

0
T(Q(S7 a, ¢)) :Q(Sa az, ¢)

_argmax { , }
=70 |

Figure 4.4: Optimization procedure with Equation (4.4).

maximal r via traversing the action space A, and sampled ¢’ 3.

Figure 4.4 details an example optimization with Equation (4.4) in the performance-
power space, given ¢. Before applying Equation (4.4), we sample multiple different
¢, and ¢,, holding an insight that the agent can learn to generate other policies
according to varied preferences. At state s, the agent is faced with actions a; and a,.
Under ¢, and ¢, four rewards are highlighted with blue and red colors. Ultimately,
the policy is optimized with Q(s, as, ¢) since it achieves the maximal reward among
all rewards.

Our RL framework adopts the asynchronous advantage actor-critic (A3C) [131] in
favor of high training efficiency over PPO [170] or SAC [81]. The actor is a policy net-
work used to generate an action. The critic evaluates the complete state to determine

whether the optimization becomes better or worse than expected. The gradients of

3The size of A at each step is small, allowing us to traverse efficiently. However, since ® is an
uncountable set, we sample multiple ¢ in the training and compute T (Q(s’,a, ®)) based on these
samples otherwise.

66

the actor 6, is listed in Equation (4.5).

V0. =k Ve, H(m(s4;0,))+
o (4.5)
Een» Vo, log 7o, (ar | 1) A(sr,ar, ¢)9],

t=0

where A(sy, at, @') = Q(8t, ar, @) — V (s, @') is the advantage function featuring rel-
atively low variance, £ is a trajectory following the policy 7w, and 8, denotes parame-
ters of the actor. The entropy of the policy 7 is incorporated in optimizing the actor
(H(m(s;0,)). It can prevent the agent from always selecting the currently found best
action. A coefficient x controls the strength of entropy regularization. For the critic,
Equation (4.6) gives the loss function with an L2 normalization applied between two

state-action vectors.

Lo =pl(Q" — Q(s,a,¢';6.)) " [|3+
(1 - p)HQ* - Q(87 a, ¢/7 00)”%7

(4.6)

where p is a coefficient to balance these two terms, 6. denotes parameters of the critic,
and Q* is obtained from Equation (4.4). The first term in Equation (4.6) enforces
optimizing the critic network w.r.t. the maximal reward shown in Equation (4.2). The
n-step TD errors [150] is leveraged. However, Equation (4.5) requires many transition
samples to give a relatively accurate gradients approximation for a steady and stable
improvement. We employ the generalized advantage estimator (GAE) to handle it

[169], as listed in Equation (4.7).

N

Ty = Z()\C)N_n(”'Hk + Virra(8t, @) — Vigr(se, @), (4.7)

n=0

where A is a coefficient controlling the strength of the exponential-weighted average.

67

4.3.5 Conditioned Actor-Critic Network

The input of our actor and critic networks is the concatenation of state and corre-
sponding preference vectors. The preference vectors serve as conditional inputs to
the actor and critic networks. Both networks are multilayer perceptrons with leaky
ReLU as the activation function. The intuition of the concatenation is to support
the online adaptation of changed preferences for agents. Hence, many policies are

optimized on-the-fly [13].

4.3.6 Accelerate Learning via Lightweight Environment

Training the agent with pre-RTL simulation infrastructures as the RL environment
is inaccurate while using EDA tools in the loop is inefficient. So, we propose a
“lightweight” environment to combine the merits of both modeling flows, which the
“lightweight” refers to that our environment can achieve a speed-up of 100x ~ 110x
in PPA estimation compared to using EDA tools in the training loop.

The lightweight environment is based on the calibration, which is set up before the
RL training [211]. We leverage the EDA flow in the calibration as a PPA ground truths
generation flow. And we adopt the pre-RTL simulation infrastructures as feature
extraction flow. The extracted features encode knowledge to microarchitectures and
workloads, e.g., queue, buffer, or stacks’ number of reads and writes, number of
load and store instructions, etc. Supervised learning is then applied to train PPA
black-box models such as XGBoost [47] separately, with the loss function defined in

Equation (4.8).

L=1f(s,e,p) =yl (4.8)

68

Pipeline width: 4
Issue queue: 32
Fetch buffer size: 64

EDA Flow

Infrastructure

Cycle Accurate 2 Logic Synthesis
:| Simulation ceqms :

Netlist Simulation

MCcPAT Modeling -
Power Analysis
[Predict PPA Values | [GT PPA Values
L N '\
! [¢
| Calibration |

Figure 4.5: Overview of the PPA calibration.

where f is a black-box model. s, e, and p are inputs of the model, denoting state,
cycle accurate simulation statistics, and other PPA-related features (e.g., leakage and
sub-threshold power, etc.), respectively. g is the ground truth. Figure 4.5 provides
an overview of the calibration flow. In the RL training and DSE, a microarchitecture
is initially evaluated using pre-RTL simulation infrastructures and is calibrated with
trained PPA black-box models. Furthermore, we duplicate the environment into

multiple instances, permitting higher training parallelism.

4.3.7 Training Details

Algorithm 5 shows the pseudo-code of the actor-learner thread of our RL algorithm
based on A3C [131]. Firstly, the replay buffer B, weight parameters for the actor and

critic, and a PPA preference vector are initialized (lines 1 to 2, and line 5). Secondly,

69

Algorithm 5 RL Training of an Actor-learner Thread

Require: D™: microarchitecture design space, ®: the PPA preference space, N: the
number of steps for TD error estimation, n: the size of a minibatch, E: maximal

10:
11:
12:
13:

14:

15:
16:
17:

18:
19:
20:

training budget.
Initialize the replay buffer B.
Parameterize the actor and critic with 8, and 8,;
fore=1— EF do
Synchronize thread-specific parameters 8, and 8. from 68, and 0,;
Sample a PPA preference vector ¢ € ®;
fort=0— N —-1do
observe state s; € D;
Sample an action a; ~ w(a; | st, ¢; 0.);

Receive an immediate vector reward r; and the following state s;,; from

the lighweight environment;
Store transition (8, as, 7y, S411) in B;
if update then
Sample a minibatch of transitions (s;,a;,7;, 8;41) from B;
Sample n PPA preferences W = {¢y, ..., ¢, } C P;
Update values
T(V), = { ri, St %s the terminal 'state; 7
T*, 8;41 is not the terminal state.
r*=r;+Carg mar V(sji1,@;0.)¢], andi={1,2,...,n}.

7
V adeap'cd

Compute 70, with 6_; > Equation (6)
Compute /0, with 6 ; > Equation (5)
Perform asynchronous update of 8, using /6., and update of 8, using
v0..
end if
end for
end for

70

the trajectories of an episode are stored following the PPA preference vector ¢ (lines 7
to 10). Thirdly, we perform a generalized Bellman optimality equality to update state
vector values according to Equation (4) (lines 12 to 14). Finally, gradients w.r.t. the

actor and critic are computed, and asynchronous updates are leveraged (lines 15 to

17).

4.4 Why RL?

Previous data-driven methods apply statistical analysis [118], Gaussian process [28],
etc. However, a limitation can be observed. Most previous methods attribute the
degree of PPA difference to the distance between feature embeddings of microarchi-
tectures. For example, the Gaussian process assumes the existence of such relations
[28, 195]. On the contrary, we find the relation does not hold generally, and demon-
strate it with an anti-example shown in Figure 6.2. M1 is the baseline microarchitec-
ture. M2 changes the branch predictor [172], M3 reduces the decode width, and M4
decreases branch speculation tags. t-SNE [188] is utilized to visualize the embedding
distances to M1. Notwithstanding that M2 and M3 have the same distance to M1,
they incur different PPA value gaps to M1. M3 has 8.54%, 3.00%, and 5.09% smaller
PPA values than M1. M2 demonstrates a more substantial difference, i.e., 13.09%,
23.75%, and 14.48% lower PPA values than M1. The embedding distance between M1
and M2 is closer than that between M1 and M4. However, compared with M2, M4’s
PPA values are even closer to M1, i.e., M1 outperforms IPC by 0.36% *, dissipating

3.67% more power and 1.39% larger area than M4.

4Instruction per cycle (IPC) is a performance metric.

71

1.5

IPC

0.5

Power (W)
ot

M4

M3

M2

M1

Figure 4.6: Four SonicBOOM microarchitectures” PPA values of six benchmarks reported

1072

M1

M1

M2

M2
Jdhrystone
0 multiply

| 3.6

| 3.46

| 3.12

__13.65

1

2

3 4

Area (mm?)

M3 M4
M3 M4
[Imedian Emt-vvadd
1 towers @ vvadd
1\@1
0 N
1 AR
20 o \6;}%-
= A St ‘o
¢ M2
0 Q!
M4 o
—20 | | \ ® \ |
-20 O 20 40
X

from EDA tools, and the visualization of embeddings distances.

72

Our RL solution can remove unrealistic assumptions. Thus, it alleviates the lim-
itations of prior data-driven methods. However, RL might be one of many remedies

while our MDP formulation can capture the structure of the problem.

4.5 Experiments

In this section, we conduct comprehensive experiments to evaluate our reinforcement

learning framework.

4.5.1 Owur Microarchitecture Design Space Specification

We evaluate the proposed RL framework with representative in-order and out-of-
order RISC-V microprocessors, Rocket [23] and different scales of SonicBOOM [214]
(categorized by “pipelineWidth”), as shown in Table 5.1. We include cache structures,
branch predictors, functional units, load/store units, issue units, etc., in the design
space. The Rocket and SonicBOOM design space size is 5.18 x 10° and 1.02 x 106,

respectively.

4.5.2 Experimental Settings & Baselines

All experiments are conducted on 80 Quad Intel(R) Xeon(R) CPU E7-4820 V3 cores
with a 1 TB main memory. The PPA values reported in the main results are from
commercial EDA tools. Specifically, the performance, power, and area values are
obtained from Synopsys VCS M-2017.03, Synopsys PrimeTime PX R-2020.09-SP1,
and Cadence Genus 18.12-e012_1 with 7-nm technology [53]. Code is publicly available

at https://github.com/baichen318/rl-explorer.

73

https://github.com/baichen318/rl-explorer

Design | Component | Parameters | Candidate
Branch RAS 0:12:3 7
: BTB.nEntries 0:56:14
predictor R Firies | 0 1024 : 256
nWays 1,2,4
I-cache nTLBWays 1:32:4
Rocket Functional FPU 1,2
it mulDiv 1,2,3
VM 1,2
nSets 32,64
nWays 1,2,4
D-cache nTLBWays 4:32:4
nMSHRs 1,2,3
Branch Type 1,2,3
predictor maxBrCount 4:22:2
fetchBufferEntries 6:46 : 2
IFU fetchWidth 4,8
ftq.nEntries 12:64:4
pipelineWidth 1:5:1
Small ROB 24:160: 4
Medium PRF intPhysRegisters 40: 176 : 8
Large numFpPRF 34:132:6
Mega fpPhysRegisters 1:5:1
Giga ISU numEntries 6:52:2
SonicBOOM dispatchWidth 1:5:1
LDQ 6:32:2
LU STQ 6:36:2
nWays 4,8
I-cache nSets 32,64
nWays 4,8
D-cache nSets 64, 128
nMSHRs 2:10:2

" The values are start number:end number:stride, e.g., 0 : 12 : 3
denotes the entries of RAS can be 0, 3, 6, etc., until 12.

Table 4.1: RISC-V Micro,?zzlrchitecture Design Space

The coefficient x in Equation (4.5) is set as 1, p in Equation (4.6) is 0.5, A in
Equation (4.7) is 0.95 and the discount factor ¢ in Equation (4.7) is 0.99. Adam
optimizer is used, and the initial learning rate is 0.001.

We compare our method with current state-of-the-arts, 7.e., Bayesian optimization-
based [28] (ICCAD’21), Adaboost-based [118] (DAC’16), ranking-based [48] (ISCA’14),
and human efforts [23, 214]. The baselines are implemented according to the origi-
nal papers. We use towers, vvadd, spmv from official RISC-V tests as workloads in
the DSE. Results on more workloads are also elucidated. To compare the efficiency
of algorithms fairly, all baselines adopt the lightweight environment, but searched

solutions are re-evaluated with EDA tools.

4.5.3 Accuracy of Lightweight PPA Models

We use the Kendall 7 and the mean absolute percentage error (MAPE) to measure
the accuracy of lightweight PPA models. The higher the Kendall 7 and the lower the
MAPE, the more accurate the lightweight PPA models are.

Figure 4.7 and Figure 4.8 list the accuracy of lightweight PPA XGBoost models
and the ratio of microarchitectures in the training data set leveraged in the calibration
flow for Rocket and Large SonicBOOM. In the first row, the blue line “GT = Pred”
visualizes the error when PPA models are trained using the entire training data set.
For Rocket, the lightweight PPA models achieve MAPE values of 1.3539%, 1.6482%,
and 2.7452%, respectively, along with Kendall 7 values of 0.95, 0.82, and 0.91. For
Large SonicBOOM, The Kendall 7 are 0.93, 0.95, and 0.94 for PPA models, respec-
tively, indicating acceptable accuracy when using these models in the RL framework.

However, a question arises of how much data set is needed in the calibration flow.

5

2

105 Area — mm

Performance — IPC

04 06 08

Performance — IPC

(%)
o0

Kendall 7

MAPE

The ratio of training data used in the calibration

Figure 4.7: The accuracy of lightweight PPA models, and MAPE and Kendall 7 curves
w.r.t. the calibration data size.

We answer the question by testing PPA models trained on different scales of training
data set for unseen designs until the Kendall 7 and MAPE cannot be improved fur-
ther. Results are shown in the second row of Figure 4.7 and Figure 4.8. For Rocket,
it is worth noting that by leveraging over 80% training data set, i.e., approximately
640 different designs, the two curves (MAPE and Kendall 7) tend to be stable. By
leveraging around 800 ~ 900 SonicBOOM microarchitecture designs, the Kendall 7

for PPA modeling results can achieve higher than 0.92.

4.5.4 RL Training

Figure 4.10 displays the RL training metric curves for Large SonicBOOM, which

include PPA values and specific values of PPA preference vectors. Different PPA

76

Performance — IPC
2

1

GT

)
2
)
1

DO =~ OY 0O

0.5 ¢ : : : >
05 1 1.5 2 25

Performance — IPC

0.94 8
0.92¢
0.9 4)/

NENENRN AN NENUENRN

The ratio of training data used in the calibration

DO
ot

N O

MAPE (%)
-

Figure 4.8: The accuracy of lightweight PPA models, and MAPE and Kendall 7 curves
w.r.t. the calibration data size.

preference vectors are sampled throughout the training, resulting in perturbed PPA
values received in each episode. ITPC curves are increased gradually and flattened
eventually as trained with more episodes. Power and area values are changing in
response to divergent PPA preference vectors.

?7? lists the RL training metric curves for Rocket and the different scales of other
SonicBOOM. Similar to Figure 4.10, PPA values change in response to different PPA
preference vectors.

When the PPA preference vector is fixed during training, we expect to observe
increasing [PC values alongside decreasing power and area values. However, due to
the sampling of divergent PPA preference vectors during training, the PPA values

that achieve the optimal trade-off also change, resulting in curve fluctuations. And

7

IPC

Area (mm?)

1.6 +

1.5 ¢

200 400

Episode
S
=
o
<
&
A
R S
| ‘ A
200 400
Episode Episode
——IPC —— Power —— Area

Figure 4.9: RL training status of Large SonicBOOM.

78

for different designs, the changes in these curves are different.

4.5.5 Comparison w. Human Efforts & Prior Arts

Three metrics: Perf/Power, Perf/Area, and (Perf x Perf)/(Power x Area) are used
in the experiments. These metrics measure how much performance per watt, per-
formance per area, and PPA trade-off a microprocessor can attain. The higher the
values, the better the power/area efficiency of the microprocessor. In the DSE, we use
predetermined PPA preference vectors for different scales of SonicBOOM. The pref-
erence vectors are (1/12,1/12,10/12), (1/7,1/7,5/7), (1/3,1/3,1/3), (5/7,1/7,1/7),
and (10/12,1/12,1/12) for Small, Medium, Large, Mega, and Giga SonicBOOM,
respectively. We use (1/3,1/3,1/3) for Rocket. These preference vectors are used
in the RL to identify optimal designs and to calculate scalar rewards for solutions
obtained through the baseline algorithms. We facilitate fair comparisons between
different methodologies by comparing the solutions that yield the maximal reward
among our method and the baseline algorithms in the abovementioned three metrics.
The rationale behind setting such preference vectors is to emphasize specific design
priorities based on the scale of the microprocessors. We prioritize higher power and
area efficiency for small microprocessors, as reflected in the preference vectors. On
the other hand, for larger microprocessors, we emphasize higher performance. For
the middle scale of SonicBOOM, i.e., Large SonicBOOM, we aim for a higher degree
of balance among the PPA values.

Table 4.2 lists the results. The relative runtime for exploration is also reported.
Explored Rocket and nearly all scales of SonicBOOM by our method are better than

prior works and human efforts. In summary, our solutions achieve an average of

79

1073

0.6 — o § 0.4
. =61 2.5 B — IPC
& 0.5 = = £ 0.3 ¥ "\M Power
= Z 6 £05 = — Area
0.4 ~ < a
A~ 0.2°
100 200 300 100 200 300 100 200 300 100 200 300
Episode Episode Episode Episode
(a) Rocket
-107?
0.82 —~2.15 &01.44
= — IPC
0.81 =
8 5 2.1 142 Power
— 0.8 52.05 § L4 — Area
0.79 ~ <
2 AW
200 400 200 400 200 400 200 400
Episode Episode Episode Episode
(b) Small SonicBOOM
1072
1.31 9
oL 2 27 E19 — IPC
1,129 = = Power
= £2.65 gz 19 — Area
1.28 L ‘ Z1.85
1.27 . . 4,
100 200 300 100 200 300 100 200 300 100 200 300
Episode Episode Episode Episode

(¢) Medium SonicBOOM
1072
2.1

100 200 300 100 200 300 100 200 300 100 200 300
Episode Episode pisode Episode

(d) Mega SonicBOOM

IPC
[N}
o
[N} (a8
Power (W)
ot ot Ot
= o 0o O
Area (mm?)
o
-~ oo ©
3!
(oW
PPA Preference
(e} o
o 2w
ot W Ot
1]
=
EZ0

1072
- <
2.05 = 6.2 5 5.1 04 —IpC
8 . NCA 4 Power
= 9 : 6 s 5 Z 0.3 — Area
= <
1.95 58! & 0.2
200 400 600 200 400 600 200 400 600 200 400 600
Episode Episode Episode Episode

(e) Giga SonicBOOM

Figure 4.10: RL training status of Rocket and different scales of SonicBOOM.

80

S)IY IOLIJ Pu® S}IOPH Uewny yim uostredwo)) :g'§ o[qe],

sqeoridde jou sejousp ,—

» T

0001 x095°T ST0'0 | X007 G660 | x697°T 880°0 | orLc 00968 695C san)

X 1921 X912°1 CI00 | XOP0'T 98E'0 | XEOTT 0600 | COSC 00GTL 99EE 12.avO0I

X169°7 XT1ET CI0°0 | X680°T TOP'0 | XGIT'T 6200 | 009°C 006LL €9EC orova | ORI
X280 XG0P PIO0 | XLI0T Q60 | XOSE'T 9600 | 1000 00879 £9ET PLVOSI |

- - 0100 | — 6980 | — 9z0°0 | 690G 009, TLST | SMOPH weumpy

0001 x065°T 220°0 | XISUT 0810 | XEPE'T SO0 | 16T 0068 6e9T s

XLFET X8L6°T c200 | XTOET 8240 | XEITT 1700 | 0T 00209 @85G 12.avODI

X816°T X016°T TG00 | XGPTT GOF0 | XSIET TR0 | 086 0089¢ 005G orova | MOZ
XPre X671 TG00 | XOPT'T G970 | XL08T FRO0 | S9EC 009°9S 967 PLVOSI o

- - P00 | = 90F0 | — 7600 | 908F 00826 0SGT | swopy wawmpy

000'T x820'7 1£0°0 | XSEE'T 619°0 | XAIST 190°0 | 1OSC 00P'IE S8C'L s

xGze'T XIS4T PE00 | XEEUT Teg0 | XSOV LF00 | T 00607 916 12,00l

XCo8°F X199'T 0200 | XZ0T 8CG0 | XISET W00 | PL9T 00VEE T61T orova | OGN
X268 X 1281 ST00 | XE9TT 080 | XOPPT SFO0 | TPET 00608 06K PLVOSI

- - 00 | — 790 | — €600 | 905 009°FF LSl | SMopy uvump

000'T X091 9700 | XT06T @rL0 | XOPET €900 | SELT 00902 8T S0

X628°T X0rE'T 9600 | XISOT 0290 | XPPLT €900 | SSTT 00128 GHI 12.av001

X169 XPPET 660°0 | XIGTT GILO | XTOUT 7900 | G667 007GE 9.6 orova | NODE
X889°G X199°T 8Y0°0 | X€ETT TL'0 | XESE'T £90°0 | 1TOT 00961 08T PLVOSI

- - 6200 | — S190 | — 500 | €66 009G¢ FGU'L | swopy wewmy

000'T XEP8'T L80°0 | X18TT 0L9°0 | XTEF'T €80°0 | PSTT 006GL 0180 S0

XG0g'T XLSTT PE00 | XTSOT P90 | X607 THO0 | €0ST 00002 LFS0 BAVOOL | o
X26LT XF9L'T GE00 | XGETT GPO0 | XEEFT G900 | 16TT 00T S080 9LOVA R
XGO3¢ xeeL T G600 | X9TET 8€9°0 | XCTPT G900 | TSET 000GL 0TS0 PLYOSI

- - 0200 | = 12¢0 | — 6600 | S0ST 00802 P800 | swopg wewmy

0001 x028°T 0070 | X€9G'T €921 | X9LT 9160 | 9260 00£T 86L0 S0

X106°T Xere T 6650 | X608T LL60 | XGLTT L0 | 6RO 00TT SELO 12.avoOI

X968 X921 €160 | XTLET SE0T | XTEUT G080 | FES0 08T GHE0 91OV 1oy
X119°8 X699°T P90 | XIET Le0T | XGOE'T SSE€0 | T6L0 00£T 9180 PLYOSI

- - 0220 | — 8080 | - @0 8060 00T FEL0 | swopg wewmy

oney WA | omed RA | ome RA | unu aqu pdr

swmuny POYIOIN usso(]

: (eo1y x Iomod) / (10 X J18J) ®ITY / J10J Tomod / J10d ®Oly IoMOJ 9OURULIOLISJ

81

24.64%, 17.13%, and 6.33% than ICCAD’21, DAC’16, and ISCA’14 in PPA trade-
off, respectively. Moreover, the RL solutions outperform human efforts up to 2.03x
better in (Perf x Perf)/(Power x Area). And our method can find those solutions
using an average of 4130.89 seconds, i.e., 4.07x higher efficiency than baselines. For
Medium SonicBOOM, power/area efficiency is comparable since our solution trades

4.13% more performance than ISCA’14.

4.5.6 Analysis w. More Workloads

We analyze explored microarchitectures with more workloads to study how RL so-
lutions outperform other methods and human implementations. Figure 4.11 and
Figure 4.12 list related results for Rocket and different scales of SonicBOOM.

In the case of Small SonicBOOM, our solution demonstrates an average im-
provement of 8.80%, 8.38%, and 16.86% in Perf/Power, Perf/Area, and (Perf x
Perf)/(Power x Area), respectively, compared to state-of-the-art approaches. For
Medium SonicBOOM, our solution shows improvements of 10.03% and 14.81% in per-
formance per watt and PPA trade-off respectively. In Mega SonicBOOM, our solution
achieves an average PPA trade-off improvement of 6.13% over baseline algorithms,
while for Giga SonicBOOM, the corresponding improvement is 14.27%. Notably, in
certain workloads, our solution prioritizes power and area trade-offs, leading to higher
performance per watt or increased area efficiency. In larger scales of SonicBOOM,
our solution obtains an average of higher performance, demonstrating that our RL
agent can target different preferred solutions by given PPA design goals.

Specifically, for Large SonicBOOM, the areas for human implementations, ISCA’14,
DAC’16, ICCAD’21 and ours are 3.21, 2.54, 2.67, 3.67, and 2.56 in mm?, respec-

82

I Human Efforts mmISCA’'14 mmmDAC’'16 mmICCAD’21 /= Ours

Rocket
1,
081
500 00 L0 O
07 !.|l’ I I Ml I I II .
< || U0 G OO0 R O O LT g o
Egj 4
o > > DO X X Q >
= @&‘0 o\\’&\% <O & A@b é@& 4@)6 s 0»0& &%O& %Q& ‘5&&
SRS 8&% &&f &g@
(a)
Small SonicBOOM
1,
g 0.8
oo oo UL OO0 OO A0 0 MO0 0
0.4 HH 1!
sl L)L L O LU
g 4
S > > $ >
s QJ&@ 0\\3&\% . 4@% @b %@&\@ A@b && &o(V &%o*\) %Q&Q ‘§@°
M SR S

(b)
Medium SonicBOOM

Power (W) IPC
= N O Ot N
I
i -

ISR & x$ & & & &8 <
Q NS O £ < £ >
& S X3) ;
83)

Figure 4.11: Analysis w. more workloads on Rocket and different scales of SonicBOOM 1.

= Human Efforts E=ISCA’14 mmaDAC’16 mE==3ICCAD’21 =3 Ours
Large SonicBOOM

o 3|
S 2|
1 -
0
= 2
Egj 4
> SN & ¢ D & o >
a¥ QJ&@ \\)\9\ 04@ @b é&&\ @b & & S @Q& &
& SO < &G &
& N &
(a)
Mega SonicBOOM
o 4 _ _
3 [-
ol _
1 i
= g
g 2[) I 1 I)
§ 4 - < \//4‘) &% b’t} 'QQ) b’b ‘& ,(‘/& ‘()})_ ,&4 0’\
@b& \’,“Q 04@ & £ M & & 0K &
N @0 $3 XS &qy
ISR &
(b)
Giga SonicBOOM
o 4r . I
A3
2
1 |
é 0
2 7 '
o Q > & X X S D>
el %@0 44%6 & 0%&' &%0&’ G:;Q& “@0
$Y XS ,&@
S &
84

Figure 4.12: Analysis w. more workloads on different scales of SonicBOOM I1I.

tively. While human implementations and the ICCAD’21 solution achieve higher
performance on most workloads, they require more area and dissipate more power,
resulting in a lower performance per watt or PPA trade-off. Compared to human
implementations, our solution demonstrates significant improvements in three met-
rics by factors of 1.35x%, 1.23x, and 1.66x, respectively. Additionally, it outperforms
the baselines with average improvements of 7.74%, 12.47%, and 21.15% in the cor-
responding metric values. Our solution adopts a Gshare branch predictor, 16KB
I-cache, and 32KB D-cache. The PPA trade-off is further enhanced by increasing
integer issue queue sizes and removing redundant resources. Our solution achieves a
superior PPA trade-off by selecting a more suitable branch predictor, cache structures,

and a balanced allocation of resources for queues, stacks, and buffers.

4.6 Summary

We propose an RL solution to deal with automated RISC-V microarchitecture de-
sign. Our solution removes unrealistic assumptions and is tightly coupled with expert
knowledge. Experiments show that our method on RISC-V Rocket and SonicBOOM
achieves an average of 16.03% PPA trade-off improvement over prior state-of-the-
art approaches with 4.07x higher efficiency. And the solution qualities outperform

human implementations by at most 2.03x in the PPA trade-off.

85

Chapter 5

Microarchitecture DSE Open

Benchmarking Platform

5.1 Introduction

The chip development cycle involves many steps, including architecture specifica-
tion, hardware design implementation, logic synthesis, place and routing, verification,
etc., which requires a high workforce and cost input [162]. Microarchitecture explo-
ration, i.e., making decisions on various structures of processor components, aiming
to deliver a product that can balance performance, power, and area (PPA) well, is
the critical step in the chip development cycle. It is often conducted on software
simulators at the early design stage, targeting to study different trade-offs among
various components at a coarse granularity.

As technology node advances, the design complexity of a chip (# gates / cm?)

continues to grow at a compound annual growth rate (CAGR) of around 58%, while

36

the design productivity (# gates / staff-month) is at approximately 23% [2]. In-
spired by the agile development paradigm in software engineering, which facilitates
fast product prototype delivery, agile chip design is empowered by high-level hardware
description language to mitigate the gap between the design complexity and produc-
tivity [117, 154, 127]. We can conduct microarchitecture design space exploration at
the circuit level via electronic design automation tools following the agile chip design
paradigm [28]. Such exploration is conducted at a finer granularity, provides more
optimization opportunities at the front-end design stage when software simulators are
not constructed, and alleviates the non-recurring engineering costs in the back-end
design stage.

The problem is non-trivial to solve due to two difficulties. On the one hand,
the microarchitecture design space is large. In industry, although the design space
can be pruned by expert knowledge from CPU architects, the left solution space
size is still relatively large to handle [133, 103]. On the other hand, evaluating a
single microarchitecture requires a high runtime cost. Because of these challenges,
researchers and engineers have proposed various methodologies to figure them out by
using analytical models [101] or data-driven black-box models [91, 115, 118, 28].

To boost electronic design automation (EDA) research, we build up microarchi-
tecture DSE open benchmarking platform for the contest of computer-aided design
(CAD) at the International Conference on Computer-Aided Design (ICCAD) [6].
The ICCAD CAD Contest allows industrial companies to share various design prob-
lems and cases. At the same time, it encourages researchers in academia to study
the state-of-the-art integrated circuits design challenges and advance problem-solving

techniques. We serve as the topic chair of the ICCAD CAD Contest in 2022, formulate

87

the research topic of microarchitecture exploration as a contest problem, and deliver a
dataset based on RISC-V Berkeley Out-of-Order Machine (BOOM) [22, 44, 214] and a
microarchitecture DSE open benchmarking platform for all contestants [49]. Contes-
tants can innovate and estimate their algorithms using the dataset and platform. We
hope the contest platform can promote a research passion for the research topic and
expect to see practical algorithms proposed by researchers can help the community
and industry embrace more profits from the microarchitecture exploration.

The remainder of this chapter is organized as follows. Section 5.2 presents the
contest objective. Section 5.3 provides detailed descriptions of our open benchmarking
platform. Section 5.4 illustrates the evaluation with our benchmarking platform.

Finally, Section 5.5 summarizes this chapter.

5.2 Contest Objective

This contest problem aims to develop a practical, efficient, and accurate microarchi-
tecture design space exploration algorithm. In this contest, we provide large-scale
microarchitecture benchmarks to evaluate contestants’ solutions. We expect novel
ideas to be inspired and applied in industrial product delivery. We also hope that
this problem can facilitate innovative researches on microarchitecture design space

exploration.

5.2.1 Problem Formulation for CAD Contest

We use a vector & to denote a microarchitecture embedding (Section 5.3.1), the

element of which specifies assigned hardware resources of a component for the mi-

38

croarchitecture.

Based on Definition 4, our problem is formulated, as shown below.

Problem 3 (Microarchitecture Design Space Exploration). Given a design space
D = {xy,xs,...,x,}, experiment [maps the design space D to PPA metric value
space Y = {y1,Y2, ..., Yn}. The microarchitecture design space exploration is to find

X C D, whose objective values are P(Y') as far as possible.

5.3 Benchmark Suite

We construct a design space for RISC-V BOOM. The design space contains 15,633
different microarchitectures and corresponding PPA metric values. In this section,

we detail the microarchitecture design space and the data set format.

5.3.1 Microarchitecture Design Space in the Benchmark Suite

We divide RISC-V BOOM microarchitectures into nine boxes w.r.t. their functions
for convenience in determining the design space. Moreover, we have leveraged expert
knowledge to prune the microarchitecture design space and remove illegal designs,
1.e., designs that fail to generate a register-transfer-level model. The microarchitec-
ture design space is as listed in Table 5.1.

Each number in Table 5.1 is an index, which specifies the detailed parameters,
as listed in Table 5.2 and Table 5.3. For example, if the ISU chooses an number 2
in Table 5.1, then the structure of the ISU is MEM.DW = MEM.IW = INT.DW =
INT.IW = FP.DW = FP.IW = 1, and MEM.QE = INT.QE = FP.QE = 6. There are
15,633 combinations of different boxes according to Table 5.1, i.e., 15,633 RISC-V

89

01°6°8] L9 CIIT0T €T2T‘IT 9T‘GTPT FI‘€T2T ST FI'ET S 4 g-uSrsop-qns
01°6°8 L9 CIIT'0T ZI'IT'0T €TZT‘IT gZI‘IT0T gI‘IT‘0T i 4 7-uSisap-qns
€€95T1 ‘9°g L9°g 6°8°L 6°8°L 01°'6°8 6°8°L 6°8°L € 4 g-uSrsop-qns
v'e'TT v'ecT 9'¢y 96y L9°g 96y 96y 4 1 g-usisop-qns
ve'es v'ec't £CT £T'T 7'eT'T £CT £T'T i 1 1-uSisep-qns
(@101, QNIN/oU2ed-q QININ/Uoed-] nsT mmm@xom a0y nA1 NSt 19podeg Yoeq uSweq

INOOE A-DSIY jo 90vdg UTISa(dIMINTILOLIN °G ARL

90

BOOM microarchitectures are created.

5.3.2 Dataset Format

The dataset is a two-dimensional matrix with the shape of n x (m+4), where n is the
total number of microarchitectures, .e., 15633. The number m equals the dimensions
of a concatenated vector. Specifically, the concatenated vector is formulated from

different microarchitecture features, as shown in Equation (5.1)

V = CONCAT (FetchWidth, DecoderWidth, ..., D-TLBWays), (5.1)

where FetchWidth, DecoderWidth, etc., are values obtained from Table 5.2 and Ta-
ble 5.3 w.r.t. corresponding columns. The four additional columns denote the VLSI
flow’s performance, power, area, and runtime cost.

The PPA metric values of each microarchitecture are obtained from electronic
design automation tools, a specific technology node, and a set of benchmarks. The
performance and power values are the averages of the benchmarks since a microar-
chitecture should be optimized against various benchmarks/applications rather than
a specific test case. The runtime cost of the VLSI flow includes RTL generation, logic
synthesis, netlist simulation, power analysis, etc. For different scales of microarchitec-
tures, the runtime cost varies. Since the dataset is constructed before performing the
design space exploration, optimizers mimic the VLSI flow by accessing the dataset to

retrieve the PPA metric values and the VLSI runtime cost.

91

"NYT opnesd syuesardor T pue ‘(YT s930Up () ‘Areogrooadg Aorjod juourooe[dor & 10§ POIIOYS ST JH ,
"A1oar30odsar ‘sorryus ononb o10)s pue peoy 10§ poroys ore M8 pue HAT ¢

9¢ 9 4

8¢ 8¢ I

43 1 8 I 8 9 (43 (43 01

43 4 8 I 8 79 8¢ 8¢ 6

43 4 8 0 8 79 ze 4 8 9 | @ 44 8

43 1 8 T v 79 43 4 8 9 | 7T e L

43 T v T v 79 91 4 8 79 | 02 0zg 9

43 T v 0 4 79 43 T 8 79 | a1 4] g g

43 T 4 T v 79 91 T T 79 | o1 91 v v

8 T 4 T 9 79 91 T v ge | a1 4] 3 €

43 T 4 0 v 79 43 T 8 ze 9 9 4 8 4

8 T 4 0 v 79 43 T v 9 8 8 T v T
SAUMETIL-A SPSATL-Ad MHSIN zdd¥ S 105 | SSeMATLT S1oSATLl sfepy 95 | OIS DAT | WPIM | WPIM | o,

NININ/P2eo-a NININ/oYoeo-T 1 81 1pod(| Y232

I syusuodwio)) :z'¢ 9[qe],

92

“ApeAT30adsor ‘s109s1801 TeorsAyd jurod-guryeoy pue 10599Ul JO IOQUINT 9} 10§ PILIOYS dIe JJ Pue INI ¢
“Afearyoodsor ‘solrjuo onenb jodre) Yojo} pue SoLIjUS IOPN] [DO) 10§ PORIOYs o€ DL Pue H]
"SOLIJUD ononb pue ‘YIpim onsst ‘YIpim pIedsip 10§ pajroys oxe) pue ‘MI ‘MJ 1

orT 91

0zt 0¥ g g 87 g g 8¢ 4 g a1

0€T 04 i 9¢ 9¢ ¥ g 4 ¥ g 9¢ 4 g 4!
9vL 9pl 9€T 04 3 0¢ (45 4 g ()% g g (4 4 g €l
8ET Q€T 43! 87 0¥ (4 8¢ 4 i 9¢€ ¥ ¥ (¢4 4 ¥ Gl
8¢l 8acl 8¢l a4 9¢ (44 9¢ ¥ i 44 ¥ ¥ 8¢ [4 ¥ 1T
S8TT 8TT 80T 04 (43 0¢ [43 4 i 0¥ ¥ ¥ (4 4 ¥ 0T
90T OIT 06 9¢ 0€ 8T 8¢ € € 9¢ € € 0¢ 4 € 6
98 06 96 0€ 12 4! 44 4 € (45 € € 9T 4 € 8
96 00T GL (45 (4 91 (4]! € (45 € € 9T ! €)
V. 06 09 9¢ 0¢ ! 0¢ 4 [4 (4 4 4 ! 4 4 9
ve 0L 79 0€ 4! 0T 9T 4 [4 0¢ 4 4 ¢l [4 [4 g
79 08 9¢ (43 91 Gl 9T I [4 0¢ [4 4 Gl I [4 i
8¢ @9 28 0¢ 4! 0t 4! ! 1 4! ! 1 0T 1 1 €
8¢ &F 0€ P1 9 9 9 ! ! 9 ! ! 9 ! ! [4
8y ¢4 (45 91 8 8 8 ! ! 8 ! ! 8 ! ! !
dA INI | somuy | DIA dgd Sl | d0dd MIdd MA'dAd dOINI MIINI MAINI O WAN MITWNIN - MA NHIN xopuy

¢ Jdd d04 z Al 1 (18I

I sjuouodwio)) :¢°G 9[qR],

93

5.4 Evaluation

This section introduces the microarchitecture DSE open benchmarking platform and

evaluation metrics for contestants’ submissions.

5.4.1 Overview of Benchmarking Platform

We provide a microarchitecture DSE open benchmarking platform for the problem
to facilitate convenient implementation of the solver without considering the cumber-
some handling procedure of the input and output. The open benchmarking platform
is open-sourced to the public, allowing contestants to check the overall design space
exploration flow. Contestants can easily install the benchmarking platform via “pip3
install iccad-contest”.

Figure 5.1 illustrates the design space exploration flow w.r.t. online and offline
cases. The offline optimization flow constructs a model once and uses the model
to sweep the design space and retrieve the target microarchitectures, as shown in
Figure 5.1a. Since the computation runtime with the model for a design is much
lower than the VLSI flow, we can efficiently sweep the design space. According to
Figure 5.1b, the online optimization flow constructs a model with an initial design set
and corresponding PPA metric values. The flow samples designs from the solution
space according to the model. The PPA metric values of sampled designs are then
obtained from the VLSI flow. We can tune the model on a design set with known PPA
metric values, i.e., designs which have already been estimated with the VLSI flow,
including the initial designs. If the algorithm’s termination condition is satisfied, the

Pareto-optimal microarchitectures are acquired from already explored designs.

94

Start

v

Initialization

v

Construct a model

v

Sweep the design space

Get Pareto-optimal

~

J

Start

'

|

Initialization

v
< Torminate? >

N

r

Construct/Tune a mode

-

11

!

Sample

v

|

Get Pareto-optimal

___microarchitectures | mlcroarcintectures J
End End
(a) (b)
Figure 5.1: (a) Offline design space exploration flow. (b) Online design space exploration
flow.

95

10

11

12

13

14

15

16

17

18

20

21

5.4.2 Benchmarking Platform Solution Implementation

Contestants should implement the solver with the contest benchmarking platform via

Python programming language.

from iccad_contest.abstract_optimizer import AbstractOptimizer

from iccad_contest.design_space_exploration import experiment

class YourAlgorithm(AbstractOptimizer):

primary_

import = "iccad_contest"

def __init__(self, design_space):

nnn

nnn

build a wrapper class for an optimizer.

parameters

design_space: <class "MicroarchitectureDesignSpace">

AbstractOptimizer.__init__(self, api_config)

do whatever other setup is needed

...

def suggest(self):

nnn

get a suggestion from the optimizer.

96

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

def

returns
next_guess: <list> of <list>
list of “self.n_suggestions™ suggestion(s).
each suggestion 1s a microarchitecture embedding.
"
do whatever ts needed to get the parallel guesses
...

return x_guess

observe(self, X, y):

nnn

send an observation of a suggestion back to the optimizer.

parameters

x: <list> of <list>
the output of “suggest .
y: <list> of <list>

corresponding values where each "z %s mapped to.

nnn

update the model with new objective function observations
...

no return statement needed

97

47

48 1if __name__ == "__main_

49 # this is the entry point for experiments, so pass the class to
— “experiment_main_entry” to use this optimizer.

50 # this statement must be included in the wrapper class file:

51 experiment (YourAlgorithm)

Code 5.1: Template of the solution implementation using AbstractOptimizer as the base
class.

1 descriptions = {

2 "sub-design-1": {

3 "Fetch": [1],

4 "Decoder": [1],

5 "Isu": [1, 2, 3],
6 "IFU": [1, 2, 3],
7

8 }

o }

10

11 components_mappings = {

12 "Fetch": {

13 "description": ["FetchWidth"],
14 " [4]

15 },

16 "Decoder": {

98

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

"description": ["DecodeWidth"],

mive [1]
1,
"ISU": {
"description": [
"MEM_INST.DispatchWidth", "MEM_INST.IssueWidth"
"MEM_INST.NumEntries", "INT_INST.DispatchWidth",
"INT_INST.IssueWidth", "INT_INST.NumEntries",
"FP_INST.DispatchWidth", "FP_INST.IssueWidth",
"FP_INST.NumEntries"
1,
"i": [1, 1, 8, 1, 1, 8, 1, 1, 8],
"2": [1, 1, 6, 1, 1, 6, 1, 1, 6],
"3": [1, 1, 10, 1, 1, 12, 1, 1, 12]
1,
"TFU": {
"description": ["BranchTag", "FetchBufferEntries",
— "FetchTargetQueue"]
"iv: [8, 8, 16],
"or: [6, 6, 14],
"3": [10, 12, 20]
1,

99

10

Code 5.2: Data structure definition of the design space.

Listing 5.1 details the template of the solution implementation with the contest
benchmarking platform. Contestants need to implement an optimizer inherited from
AbstractOptimizer. The base class provides two critical functions, i.e., suggest
and observe. The suggest function generates samples, while will be evaluated with
the VLSI flow, i.e., access the dataset introduced in Section 5.3.2. The observe takes
action the benchmarking platform retrieves the PPA metric values from suggestions
provided by suggest. Within observe, contestants can visualize each suggestion’s
PPA metric values and design the optimization strategy accordingly. The base class
also provides a variable to control the early stopping criterion for contestants, i.e., by
setting the variable, the optimizer can terminate before the pre-determined stopping

iteration numbers.

$ python3 random-search-optimizer.py -h

usage: random-search-optimizer.py [-h] [-o OUTPUT_PATH] [-u UUID] [-s

< SOLUTION_SETTINGS] [-q NUM_OF_QUERIES]
ICCADHQQ Contest Platform - solutions evaluation

optional arguments:

-h, --help show this help message and exit

-o OUTPUT_PATH, --output-path OUTPUT_PATH contest output path
— specification

-u UUID, --uuid UUID wuniversally unique identifier (UUID) specification

100

4

ot

-s SOLUTION_SETTINGS, --solution-settings SOLUTION_SETTINGS solution
— submission specification
-q NUM_OF_QUERIES, --num-of-queries NUM_OF_QUERIES the number of queries

— specification

Code 5.3: Benchmarking platform help menu.

$ python3 random-search-optimizer.py -o output -u

— "00ef538e88634ddd9810d4034b748c244d" -q 20

[INFO]: summary for the solution, the best Pareto hypervolume:
— 37.59654046710655, the best Pareto hypervolume difference:

— 66.67984662813456 cost: 164902.3422778734.

Code 5.4: Example command of benchmarking platform.

5.4.3 Application Programming Interface for Design Space

The application programming interface (API) for microarchitecture design space is
accessed via self.design _space in the base class AbstractOptimizer.

The variable self.design space provides a data structure to organize the design
space as illustrated in Section 5.3.1.

The design space is automatically parsed to construct the data structure by the

benchmarking platform, as shown in Listing 5.2. Contestants leverage APIs offered by

101

the benchmarking platform to access the data structure. Furthermore, they can define

dedicated operations with the data structure in their optimizer implementations.

5.4.4 Benchmarking Platform Command Usage

We provide a series of example optimizers for contestants to familiarize themselves
with the benchmarking platform. These example optimizers include exploration with
online/offline linear models, Gaussian process models, etc.

Contestants can benchmark their implementations with a few arguments. Assume
the source code of the implemented optimizer is with the name “random-search-
optimizer.py”. The help menu is as shown in Listing 5.3

According to the help menu, an example command to benchmark the implemen-
tation is shown in Listing 5.4.

The command will initialize the benchmarking platform with a random seed pro-
vided by the “-u” option and query the dataset 20 times. It can generate many meta
information and the implementation results, which are saved inside the “output”

directory.

5.4.5 Benchmarking Platform Evaluation Metrics

The optimizers implemented by contestants are evaluated with two metrics, 4.e., Pareto

hypervolume difference and the overall running time (ORT).

102

Norm. Perf.

Norm. Area

Figure 5.2: (a). An example overview of the Pareto hypervolume in the two dimensional
space (b). An example overview of the Pareto hypervolume in the three dimensional space,
i.e., power, performance, and area.

Pareto Hypervolume

Pareto hypervolume is the Lebesgue measure of the space dominated by the Pareto-
optimal set P(Y) bounded by a reference point v,es [28], as shown in Equation (5.2).

PVol,,,(P(Y)) = / Uy # el]

[y, £ ylldy, (5.2)
Y- €P(Y)
where 1(+) is the indicator function, which outputs 1 if its argument is true and 0
otherwise. The integral characterized by Equation (6.3) sums up all regions bounded
by P(Y) and vyes.
Figure 5.2a visualizes the Pareto hypervolume in f; — f, two-dimensional space.
Suppose we want to minimize f; and fo. Thus, we say x is better if its corresponding
point (fi(x), fa(x)) is closer to the coordinate origin. The orange point is a refer-

ence point v,¢. Four points are colored in purple and denote non-dominated points;

green points are dominated points. The area shaded with gray is the Pareto hyper-

103

volume. Intuitively, if a new point is searched out and not dominated by any points,
PVol, . (P(Y U{ynew})) is increased, i.e., the shaded area is enlarged. In our contest
problem, we are dealing with PPA metric values. A better microarchitecture has
higher performance, but lower power dissipation and smaller area. Figure 5.2b visu-
alizes the Pareto hypervolume in the PPA metric space. The contest platform has
normalized all PPA values for microarchitectures. Thus, a better design has higher

normalized performance, power, and area values.

Overall Running Time

Overall running time (ORT) measures the total time of algorithms, including the
submission of contestants’ algorithms and the time spent on the VLSI flow.

Total Score

Based on industry experience, we design an approximate scoring function w.r.t. Pareto
hypervolume difference and ORT.

ORT — 46

a e —

7 ,ORT > 6
score = PVol,, , - : (5.3)
Te T _
o+ |y|, ORT < ¢

where « is an ORT score baseline, equal to 6, and 6 is a pre-defined ORT budget,
equivalent to 2625000. It is worth noting that if the ORT is six times larger than 6,
then the final score will be negative. Hence, a better solution achieves a better total

score, i.e., lower Pareto hypervolume difference and ORT as much as possible.

104

— ICCAD 2022

0“‘95!'\? CAD Contest e

Problem C Introduction last update 7/30

Modern chip development requires high cost in design time and workforce. The reason for the expensive chip development cycle lies in two folds. On the one hand, the pre-defined performance, power, and area (PPA) targets of the chip are set aggressively, hoping to deliver
Like the following generation product comparable and superior to market competitors. On the other hand, the design complexity of the chip (number of gates chip area / chip area) is continuously increasing, leaving the improvement in design capabilty (number of gates / staff x
L month) behind a considerable margin, causing an imbalance between the required design efforts and the cost of input. Thanks to the agile design paradigm provided by advanced hardware description languages, e.g., Chisel, and flexible and parameterized hardware

generators, chip architects and engineers possess the capabily to deliver a high-quality chip within a limited time budget. To further enhance the chip design abilty built on top of the agile development paradigm for indusiry, exploring a series of chips in a given design

on
facebiTk |
\ _ space to achieve different degrees of rade-offs wi(. performance, power, and area in a short time is necessary. We look for effective and practical design space exploration algorithms to solve the problem. Specifically,in this contest problem, we focus on microarchitecture

exploration of processors, L.e., central processing units (CPU).

Problem details
Instruction last update 8/1

ICCAD Contest Platform is the platform to benchmark your submissions. All codebase is based on Python programming language. Please follow the instruction to implement your answers.
Follow the ICCAD Contest Starter Kit to prepare your submissions for upload.

Submission last update 7125

Visit the page to submit your answer.
The intial submission user name and password are the same as registering your accounts in the contest. You can change your password when you log in to the submission page.

Ranking last update 817
Visit the page to check the latest ranking. The following submission deadline for the ranking s 8/10, 17:00:00 (GTM+8), 2022. The ranking list wil be updated accordingly.
Miscellaneous information

Please visit the ICCAD Contest for more information

Figure 5.3: An overview of the online ranking.

5.4.6 Online Ranking

We provide contestants with an online ranking platform since the dataset discussed
in Section 5.3.2 is not disclosed to the public. The ranking platform, as shown in Fig-
ure 5.3, accepts contestants’ answers submissions, and releases corresponding results,
1.e., Pareto hypervolume difference, ORT, and the ranking among the participated
contest teams to the public. Contestants can submit their optimizers multiple times

and adjust the implementation strategies according to the published results.

5.5 Summary

Microarchitecture design space exploration is an important research topic. We formu-
late the topic as a ICCAD CAD contest problem. To facilitate the contest problem,
we provide a benchmark suite, a benchmarking platform, and the ranking platform
for contestants. We expect a practical, efficient, and accurate solution to further

research on this topic.

105

Chapter 6

ArchExplorer

6.1 Introduction

The microprocessor design cycle at the concept phase (logic level details are un-
available) requires abundant performance-power-area (PPA) trade-off evaluations.
Architects rely on practical algorithms to explore optimal architecture parameters,
achieving sweet PPA balance within a limited time budget. For example, five of Ten-
storrent’s competitive RISC-V microprocessor implementations are fast prototyped
based on one design within a year to face diverse PPA design targets [8].
Microarchitecture exploration is a design space exploration (DSE) problem aiming
to find performance-power-area Pareto-optimal microprocessor parameters. Archi-
tects are often confronted with billions or trillions of parameter combinations. And
one combination takes high runtime to acquire the PPA results via detailed simula-
tions. The problem is not new, and the industry and academia have proposed many

solutions.

106

In industry, microarchitecture parameters are determined upon extensive simu-
lation results analysis and the expertise of architects. However, the fact that archi-
tects’ domain knowledge can fall into a personal bias is a concern. The question
remains whether the solution given by architects is optimal or how many bene-
fits we can gain based on a sub-optimal solution. In academia, researchers adopt
mechanistic models or black-box methodologies. Mechanistic models investigate the
relations between PPA values and microarchitecture parameters by unfolding the
microexecutions. Interpretable equations are constructed for a single component
[84, 152, 85, 182] or the entire microprocessor [141, 101, 63]. Microarchitecture
exploration is conducted by sweeping the design space or fast evaluation with the
mechanistic model. Nevertheless, the model requires immense domain knowledge
to build and verify. More commonly-applied solutions use black-box methodologies
[111, 103, 208, 39, 91, 115, 59, 25, 48, 118, 60, 28]. The methods train a black-box
model with machine-learning techniques via a large data set. Researchers prefer them
since better results are often achieved [91, 115, 48, 118, 28]. However, black-box meth-
ods are not a silver bullet. They require high computing resources to construct the
data set for training [91, 48]. Another criticism of the black-box method is that blindly
(purely driven by the algorithm rather than tightly coupled with expertise) exploring
microarchitectures seems naive since architects already know the characteristics of
most designs.

Goal and Approach: We aim to solve the problem by evading the limitations of
current mainstream methodologies. Specifically, we circumvent the massive domain
knowledge access required by building mechanistic models and mitigate the high

computing demands of black-box methods. The key to achieving the goal is DSFE

107

via automated bottleneck analysis, where the bottlenecks are the factors that hinder
the program execution progress. We reduce the demand for expert knowledge via
automated bottlenecks detection and elimination. Meanwhile, our method asks for
fewer computing demands compared to black-box methodologies.

Rationales: Assume a perfect machine has unlimited hardware resources. The fac-
tors constraining the perfect machine’s performance are only the program’s true data
dependencies (viz., read-after-write dependencies). While in a real machine, architec-
ture parameters like the instruction queue entries set the resource constraints. Due
to the constraints, contentions for limited resources exist in the microexecution. And
the contention produces two distinct types of resources: 1) deficient and exhausted
and 2) abundant and idle. Hence, a real machine leads to unbalanced usage of re-
sources. The usage dependencies of deficient resources are another factor that blocks
instructions from progressing. A balanced microarchitecture can simultaneously max-
imize the utilization of each hardware resource. In other words, the microarchitecture
makes the best use of every resource. We refer to a bottleneck as insufficient hardware
resource, which is exhausted by instructions and results in high program runtime. Ac-
curate and efficient identification of types of hardware resources is the first principle
to finding a balanced microarchitecture.

Findings and Design Principles: Jouppi decoupled the microprocessor perfor-
mance into benchmark and machine parallelism [95]. Our observation is that the
relations between resource constraints and machine parallelism are similar to the

cask effect !. Namely, the most insufficient resource largely determines machine par-

!The cask effect is a terminology from the Peter principle [153]. It states that in a hierarchy,
every employee tends to rise to its level of incompetence. We adopt the term to broadly summarize
the insight of our approach.

108

Power (W)

Area (mm?)

(a) Performance (b) Power (c) Area

Figure 6.1: A visualization of the design space for 458.sjeng. Each microarchitecture
is reduced to two-dimension through t-SNE [188] to facilitate the visualization of
PPA distributions.

allelism. For example, assigning more to such resources can achieve 23.05% perfor-
mance improvement, and the PPA trade-off becomes 27.42% better. To identify the
type of resource, two requirements should be satisfied. The utilization status of each
resource in the microexecution should be captured. And whether the overlapping
events matter for the execution time should be considered. The latter requirements
call for a global view of the entire microexecution, which the critical path can rep-
resent [68]. We summarize two design principles for DSE via bottleneck analysis.
First, the dependencies contributing to execution time should be captured as much as
possible. Approximate the resource utilization more accurately benefits the DSE. Sec-
ond, concurrent events should be distinguishable. The distinguishability is essential
in accurately estimating bottleneck contributions to the execution time. Accord-
ingly, we propose a new graph model formulation based on critical path analysis
[116, 143, 144, 186, 75] to implement the two design principles.
Contributions:

1) The design principles and a new graph model formulation to characterize the

microexecution.

109

2) The induced graph model and an optimal critical path construction algorithm
based on dynamic programming to investigate overlapped events.

3) Evaluations show that our DSE method ArchExplorer can find better Pareto
PPA microarchitectures with an average of 6.80% higher Pareto hypervolume using
at most 74.63% fewer simulations compared to state-of-the-art approaches.

Section Organization: The rest of this chapter is organized as the following. Sec-
tion 6.2 introduces the motivation. Section 6.3 states lessons and design principles.
Section 6.4 provides the ArchExplorer approach. Section 6.5 and Section 6.6 are for
experiments. Section 6.7 present some discussions. Section 6.8 supplements addi-

tional related works and Section 6.9 summarizes the chapter.

6.2 Motivation

In this section, we introduce the motivation of our approach.

6.2.1 Bottleneck Analysis Matters in DSE

Although the design space is complicated, improving machine parallelism by removing
microarchitecture bottlenecks can significantly enhance the PPA trade-off, as demon-
strated by an example of comparative simulations. Table 6.1 lists a baseline microar-
chitecture, and we evaluate it with SPEC CPU2017 Simpoints [151]. The average
performance and power values of all workloads are reported. Comparative simulations
are conducted for each new microarchitecture by doubling individual parameters, as
shown in Figure 6.2. Firstly, doubling parameters like the number of floating-point

arithmetic logic units (FpALU) worsens power and area without improving perfor-

110

Table 6.1: A baseline microarchitecture specification

| Components | Hardware Resources

Pipeline width 4
Fetch buffer size in bytes | 64
Fetch queue size in p-ops | 32
local/global /choice predictor
Branch predictor unit | of the tournament: 2048/8192/8192
RAS: 16, BTB: 4096
ROB/IQ/LQ/SQ 50/32/24/24
Physical register Int RF: 50, Floating-point RF: 50
IntALU: 3, IntMultDiv: 1, FpALU: 2
FpMultDiv: 1, RdWrPort: 1

L11$ 2-way, 32 KB, 2 cycles

L1 D$ 2-way, 32 KB, 2 cycles
IPC/Power/Area 0.9418/0.2027 W /5.6609 mm?

Functional unit

PPA Variations Comparison of Comparative Simulations
Perf Power Area Perf?

I A

Ratio %

I [k

EEE DBaseline 1 ROBx2 [3J IntRFx2 1 FpRFx2
[1Qx2 1 LQx2 — SQx2 CJIntALUx2
CIIntMultDivx2 COFpALUx2 EdFpMultDivx2 3 I$ sizex?2
3 I$ assoc.x2 W DS sizex2 @ D$ assoc.x2

Figure 6.2: Each bar represents the microarchitecture’s metric in %. The bar, e.g., “ROB
x 2”7 indicates the microarchitecture is the same as the baseline except that it doubles ROB.
Perf? /(Power x Area) denotes the PPA trade-off.

111

o £ 047
D-' 0.45 | Q—{ 046 |
1.36/0.4 — 1 | | | | == | | | 1
O 1'132 i g 85|
ol : ~ 9|
= 1.42 <

1.44 | 9.5

1 2 3 4 5 6 1 2 3 4 5 6

The number of simulation (1 means the first)

O 20 -(D— e ——(0)
RF: 160 —
ROB: 160 — 144 [PRF: 16077 144 IntRF: 144 —> 128

. DS$: 32K — 64K .
SQ: 24 — 28 SQ: 28 — 32 SQ:32—744

Figure 6.3: Search following series of small changes stepwise. PPA denotes Perf?/(Power x
Area).

mance, indicating redundant resources waste the design budget. Secondly, doubling
the number of physical integer registers (IntRF) improves performance by 23.05% and
enhances the PPA trade-off by 27.42%. We investigate the simulation trace to find
out the root cause. We find that most instructions are stalled in the rename stage
due to insufficient physical integer registers. For instance, this bottleneck results in
25.71% of instructions in 657.xz_s and 18.94% for 625.x264 s getting stalled during
renaming.

We apply a straightforward heuristic to find a balanced microarchitecture: assign-
ing necessary hardware resources and reducing redundant ones. We adjust resources
based on the degree of necessity, which is the ratio of delayed instructions due to the
resource’s insufficiency. If the necessity is top-ranked, we increase the resource, and
if it is zero, we decrease it. Figure 6.3 shows a stepwise search by reusing the design

space (Table 6.4), where we analyze the simulation trace manually to calculate the

112

necessity for each resource. With only six simulations, we improve performance by
2.59%, reduce power and area by 2.66% and 16.64%, respectively, and enhance the
PPA trade-off by 29.72%.

6.2.2 Critical Path Analysis

Unlike performance counters analysis [20, 62, 205] and pipeline stall analysis (interval
analysis) [61, 63], the critical path analysis can answer which events we should blame
for the cycle loss regarding the entire microexecution.

The critical path analysis is a methodology based on the dynamic event-dependence
graph (DEG). Since its first appearance [68], it has been widely applied [116, 143,
144, 186, 75]. A DEG is a directed acyclic graph, as shown in Figure 6.4, with vertices
denoting the pipeline stages and edges representing the dependencies. Edge weights
indicate delayed cycles. The longest path from the fetch of the first instruction to
the commit of the last instruction is the critical path (108 cycles, highlighted in red
in Figure 6.4). Critical events can be obtained from the critical path, which are de-
pendencies contributing to the critical path’s length. For instance, a D-cache miss is
a critical event contributing 100 cycles to the microexecution.

Although the critical path provides a global view, it is limited to clarify which
resource is deficient or abundant. Firstly, in the former DEG formulation, the depen-
dence and weights assignment are static without adhering to actual microexecution.
This is a significant concern since microexecution contains dynamic behaviors, such as
instruction scheduling and resource usage dependencies. Previous DEG formulations
statically assign edges and weights following predetermined rules without considering

runtime information, leading to deviations between critical path length and actual

113

Instruction sequence

11: 1d a0, 40(s2) 15 16 17 I8

11 12 13 14
[2: eslli a5, 32 : In-order fetch 1;
13: csrli a5, 28 m 0 0)
4 cadd as. a0 | O HEOEOLEFEE-SE) (F)
15:sd s5,0(a5) | 1

16: Iwu a4, 52(s2) 0 0 0, (D J ~
17: 1d a5, 40(s2) O ‘ ,Q‘Q OO A OO 3
18: cslli a4, 4 @ @ 1 G G G e i
@ Fetch 1 ‘D miss: ;'Ti'hé'd/;lfd'f 1 1 g
@ Dispatch .2...1.0.Q..:2 :dependence 1 M 2 | g

O

(¢}

1
M) Memory | (OO OO O+O(O=2O

The critical path: 1 +3+1+ 100+ 1+ 1+ 1=108

Figure 6.4: An overview of the dynamic event-dependence graph.

runtime. Secondly, the critical path cannot accurately characterize the bottlenecks’
contributions to the overall runtime, even if the modeled critical path length is strictly
identical to the simulation runtime. This is because the previous DEG formulation
cannot distinguish overlapped events in microexecution, resulting in double-counting

of bottleneck contributions.

6.3 Lessons Learned & Design Principles

We scrutinize the previous DEG formulation and illustrate its limitations in detail.
We summarize the lessons learned and provide our design principles.
Firstly, the previous DEG formulation [68, 116, 186, 75] statically assigns weights

and edges without following the actual microexecution, leading to inaccurate critical

114

"SJUOAS JUOIINOUOD
9[qRYSINGUIISIPUT 0} SUIMO 9OUspULdap ose] SISOJIURM (() "SUOIINIDXSOIINU [eNjor SUIMO[[O] INOYIIM JUSWIUSISS DIR)S 0]
anp eouspuadep as[e] pur SHYSOM J09II00UT SUIPN[IUI SIOLID SIPRISTL (®) "Pal Ul PaIUSIYSIY syIed [BIIILID YIIM ‘S8IINOS
IOLID JO SPULY 901} 9JRIJSUOWLSP 07 ‘Uolje[NULIO] HH(] oAlejussordor o) ‘[¢)] siodife)) sosn (q) pue (v) :G'Q 2In3Iq

*SJUOAD “UOINIIX0IOTW [e1JOR 9Y) MQTSOZO.« oYM muﬂwﬁm\ﬁ
@@QQ@?@VO Qwﬁzwﬁﬁwﬂ@ jouued uorjeNULIO) HH (] SNOIA_IJ AQV pue mowﬁw mgwﬁwmd \mzﬁuﬁdpw uorje[nurIoy HH(J Snorasdlg Adv
F = To L o] o1 16) B 1
souspuadop 1 SO1940 YO0[0 G TUONBINWIS dNI], “SA SI[IKD }90[0 97 :yred [eONLIO oY, \ uSisse AqEonels
as[ey ustsse MW .. 1yS1om 1091100Ul
SJUIA JUILINOUOD 0 Ewmmmm \Azwuﬁmum

a[qeysmSunsipu

S

yred [ONL) <—
9bC ‘e ‘P na3q 011
6 ‘e 1 961

GST ‘ge ‘g Ippe :g]
8F- ‘T ‘Ge MIppE /]
¥8LT ‘09 ‘015 baq :91
1T ‘se ‘ge baq :g]
e ‘pe AW O]
(LS)TTT ‘Te P €T

(ds)8Z1 0y dsps 2 :011]
(ds)ozT ‘0w dsps o :61
(ds)Z11 “0y dsps 0 :8]
(ds)p0T1 ‘0w dsps o 1]
(ds)96 0y dsps 2 :91
(ds)g8 0y dsps 2 :g]
(ds)08 “0y dsps 2]
(ds)zL oy dsps 2 :¢]
(ds)p9 oy dsps 2 :g1 8% “0Y ‘S Ippe 7]
(ds)9g “oy dsps 0 :11 801- ‘g€ ‘p n03q ‘]

Tou9sy o116l 81 Ll 91 SI vl €l u 11 pureu iy

115

path length estimation. As shown in Figure 6.5a, we demonstrate the point with
444 namd. The first error is using a static penalty to represent variant durations. For
example, a branch misprediction penalty depends on the number of in-flight instruc-
tions in the wrong execution path. In Figure 6.5a, the penalty of the first branch
misprediction is 3 instead of 5. The error roots in a fundamental limitation of the
former formulation, i.e., the lack of events’ timing in the DEG construction. The sec-
ond error comes from false dependence. In Figure 6.5a, the DEG formulation inserts
an edge between the commit of I1 and the fetch of 19 to denote ROB dependence,
contrary to the fact that no delay exists since 11 has freed the ROB entry before 19
consumes it. Although the incorrect insertion of ROB dependence is not included in
the critical path (hidden by parallel events), the length of the critical path is shorter
than the actual simulation time due to the lack of correct pipeline dependence delay.
The ignorance of events timing information in the formulation leads to underestimat-
ing the critical path’s length by 25.71%.

Secondly, bottlenecks’ contributions are incorrectly estimated due to the inabil-
ity to distinguish concurrent events. Figure 6.5b demonstrates the third error with
456.hmmer. Consecutive execution stages are connected (E(I1) — E(I10)) to denote
read/write port contention. The contention contributes nine cycles to the execution
time according to the critical path. However, the contribution is four cycles in the
actual microexecution. The formulation overestimates the read/write port’s insuffi-
ciency by 125%. The redundant five cycles are hidden by parallel events, e.g., I3 and
14 get their read/write ports simultaneously.

Embedding the events’ timing information and finding a way to distinguish con-

current events is crucial for making the DEG formulation practical. This approach

116

enables the critical path to accurately identify whether a resource is deficient or abun-
dant. Therefore, we provide two design principles for DSE via bottleneck analysis:
1) The dependencies contributing to execution time should be captured as much as
possible. Capturing more resource usages improves the utilization approximation. 2)
Concurrent events should be distinguishable. The distinguishability unveils whether
we matter a concurrent event for bottleneck contributions to the overall execution

time.

6.4 The ArchExplorer Approach

Benchmark ‘J::> Initial design generation
'
Design S
Lw Simulation -

'

A New DEG Formulation of Microexecution

!

Induced DEG & Critical Path Construction
Calculate Pareto frontier I

Perf, Data Bottleneck-removal-driven DSE

!

Generate new design

: v
O\ Update exploration set
/ Low Powerg T

Low Area
Early stopping?

Figure 6.6: An overview of the ArchExplorer approach.

117

‘(sesod.nd uoryezI[eNSIA I0] SIO[0D YIIM POPRYS) 90IN0sol Ienoryred v 0 pajnqriyye st yred [edIILID oY) Ul 9FPd [oed JO
asned oY], "ol ul pojy3IySIy st yyed [eIIILID 8], "UOIINISXIOIDUW JO UOTJR[NULIO] H)F (] MOU 9} JO MIIAIOAO UY :)"Q oIn3Iq

ed [2oNL) <— XOMOA QJBUIULIDL, @ XOUOA e)S @ anss[apyoredsi(] 931N 6 A®Td o@oE@
o) @ ayordwo) @ KI0WIN @ anss| @ yojedsig e oEm:oM@ 9podag e yog @ $1 woy osuodsay] @ $1 01 3sonbayy @

SO194Ad 9 [UOTOIPaI] SSIA Youelg 0} anp Aoudje ysenbg _H_ S9104A0 ¢ :AoudreT eduspuado(] Ble oniL _H_moﬁoxu 8 :Kouaje ssa00y §O _H_ S91940 ()7 :Aoudje ourjodig _H_ S9[0Ad 9 :AoudreT $S990Y I _H_

ouIoWL], SIXR-Y $91940 ¢ :PSuUST Yied [BONLD
—_— oy
L . N m m IO <
! : b et L : 3 ! 3 3 3 L i &
S O . S " “ PO 7
: : ;0 0T0y ‘sebaq sy : ; 1) @ i 3 . =
m i P 0'sesemppeip | m " “ m . /! == z g
Dol lewwear | R ! ; L QKD ﬁlﬂ.|.¢ @m@a@/@m@: z
b [e gi sl B “ " / L g
: E om v«, geasq b c Qe (¥ “01)'st ()1 JO SOEUIPIOOD DY L SJUDAD JUSLINOUOD) W
L s T @D DD T~ £
] ;1 0'se‘pemppe i L D) :
A A At ﬁ ; Ty 1
. . > S @D

. : . o €

DO TD-CD-CD-AD-TD

14 [[[4 [[[

118

Following the design principles summarized in Section 6.3, we propose ArchEx-
plorer, with an overview shown in Figure 6.6.

ArchExplorer involves three stages. Given the design space, the initial microar-
chitecture parameters are sampled or chosen with prior knowledge. In stage 1, we
introduce a new DEG formulation (Section 6.4.1). The new formulation removes pre-
vious limitations. Based on the new DEG, we propose the induced DEG and apply
critical path construction in stage 2 (Section 6.4.2). In stage 3 (Section 6.4.3), we
generate a bottleneck analysis report by calculating the resource contribution to the
microexecution runtime. We reassign resource according to the report, producing a
new design. The promising solutions are explored until the early-stopping criterion

is met, and the Pareto frontier is obtained from the explored set.

6.4.1 New DEG Formulation of Microexecution

We propose a new DEG representation of microexecution to mitigate the limitations
of the previous formulation. The backbone looks similar to the original proposal
[68]. Vertices denote pipeline stages, and edges represent dependencies. However, a
fundamental limitation of the former formulation is the lack of events’ timing infor-
mation, causing inaccurate modeling of events like speculative scheduling, resource
contention, etc. Lacking the timing information also makes the concurrent events
difficult to discriminate. We explicitly embed the events’ timing information into the
formulation and propose new rules to assign edges and weights dynamically. First, we
give an overview of the new DEG formulation. Next, we illustrate how the new DEG
is dynamically constructed. Last, we manifest how we distinguish between overlapped

events.

119

Figure 6.7 is an outline of the new DEG formulation. Instead of aligning instruc-
tions with pipeline stages, as shown in Figure 6.4, we align instructions w.r.t. the time.
Each vertex is accessed with two-dimensional coordinates (z,y). The X-axis denotes
the timeline, and the Y-axis represents the instruction sequence. The instruction-level
parallelism is shown by fixing the X coordinate. And the lifetime of an instruction is
reported by fixing the Y coordinate. For edge weights, instead of using static numbers
to denote, dynamic time intervals between two vertices are used in the new DEG. In
the following context, we use P(I;) to represent the instruction I,’s pipeline stage P 2.

We categorize four kinds of dependencies. See Table 6.2. The pipeline dependen-
cies are horizontal edges. Misprediction, hardware resource, and true data dependen-

cies are “skewed” edges, i.e., they denote interactions between instructions.

e Pipeline dependence: It characterizes the microarchitecture pipeline imple-
mentations. More vertices are added to model architecture parameters. For
example, to study the I-cache and fetch buffer size, we incorporate F1 and F2,
representing when the front-end sends requests and receives replies from the
I-cache. The duration of F1(I;) — F2(I;) equals the I-cache access latency,
while F describes the moment instructions are copied to the fetch target queue.
Misaligned accesses are modeled by F2(I;) — F(I;). To aid visualization, we
merge F2 and F to formulate F2/F when the events occur simultaneously. This

merging is also employed for other vertices.

e Misprediction dependence: It is used to model branch or memory address

dependence mispredictions [52].

2P could be F1, F2, DC, etc., as shown in Figure 6.7. For example, DC(I3) denotes the decode
stage of instruction I3.

120

e Hardware resource dependence: The previous formulation uses the “producer-
consumer” model [68] to build usage dependence on resources such as physical
registers, ROB, etc. For example, C(I;) — I(I;) can represent ROB dependence,
as a new ROB entry is produced at the commit stage of I; and consumed at
the issue stage of I;. In contrast, we unify dependencies as rename to rename
edges R(I;) — R(I;). This is because the new DEG aligns instructions strictly
with time, so a “producer-consumer” edge is always assigned zero delays since
newly-released resources can be used immediately. A zero delay edge prevents
the critical path from capturing critical resource usage dependence. Mainstream
microarchitectures often use one stage (e.g., rename) to check whether required
resources are available before dispatching the instruction. If a requisite resource
is exhausted, a stall is incurred, otherwise, the instruction is pushed to the is-
sue queue and waits to schedule. The rename to rename edge precisely reflects
the resource usage dependence, and the time interval between these two re-
name stages equals the resource’s duty cycles (the resource is busy during the

interval).

e True data dependence: It characterizes the read-after-write dependence

within the issue window.

Another significant difference from the previous formulation is that we construct
the new DEG dynamically. That is, the new DEG is built adhering to the actual
microexecution. With the time coordinate, we know whether a misprediction event
occurs and how many penalties are produced. For example, if a branch instruction
I; is mispredicted, microarchitecture starts squashing and refilling the pipeline with

instructions in the correct execution path. Denote the first refilled instruction as I;.

121

“SHTUN [RUOIOUN] JO UOIINODXS O I0 $5900R §(] 0 SN ISY)S oIr SA[OAD PaAR[ED oY,
“oouopuadop eyep ONI] oY,

QoUopUd Q@T riep onlJ,

079 ‘SIOPIAID ‘sN)TTV fulod-3uryeoyy/1e8equr 5 ‘SIun [RUOIPOUN] ST SOOINOSAI O],

"SOSBA[OI ¢ UOTJONIISUL JRIY) SOOINOSAT 307} Soxmbal [pue ‘[UOIJONIISUT SARTOP SOOINOSOT JUSIDIPNSUT (D1« (1
— - douapuadep 90IN0SOI SIRMPIRH
‘s109s1801 Juiod-3urjeoy pue I98ejul [IISAYd se [om se ‘DS ‘DT ‘O ‘GO PPNPUl S9dINosaI a1],
‘PIeO(eI09s 91 01 SUIPIOIIR ST UOILISSUL 9FPI O], (g« (g
"SOSLO[OI ¢ UOTIONLIISUL JRY) SOOINO0SII 9SO} soambor [pue ‘[uojonIysur sAROP SOOINOSOI JUSIDIPNSU]
‘uo1)o1paxdstur souepuadap sseIppe AI0Wweul/IpURIq ® SI9jUNoous ¢ uoronuysu] | (1+)14 < (2)d souspuadop uororpaIdsIjy
“UOINOOXe PAYSIUY ST 1 193JR ¢ UOIJONLIISUL JTUUIO)) (10 + (1)
's310d 9J1IM /PRIT 0 S()TV ONI] SHUN [RUOTIIUNJ D[RS TIIM 7 UOTIINLIISTUT DINIIXG] (1)d MLCTE@TH (11
"OUSSI 0] 2 UOTJOILISUL [PIYDG (1)1 < (1)da
‘yoyedsIp 0 ¢ UOIIONIISUT PUOS 0FRIS OUIRUII O], (1)da < (1Y souopuadop ourpdig
‘oureUal o) 01 2 uorponijsur Jo sdo-1 puss a8e)s 9pooap Y], (g « (1)Da
"I0P0D9P oY) 0} ¢ UOONIISUL PUSS 9FRIS 1[D9] O, (1)pa + (1)a
"suorjorpaid 10 apooop-oad sutogrod oFe)s Y010J O} pue ‘Iognq p3ej oy ur ¢ uorponijsut oy sjnd ¢J (1)d « (1)za
*2 UOIJONIISUL 10] 9su0dsol © 195 pue ‘g] 01 1senba1 v puog (V)zgd + (1)1a
uondisa(| oSp odAT,

uoryeoyads souepuadop o, :7'9 9[qel,

122

:
3

Y-axis Instruction Sequence
= =

2 1 1 _
LEDE@E-OO-CRO—— (CD X-axis Timeline
Figure 6.8: The new DEG formulation is applied w.r.t. the code snippet as shown in Fig-

ure 6.5b. And it identifies the true read/write ports usage dependencies, i.e., I(I;) — I(I),
1(14) — 1(15), 1(15) — 1(18)7 and I(Ig) — I(Ig).

We assign the edge P(I;) — F1(I;) once we find the time of F1(I;) is larger than
P(I;) from the new DEG. The interval between P(I;) and F1(I,) is the actual squash
latency due to the misprediction.

However, acquiring the pipeline stages’ timing information is inadequate to iden-
tify the correct edges and weights for resource usage dependencies (such as issue
queues and ROB). Although time is useful for identifying stalls, it is not sufficient to
determine these edges. Which resources are preemptively occupied by which instruc-
tions? To address this issue, we record the correspondence between assigned resources
and instructions with a scoreboard. The scoreboard uses resource entry as the gran-
ularity and indexes each entry with a unique ID number. We demonstrate how we
detect and assign the correct edge with the scoreboard. Consider a microarchitecture
that uses the rename stage to check whether required resources are available for each
instruction, and the rename stage takes two cycles to finish. If all required resources

are idle, the instruction can be dispatched immediately. Otherwise, the instruction

123

is stalled at the rename stage. We record which resource is responsible for the stall
and assign a rename-to-rename edge by comparing the ID number. Specifically, the
resource ID number of the dependent instruction should match that of the stalled
instruction according to the scoreboard. If an instruction is stalled due to multiple
insufficient resources, the rename-to-rename edges are built in turn.

With the new DEG formulation, Figure 6.8 elucidates how we distinguish between
concurrent events w.r.t. the same code snippet listed in Figure 6.5b. Since I(I;) and
I(Iy) are aligned along the X-axis, no function unit contention exists . Compared
to Figure 6.5b, the critical path highlighted in red in Figure 6.8 removes duplicated

read /write port dependencies.

6.4.2 Induced DEG & Critical Path Construction

The critical path is a serialization representation of parallel events. It highlights
which overlapping events matter for the overall microexecution.

To facilitate the critical path construction, we introduce the induced DEG — a
connected DEG (Section 6.4.1) consisting of horizontal, “skewed”, and virtual edges.
Horizontal edges are pipeline dependencies. “Skewed” edges (non-horizontal) signify
non-pipeline dependencies, which could be resource dependencies. The virtual edges
are added to make the new DEG connected. Unlike the prior DEG [68], our new
DEG formulation removes consecutively connected fetch edges, commit edges, etc.
This is because these edges are rooted in instruction execution sequences rather than

resource dependencies, as they can hinder critical path construction. However, their

31(I3) and I(14), I(I5) and I(Is), I(I7) and I(Ig), etc., are also aligned with time, meaning they are
concurrent events.

124

removal may result in a disconnected graph (no path from F1(I;) to the last instruc-
tion’s commit) if instructions do not have non-pipeline dependencies in highly parallel
workloads. Thus, we introduce virtual edges in the induced DEG.

Formally, assume two “skewed” edges are annotated with s; — e; and s, — ¢
(j < k), where s;, ej, S, € are vertices in the new DEG formulation, i.e., a stage of
L;, I;, I, and I;, respectively. i, j, k, and [are different instruction sequence numbers.
Virtual edges could be s; — s;, (or e; — si) as long as either of the following two
rules is met 2.

Rule 1 (Connect via time): s; is connected to si if the time of s, is the closest to
S;-

Rule 2 (Connect via instruction sequence): s; is connected to sy if the instruc-
tion sequence k is the closest to i.

If multiple stages satisfy at least one of these rules, we connect them to s, to
generate more virtual edges. Virtual edges are not true dependencies but make the
DEG connected. The connection of “skewed” edges allows for the exposure of con-
secutive resource utilization status. We connect “skewed” edges with the closest time
and instruction sequence for two reasons. First, since the induced DEG is highly con-
nected due to virtual edges, we can investigate many combinations of resource usage
dependencies to formulate the critical path. Second, the closest connections allow
us to directly eliminate many sub-optimal solutions, as connections that are not the
closest are obviously sub-optimal according to the first design principle. The induced
DEG facilitates the critical path densely composed of resource usage dependencies.

A walking example is provided in Figure 6.9 to demonstrate the idea more clearly.

4We use s; — s as an example. The rules are the same for €j —+ Sk.

125

QUL T, STX®-Y
e

"D WO PaIdRIIXd 1500 93Po [YIM
D (] POONPUL JO MOIAIOAO YT, () "UOIR[NULIO] HF (] MoU Surpuodseriod s)1 pue joddrus opoo sjdurexs uy (®) :6°9 9IN3I

o8pa [enA

oouenboag uorjonIsuy SIXe-X

1
i o8po PaMaYs,, ¢
81 : ooudpuadop oczo&mm
_:H
jas}
(®)
QuUIPWIL T, STXe-Y .W.A..' - ' - - <
[}
ED OO AD—7—CDQDADLID g
@.|AHUO QD § QDD 1 098y pepri g
£ ! ! < T se e s ory | g
..|°0.|‘ I@Aﬂu@@@ (0502 ‘s 1 o : g
S =z (0S)pg-“ge ms 8 g
D TOAD— r@.ﬁ) _ 2 TN :
— D, T DT —— D" oLt
@ 3 ﬂ@ I3 da 4 /{L\~ 1 z 1 (05)8t- ‘e Pl : . .Wu
@ 3 «(m\ 4 «(u\éxut@ ¥ \\&) 4 @—®~@ 4 e a1 P- .m.mmmm:u_umu . m
TN T sese _=m. . @
O @D - AD—— D ODTD——D (0902 s A1 7 |
M~ L 4|@ 4|@ 9LE- ‘pe ‘ge :@ M
€ 5 O T —— D@D LSRN
@¢|@_ va T (R 9 OUD ﬂ@«%@oﬁ
S
DT - D@D ——TD'

126

The new DEG is applied to model 11 instructions in a microexecution (Figure 6.9a),
with “skewed” edges colored in orange. R(I;) — R(Iy) and R(I3) — R(Iy;) denote
dependencies of integer physical registers. D/I(Is) — I(I3), D/I(I5) — I(Ig), and
I(I;) — I(Is) are D-cache misses. I(I3) — I(I4) and I(I;) — I(Ig) are true data
dependencies due to register as. P(I;) — F1(Iy) represents a branch misprediction.
Although Iy and I;y have a true data dependence due to register as, there is no
stall in actual microexecution because Iy and I}y are not in the same issue window
(I;p is not dispatched at the time of D/I(Ig)). F1(I;) is not reachable to C(I;).
Figure 6.9b illustrates the corresponding induced DEG with virtual edges colored
in blue. Specifically, we use R(I;) — R(I3) and R(I;) — D/I(Is) as two examples
to elucidate rules 1 and 2. In Figure 6.9a, a virtual edge R(I;) — R(I3) is created
as R(I3)’s time is the closest to R(I;) among all “skewed” edges, and I3 and I; are
different instructions (rule 1). Similarly, a virtual edge R(I;) — D/I(Iy) is created
since the instruction sequence of D/I(Iy) is the closest to that of R(I;) among all
“skewed” edges (rule 2).

Although the induced DEG connects the graph, it cannot answer which concurrent
event should be blamed for the microexecution. We propose a dynamic programming-
based critical path construction algorithm to decide accordingly. To capture more
resource usage dependencies and not miss “important” edges, we define costs to edges
as follows: (1) All horizontal edges have zero cost. (2) All virtual edges have zero
cost. (3) All true data dependencies have zero cost. (4) All “skewed” edges, except
true data dependencies, have costs equal to the interval between two vertices. We set
horizontal edges with zero cost to capture the true resource usage dependence rather

than pipeline stalls. Using the induced DEG with edge costs, we apply the longest

127

Algorithm 6 Critical Path Construction

Require: G: The induced DEG with the edge cost;
1: node = topological _sort(G);
2: Initialize edge cost vector d with all zero;
3: Initialize the path vector p with all zero;
4: for n < node do
5
6

if Ng(n) # 0 then > Ng(n) are predecessors of n.
d[n] = arg max d[v] + cost; assign p[n] with v;
veENG(n)
7: else
8: d[n] = 0; p[n] = n;
9: end if
10: end for

11: return reverse(p);

path search with linear time complexity in Algorithm 6.

In Algorithm 6, line 6 uses dynamic programming to record the temporary longest
path to n. The critical path can be obtained by reversing p at line 11. For the example
in Figure 6.9b, the critical path is F1(I;) — F2/F(I;) — DC(I;) — R(I;) — R(lyo) —
C(I41). From the critical path, we discover that the top bottleneck is the insufficiency
of physical integer registers, and the branch misprediction cannot hide it. The length

of the critical path is precisely the same as the simulation time.

6.4.3 Bottleneck-removal-driven DSE

We conduct the bottleneck-removal-driven DSE by reassigning resources via elimi-
nating bottlenecks gradually. Scarce resources are increased to mitigate performance
bottlenecks, while over-provisioned resources are reduced to balance power and area.
Identifying deficient or abundant resources is achieved by computing their contribu-
tion to the overall runtime through the constructed critical path. The higher the

contribution, the scarcer the resource and the greater the necessity to assign more of

128

them. Conversely, redundant resource leads to zero contribution, and can be appro-
priately reduced.

The main idea of computing the resource contribution is to attribute the cause of
each edge in the critical path to a particular resource. This attribution is straightfor-
ward, as we define the meaning of “skewed” edges in Table 6.2. We do not attribute
virtual edges to resources. Figure 6.7 illustrates some attribution highlighted with
diverse colors, where each edge is a non-overlapping segment in the microexecution.
We introduce the resource contribution in two cases, and describe our resource as-
signment strategies.

Formally, for a critical path p with length L and containing N (non-overlapping)

edges, a resource b’s contribution ¢(b) is computed according to Equation (6.1),

c(b) = Zlﬂl[p(i) = bl/L, (6.1)

where 1(-) is the indicator function, which outputs 1 if its argument is true and 0
otherwise. [; is the delay (not edge cost as referred to in Section 6.4.2) of the i-th
edge p(i), attributed to the resource b. We determine the type of resource according
to ¢(b), i.e., whether the resource is top-ranked deficient or abundant. For multiple
workloads evaluations, as shown in Equation (6.2), we do a weighted-average for the

contributions of each resource.

|B| 1Bl

eb) =Y wi-ci(b), D w;=1, (6.2)

where | B| is the number of workloads, and ¢;(b) is computed from Equation (6.1). The
symbol ¢(b) is the average resource contribution, where w; is the i-th weighted coeffi-

cient for a specific workload that encodes the designer’s preference. Each resource’s

129

contribution is summarized in an output report.

We use ¢(b) to guide the DSE procedure. The reassigned parameter values are
decided based on the design space specification. Specifically, we select the next larger
candidate value from the specification if we need to increase it, and we decrease them
to the next smaller candidate value if they do not have a contribution.

Unlike resources such as ROB entries, branch predictors and caches are special.
Assigning more resources may not decrease their contributions, as benchmarks contain
hard-to-predict branches or specific data access patterns that are fundamental to the
prediction algorithm. Increasing the branch target buffer (BTB), return address
stack (RAS), etc., may not improve the branch predictor. Similarly, larger capacities
and associativities may not remove caches’ contributions on complex access patterns.
We argue that performance cannot be effectively enhanced by only reassigning more
resources to them. The solution to the problem requires a suitable branch prediction
algorithm or a better cache replacement policy. We stop reassigning more resources
to branch predictors and caches in the DSE if the PPA improvement is limited.

Figure 6.10 provides an overview of a search path conducted by ArchExplorer. In
the second step, the report indicates that the microarchitecture lacks sufficient store
queues (SQ), which contribute 38% to the execution time. Thus, in the third step,
more SQ is assigned, resulting in an 8% alleviation of the bottleneck. In the fourth
step, increasing SQ further mitigates the bottleneck, while decreasing redundant re-
sources saves the area overhead. The DSE uncovers the reasons for PPA improve-
ments stepwise, highlighting potential optimization opportunities for the load-store
unit, with assigning more SQ being one optimization. Architects can gain valuable

insights into acquiring good solutions gradually. Black-box methods cannot offer the

130

SQ: 32 — 36

Bottleneck Report for the 44 ROB: 144 — 128

Bottleneck Report for the 3rd Design®

r
: Int/Fp RF: 144 — 128
, RAWH 10 0 " RAW] 0.21 '
: Base - 0.27 : : Base 10.26 :
+ DS Miss | 1017 : ' D$ Miss [T 0.15 :
Lack SQ - 027 :Lack SQ | 10.3 :
: 0 oL 02 <):r 0 0.1 0.2 0.3
e e e Contribution __ __ _ _ . e e e SQ: 28 — 32 IR
7 T ROB: 160 — 144
1.35 g 4Are318¢ IQ: 48 — 56
' 3_~ ce . Int/Fp RF: 166 — 144]. . . .
-~ IPC: 1.51 | e
8 Area 2.0 | : Bottleneck Report for the 2nd Design :
— 2 ' RAW 0.2 X
1.3 I T — '
' D$ Miss [70.14 :
'Lack SQ | 380
021 021 4 42 . acC. Q \038.
<1021 3.8 : * * * '
: 0 01 02 03 :
Power (W) Area (mm?) . Contribution .

Figure 6.10: An overview of a search path.

same merit.

6.5 Experimental Setup & Evaluation Metrics

In this section, we illustrate our experimental setup and evaluation metrics.

6.5.1 Simulation Environment

We use GEM5 [36, 123], as the timing-accurate simulator and McPAT [119] as the

power and area modeling tool. We modify GEM5 to generate dynamic timing infor-

mation and implement ArchExplorer with C++ and Python. SPEC CPU2006 [3, 83]

131

(SPEC06) and SPEC CPU2017 [7] (SPEC17) are utilized in benchmark evaluations,
as listed in Table 6.3. We use Simpoints [151] of each workload to evaluate. Each
Simpoint includes a hundred million instructions, warming up using ten million in-
structions. Since identifying the resource utilization status does not require the entire
workload, we use the first hundred thousand instructions of each Simpoint to calcu-
late the critical path with ArchExploer. After the DSE, the explored Pareto solutions
are re-evaluated with the full Simpoints.

We implement ArchRanker [48], AdaBoost [118], and BOOM-Explorer [28] as
baselines. ArchRanker [48] leverages a black-box model for ranking. AdaBoost [118]
also adopts machine-learning techniques [65, 165, 179]. BOOM-Explorer [28] uses
Bayesian optimization [54] with active-learning [209]. The baselines represent recent
solutions using advanced machine-learning techniques. We also compare with Calipers
[75] since it uses the previous DEG formulation to enhance fast DSE. Although some
baselines, like ArchRanker [48] and BOOM-Explorer [28], target different out-of-order
(O00) processors, their methods are transferable.

The design space of an OoO RISC-V processor similar to Alpha 21264 [104] is
listed in Table 6.4. A two-level cache hierarchy with a 16GB DRAM main memory
is applied. The first level cache is for optimization, while the L2 cache is 8-way
associative with 2MB. Diverse components like branch prediction units, functional
units, and L1 cache structures, etc., are included. The design space size is more than
8.9 x 10™. For ArchExplorer, we stop the optimization until we find that the PPA
trade-off curve starts to plateau. We generate the initial design randomly. Baseline
microarchitectures suggested by architects can also be leveraged in the initialization

stage to achieve better results. All weighted coefficients w; in Equation (6.2) are

132

Table 6.3: Workloads used for evaluation

‘ Benchmark suite ‘ # of Workloads ‘ Example Workloads
SPEC06 12 bzip2, namd, dealll, h264ref, soplex, povray, ...
SPEC17 14 perlbench_s, gce_s, cactuBSSN_s, nab_s, ...
o A .
=1 Y1 © Dominated Data
2 ~-Q Y O Pareto solutions
oo O . .: Pareto hypervolume
= @ : Y3

Vo Low Power

Figure 6.11: The visualization of Pareto hypervolume in Perf-Power space. Pareto hyper-
volume is the area bounded by P()) = {y1, Y2, Y3, ys} and the reference point vy.

1/|B| since we target average cases and assume no preference for workloads used in

experiments.

6.5.2 FEvaluation Metrics

Since we target multiple objectives involving higher performance, power efficiency,
and area efficiency, we use Pareto hypervolume as the evaluation metric to compare
different DSE algorithms fairly. Pareto hypervolume is a widely-applied metric to
measure how good the explored Pareto frontier is [174]. Denote a Pareto frontier
as P()) = {y1,¥2,.-,yn} C Y, with y; representing PPA values of i-th design,
and Y is the objective space. A reference point vy is set and dominated by P(}),

i.e., Vy; € P()), the PPA values are all better than vy, and we denote y; = vy.

133

Table 6.4: Microarchitecture design space specification

’ Components \ Description \ Hardware Resource \ # ‘
o : fetch/decode/rename/dispatch/ o 1
Pipeline width issue/writeback commit width L&l 8
Fetch buffer fetch buffer size in bytes 16, 32, 64 3
Fetch queue | fetch queue size in p-ops 8:48:4 11
. local predictor size of the
Local predictor Tournament BP 512, 1024, 2048 3
Global/Ch01ce global predictor size of the 9048, 4096, 8192 3
predictor Tournament BP
RAS return address stack size 16:40:2 13
BTB branch target buffer size 1024, 2048, 4096 3
ROB reorder buffer entries 32:256:16 15
Int RF number of physical 40:304:8 18
Integer registers
number of physical
Fp RF floating-point 40:304:8 18
registers
1Q number of .1nstruct10n 16:30-8 9
queue entries
LQ number of load queue entries 20:48:4 8
SQ number of store queue entries 20:48:4 8
IntALU number of integer ALUs 3:6:1 4
Int MultDiv numb.er‘of integer multipliers 1.2 9
and dividers
FpALU number of floating-point ALUs 1,2 2
: number of floating-point
FpMultDiv multipliers and dividers 1,2 2
I$ size the size of I$ in KB 16, 32, 64 3
I$ assoc. associative sets of 1$ 2,4 2
D$ size the size of D$ in KB 16, 32, 64 3
D$ assoc. associative sets of D$ 2,4 2
Total size 8.9649 x 10

L' The values are start number:end number:stride

134

Pareto hypervolume is defined as
PV, (PO) = [ty =i~] 1l # wldy. 63)
Y y.€P(Y)
where the integral sums the space bounded from vy to P(Y) [174], as shown in
Figure 6.11. We also include the number of simulations spent as another evaluation
metric. The higher the Pareto hypervolume and the fewer the simulations, the better

the DSE algorithm. We measure the PPA trade-off as Perf®/(Power x Area).

6.6 Results

In this section, we present our results with ArchExplorer.

6.6.1 Comparison w. DSE Methodologies

Figure 6.12 visualizes the Pareto hypervolume curves in terms of simulations for each
algorithm. The average PPA values among workloads are used in Pareto hypervol-
ume computing. The Pareto hypervolume is non-decreasing since more Pareto designs
are explored as simulations continue. It is worth noting that ArchExplorer achieves
higher Pareto hypervolume very early, and dominates other methods at different simu-
lation budgets. Two cases are selected for comparison to study the improved benefits.
First, how many simulations ° are needed when achieving a target Pareto hypervol-
ume? Second, how much Pareto hypervolume can be attained when all methods use

the same simulation budgets? We choose y = 15.80 and x = 3000 for SPEC06 and

5Compared to Calipers, the induced DEG has an average of 39.59% more vertices and 51.72%
fewer edges with SPEC17 Simpoints. In our experiments, the longest path evaluation in ArchEx-
plorer incurs 2.24% of the simulation runtime, which can be negligible.

135

y = 15.60 and x = 2400 for SPEC17 as two cases, as shown in Figure 6.12. We
chose these two cases for SPEC06 and SPEC17 because, at this moment, the perfor-
mance curves tend to converge. The corresponding results are shown in Table 6.5. In
SPEC06, compared to ArchRanker [48], AdaBoost [118], and BOOM-Explorer [28§],
ArchExplorer users 14.47% more, 24.56% fewer, and 74.12% fewer simulations when
y = 15.80, respectively. For x = 3000, the gained Pareto hypervolume of Arch-
Explorer surpasses BOOM-Explorer [28], AdaBoost [118], and ArchRanker [48] by
1.58%, 4.20%, and 3.32%, respectively. In SPEC17, ArchExplorer can save 74.63% of
simulation budgets at most and achieve 6.80% higher Pareto hypervolume. Particu-
larly, the relatively modest increases in Pareto hypervolume translate into significant
performance improvements. For example, when the simulation budget equals 480 in
SPEC17, the Pareto hypervolume of ArchExplorer is improved with an average of
5.40% than all AdaBoost [118]. However, the performance of Pareto designs is higher
up to 16.20%. The results demonstrate that ArchExplorer can achieve comparable
solution qualities by removing large simulation budgets. ArchRanker [48] compares
pairs of designs to determine which is better and conducts the constrained DSE with
a binary search. Due to the complicated design space introduced in Section 1.2, the
trained ranking model is hard to give accurate rankings when confronting a large
design space.

To figure out how ArchExplorer performs better than black-box methods, we plot
the Pareto frontiers of all methods with 3600 simulations in SPEC06, as shown in
Figure 6.13. In IPC-1/Power space, the Pareto frontiers of each method are relatively
close. However, in IPC-1/Area and Area/Power space, ArchExplorer’s Pareto fron-

tier dominates other methods in several regions, particularly close to the origin of

136

70T 8610°LT 1¢er0 09¢ 69¢0°T eLVE 91 88GC°0 804 1OI10[AX Y21y
GL10°T 9I¥.L 9T 7980 02T 4010°0 ¥480°91 ¥¥4L°0 7902 [8¢] w10[dXg-NO0d
G896°0 64€6°GT £€0L°0 80¢¢ 6¥86°0 G8L9°GT LVTT cele [811] 1s00gepy

! arar 91 ! 96¢T 1 G816°4T ! 9€LC [87] wesuey Iy
onpey | owmpoArodAYy ojoreq onjey 7 suoryenuuig jo # | oney 7 owmnoArRdAYy ojoreq oy 7 suorye[NuIg Jjo #
00F¢ = T e suoneWIS Jo # | 09'GT = /i ye awm[oAIadAY 0jo1Rd | O00E = T Je Suole[NWIS JO # | 08'CT = /i J8 owINjoAIddAY 0jaIR]

L1020 dD DHdS

900¢ndD DHJS

SpPoTIoIN

"Sosed omj Jepun uostredwo)) :G'9 9[qe],

137

SPEC CPU2006 results SPEC CPU2017 results

) [} s
y = 15.80] Y= 15.60—r—A—————
8 16 Lo == 5 1617 SEErT e
s : S 14 | !
S 14 f :) !
= 2 = 3000 2 12 2z = 2400 !
< | ~ I
o 12 | : o 10 \
45 1 463 1
E 1 ng 8 I 1
oW 10 | | 1 oW | 1 |
0 1200 2400 3600 0 1600 3200
Simulations Simulations
—— ArchRanker [12] —— AdaBoost [37]
—— BOOM-Explorer [§] ArchExplorer

Figure 6.12: The visualization of Pareto hypervolume curves in terms of the number of
simulations.

Area/Power space. The visualization suggests that ArchExplorer outperforms other
methods not by exploring more higher-performance microarchitectures but higher
power and area efficiency designs. Figure 6.13 also shows the PPA trade-off distri-
butions of Pareto designs for each method. ArchExplorer’s Pareto designs achieve
an average of 2.26 in the trade-off, surpassing BOOM-Explorer [28], AdaBoost [118],
and ArchRanker [48] by 15.81%, 7.47%, and 18.63%, respectively. These results
demonstrate that we can achieve a better PPA trade-off by assigning and removing
indispensable hardware resources based on their performance contribution.

Why can ArchExplorer surpass baselines? ArchExplorer can surpass DSE methods
with black-box models because previous methods [48,; 118, 28] rely on AdaBoost.RT
[118], Gaussian process [28], etc., to learn relationships between microarchitecture
features and PPA values. These models can be trained before or during DSE, but

they are purely algorithm-driven and do not consider microarchitecture analysis in

138

8 *e
| Do
1.5 } 1.5 .,.5&
*ii o o S S e }(:;& J
ok o i o N
O ke tans ® e S T
IR =1 ety T
X '.A *:xi'-: b &..
i h ¥F ey ony
L 1, -, LT "‘ty
0.5 : : — 0.5 4
5 10 15 0.1 0.2 0.3 0.4
1 1
Power o Area
NE 31
8 R 9oR A x"g‘% ’ g
< : :;f‘ %) Q 2 H H
5 6 oA Fi H
< e ?.} [a¥ %
. & 1y
’:-‘ﬁ-‘n
2 : : : 0 : : :
Power QP NSNS
N @"VQ@“:’Q
C\JQ Y’/ / ‘\Q
?;{’ O@ '(,CJ
o ¥
A%
ArchRanker’s [12] Explorations AdaBoost’s [37] Explorations
BOOM-Explorer’s [8] Explorations - ArchExplorer’s Explorations
+ ArchRanker’s [12] Pareto Frontier + AdaBoost’s [37] Pareto Frontier

- BOOM-Explorer’s [8] Pareto Frontier «ArchExplorer’ Pareto Frontier

Figure 6.13: The visualization of Pareto frontiers and the distributions of PPA trade-offs
for all methods.

139

depth. As a result, more simulations are required in the DSE. In contrast, Arch-
Explorer applies domain knowledge in DSE directly by identifying bottlenecks and
adjusting hardware resources to eliminate them, resulting in a better PPA balance im-
mediately. In summary, ArchExplorer’s explainable DSE process can provide insights

for architects that may not be available through an AT model.

6.6.2 Comparison w. Best Balanced Designs

To study how high-performance design balances PPA well, we rank the designs ex-
plored by each method with Perf?/(Power x Area) and select the ones with the highest
performance for comparison. Figure 6.14 lists the results for SPEC06 and SPEC17.
Table 6.6 lists key parameters of each Pareto design. For SPEC06, on average, Arch-
Explorer’s best balanced design achieves 1.53%, 16.65%, and 19.81% higher perfor-
mance than ArchRanker [48], AdaBoost [118], and BOOM-Explorer [28]. It also saves
power by 2.15% compared to AdaBoost’s [118]. ArchExplorer improves the area by
an average of 11.79%. Namely, ArchExplorer’s Pareto design is better than other
methods by an average of 56.05% and, at most, 64.29% in the PPA trade-off. In
SPEC17, ArchExplorer’s solution achieves an average of 9.46% higher performance.
While the solution sacrifices 5.54% more power compared to baselines, it attains a
20.07% smaller area and 49.53% higher PPA trade-off. Although the designs in Ta-
ble 6.6 look similar, big differences in the PPA trade-off are observed. The results
illustrate that better solutions are achieved by balancing resources. For example, the
ROB should not be allocated many entries compared to ArchRanker [48]. Other-
wise, it can degrade the overall performance by long squashing due to misprediction

events. Redundant resources like floating-point physical registers can worsen power

140

‘Tomod pue oourwLIO)IOd UL SUSISOP 0%0IRJ O} Uoomldq suostredwio)) {19 oInsr

wropdxyuory B [8] WIo[dXT-INOOI I [L€] Isoogepy mmE [¢1] 1oquRypIy I

& oo NI
y/koo»x%y S 4 ;a&u{amopu,@azﬁﬁ&mo Q S O ;o@o<@¢ooaaxqc,.&nw @ &)
&SR Q 4 TS QEFOR o LE S @ 4 & §F & QLT OR PP ®
& FE$ F TS F TS E S E s F ST F SEE S STt
Q> \ >) QO Q> N) 3
T & & FTEE N ST N TN F TS E N ST X SiPL
g 0 0 0
& T , . = , ::_: [[il ::_: ::_: . :_ L | ::_: - 0T 70
5 @ 3 :
Z L o 5 4
g E vo 2
x 9 mz = €
W g — 90
& o SYUSOI L1060dD DAdS
Q S X K
O K B« L& o«
O S Q& &7 4 ¥ & « D > R X
N K QT AV S . N 3 2 A X .
S &%& f S AT TSI g & & S E S ST &S
L XN & @ SR~ L) SR A PN @ K &g & O
o ¢ & F &S E F e T EE & F & F S S
unalv\ T i T O T T
W z W z0 M .
Z Voo 0
g g v0 =
% 9 Z, W
wv 8 90

SHNSOL 90050 dD DIIS

=
Q

dissipation compared to AdaBoost [118].

6.6.3 Comparison w. Calipers

Calipers [75] represent the latest critical path analysis method to enable fast DSE.
By scanning the design space, Calipers [75] assists in exploring high-performance
microarchitectures. We use a different experimental setup to demonstrate the superi-
ority in identifying the type of resources with the new DEG formulation over Calipers
[75]. Calipers [75] only targets performance and neglects the consideration for power
and area optimization. And it does not provide how to search except for applying
the previous DEG formulation in performance modeling with microexecution. On
the other hand, Calipers [75] can model more accurately with information like branch
prediction results and cache access penalties from the simulation. Hence, we extract
very similar 1296 designs from Table 6.4 and use Calipers [75] to sweep the design
space and retrieve the highest-performance solution. The reason are two folds. First,
it helps Calipers to obtain what it considers the global optimal solution for a fair
comparison. Second, very similar designs can expose modeling differences between
two DEG formulations in deep. We apply ArchExplorer to the same sub-design space
and compare the solutions in performance and power. Different from Calipers [75],
ArchExplorer does not scan the entire design space.

Results are shown in Figure 6.15. The solution found by ArchExplorer outper-
forms Caliper’s [75] by 2.11% in performance on average in SPEC06. And ArchEx-
plorer’ solution achieves 4.36% lower power and 2.38% lower area. In SPEC17, we
receive a 1.88% higher performance compared to Calipers [75]. The previous DEG

formulation incorrectly model the microexecution, leading to sub-optimal solutions.

142

Table 6.6: Key parameters of Pareto designs

Components AdaBoost [118] [ArchRanker [48] | BOOM-Explorer [28] [ArchExplorer
Pipeline width 8 8 8 8
ROB/IQ 176/56 192/72 112/44 176/72
Int/Fp RE 192/208 256,96 210,/192 210/30
LQ/SQ 1448 18/44 24/40 18/48
IntALU
IntMultDiv 5/ 4/2 4/2 4/2
FpALU
FpMultDiv 2/1 2/1 2/2 1/1
I$ 4-way 64K 2-way 64K 2-way 64K 4-way 64K
D$ 4-way 64K 2-way 64K 2-way 32K 4-way 64K

Calipers cannot identify which microarchitecture achieves higher performance with a
very small ROB resource difference. Conversely, ArchExplorer adopts the new DEG
formulation and attains better results by identifying the deficient resources more ac-
curately. Notably, these improved performance benefits are gained by only using
48 simulations in ArchExplorer for SPEC06 and SPEC17, respectively. In summary,
due to the more accurate and practical new DEG formulation, ArchExplorer performs

better than Calipers [75].

6.7 Discussions

The new DEG formulation can set up many research opportunities for microarchitec-
ture research.

Combine with machine learning (ML): The new DEG formulation provides
richer features for recent powerful deep learning models such as graph neural networks
[164, 198]. Performance modeling is possible by combining features extracted from

vertices and edges. Combining ML techniques and the new DEG formulation can

143

SPEC CPU2006 results SPEC CPU2017 results
I Calipers [24] =3 ArchExplorer

Figure 6.15: Comparisons w. Calipers [75].

also improve the DSE procedure.

Instruction scheduling: The instruction-level parallelism can be modeled by pro-
jecting “skewed” edges to the Y-axis. The projection length equals the degree of
parallelism. The information helps design new criticality-driven instruction schedul-
ing algorithms for new emerging workloads.

Multi-core formulation: Commodity microprocessors continue to scale in a number
of cores (96 cores in AMD EPYC Genoa [136], 64 Intel Raptor Cove in Emerald
Rapids [9]), given the technology scaling. Hence, the DEG formulation for multi-core

deserves exploitation. It is beneficial to find bottlenecks for a multi-core system.

6.8 Additional Related Work

Critical Path Analysis. Fields et al. are the first to propose the critical path

analysis with DEG to unveil bottlenecks in microexecution [68]. This approach has

144

been broadly used [67, 69, 137, 156, 116, 143, 144, 186, 75]. Behnam et al. adopt it to
remove bottlenecks in uniprocessors [156]. Nowatzki et al. extend Fields” model and
propose the transformable dependence graph (TDG) [143]. The TDG is further lever-
aged in modeling heterogeneous accelerators [144]. However, assigning dependencies
and weights without adhering to actual microexecution in TDG leads to inaccurate
resource contention modeling, as also mentioned in their work [144]. Lee et al. [116]
and Calipers [75] enable fast DSE for microarchitecture parameters also based on
Fields’ model. Compared to the prior works [116, 75|, ArchExplorer points out the
source of error for previous DEG formulations and proposes the design principles and
implementations accordingly. The new DEG formulation eliminates the limitations
of Fields” model.

Microarchitecture Design Space Exploration. Many works [133, 14, 39, 91, 115,
101, 59, 146, 116, 48, 118, 28, 75] proposed solutions to DSE for microarchitecture
parameters. They either leverage massive access to expert knowledge [100, 101, 63]
or require high computing resources to train a black-box model [48; 118, 28] to con-
duct the DSE. Compared to Karkhanis and Smith [101], ArchExplorer circumvents
the experts’ efforts by adopting an automated bottleneck analysis. Compared to
prior black-box methodologies [91, 115, 48, 118, 28], ArchExplorer conducts DSE by

uncovering the bottlenecks rather than relying on black-box models.

6.9 Summary

In this chapter, we discuss the problem of DSE for microarchitecture parameters. To

alleviate massive domain knowledge requirements for mechanistic models and to re-

145

duce high computing demands for black-box methods, we propose ArchExplorer, an
automated bottleneck analysis-driven DSE approach implementing two design prin-
ciples. Specifically, we propose a new DEG formulation for microexecution. An
optimal critical path construction algorithm is also proposed to capture hardware
resource utilization status. Several resource reassignment strategies are leveraged
to remove bottlenecks and trade-off PPA values. ArchExplorer achieves an average
of 6.80% Pareto hypervolume improvement and reduces more than 74.63% simula-
tion overheads compared to previous state-of-the-art solutions. The Pareto solutions
outperform previous approaches in performance by an average of 29.38% and PPA

trade-off improvement by at most 64.29%.

6.10 Artifact Appendix

6.10.1 Abstract

The artifact contains ArchExplorer’s codes and its setup and running descriptions. We
provide instructions and click-to-run scripts for reproducing the main results in this
chapter. Specifically, we reproduce the results of Figure 6.2, Figure 6.3, Figure 6.12,

Figure 6.13, Figure 6.14, and Figure 6.15.

6.10.2 Artifact check-list (meta-information)

e Code base: The code base of the artifact involves the entire implementation
of ArchExplorer. For example, the artifact contains the new DEG modeling,
critical path construction, bottleneck-removal-driven DSE, and automated sim-

ulator parallel compilation and simulations.

146

Run-time environment: We provided a Docker run-time environment for

users, which removes large burdens in setting up the environment.

Output: The outputs of the artifact are figures in PDF format to reproduce the

main results in this chapter.

Compilation, simulation & modeling: The artifact includes the automated
compilation of GEM5 simulators [36, 123] and the incorporation of power and

area modeling using McPAT [119].

Benchmarking scripts: We provide click-to-run bench-marking scripts to
evaluate ArchExplorer’s performance. Regarding users’ different time budgets
to run the artifact, we provide three modes to reproduce results. The script
exp_full mode.sh can reproduce the “full” results for this chapter (we term
this reproduction as the full mode), but it costs high runtime and machine
resources. The script exp_partial mode.sh demonstrates experimental results
with partial benchmarks in a relatively more efficient way compared to the full
mode. So, we denote it as the partial mode. The script exp_demo mode.sh is
also provided for users to fast experience the functions provided by our artifacts
(demo mode). We leverage RISC-V bare model benchmarks [1] in the demo

mode.

Documents: We provide detailed README.md documents to guide the Docker

environment setup, evaluation steps, and results demonstrations.

How much disk space required (approximately)?: The disk space should

be larger than 2 TB.

147

e How much time is needed to prepare workflow (approximately)?: It
takes several minutes to prepare the workflow if users have SPEC benchmarks
[3, 7] and corresponding Simpoint checkpoints [151]. The preparation includes
the SPEC benchmarks set up and configurations of some benchmarks. Due to
the SPEC license restrictions, we are unable to publicly distribute the SPEC
benchmarks. For SPEC CPU2017, users are also required to prepare Simpoints
checkpoints. The necessary directory trees for both benchmarks are listed in the
README.md file, along with detailed instructions on how to map users’ provided
benchmarks to the pulled Docker environment that we have prepared. In the
Docker environment, certain benchmarks need to be reconfigured to support
the simulations. Otherwise, the simulation would get stuck and restrict to
reproduction of results. The methods to reconfigure these benchmarks are also
listed in README.md. However, we provide scripts that allow the reproduction
of results without reconfiguration of certain benchmarks, i.e., partial mode.
As a result, the expected outcomes and results may differ between the partial
mode and full mode. However, the generated figures using the partial mode do
not affect the conclusions claimed in this chapter. Furthermore, results could
be different if distinct Simpoints checkpoints are leveraged in the experiments.

The Simpoints checkpoints settings are also mentioned in README . md.

e How much time is needed to complete experiments (approximately)?:
For high-end Linux machines, such as 80 cores of Intel(R) Xeon(R) CPU E7-
4820 v3 @ 1.90GHz with 1 TB of main memory, the full mode takes approxi-
mately 15 days. The partial mode costs about 9 days. The demo mode consumes

around 5 hours, but it only reproduces Figure 6.2 and Figure 6.3.

148

6.10.3 Description
How to access

The artifact is archived in Zenodo 6.

Hardware dependencies

The artifact requires a high-end Linux machine with at least 2 TB of disk space.
The main memory should be at least 64 GB to support parallel compilation and
simulations.

For reference, we list our system configurations here:

e OS: Ubuntu 18.04
e CPU: Intel Xeon Platinum 8163 CPU @ 2.50GHz (96 cores)
e DRAM: 400 GB

e 96 TB

Software dependencies

The software dependencies are resolved by our provided Docker environment. Users
are required to support Docker commands in the machines if using our provided

Docker environment.

6.10.4 Installation

The installation requires two steps, as listed below.

Shttps://doi.org/10.5281/zenodo.8353864

149

https://doi.org/10.5281/zenodo.8353864

1

2

10

11

SPEC CPU benchmarks installation

This step may take some time since it is necessary to prepare for the workflow. Due
to the SPEC CPU benchmarks license, we cannot release benchmarks to the public.
Users need to prepare SPEC CPU benchmarks and install them in a manner w.r.t. our
accepted directories trees. More detailed information about Simpoints settings and
accepted directories trees are instructed in the README.md file. Assume the SPEC

CPU benchmarks have been installed in /path/to/benchmarks.

Code installation

Download and decompress the artifact, and pull and install the Docker image.

$ unzip arch-explorer.zip

$ cd arch-explorer-main

$ docker run -it -d \

--name micro23 \

--hostname micro23 \

--network=host \

-v $(pwd) : /root/workspace/arch-explorer \

-v /path/to/benchmarks: \
/root/workspace/benchmarks \

-w /root/workspace \

docker.io/troore/arch-explorer:2.0

$ docker exec -it micro23 /bin/bash

Since users have already set the directories mapping strategy by executing the

150

Docker “run” command, codes should be placed in /root/workspace/arch-explorer,
and SPEC CPU benchmarks should be placed in /root/workspace/benchmarks

when users enter the Docker environment using the “exec” command.

6.10.5 Experiment workflow
Basic Setup

After users enter the docker image using the exec command, execute the following

commands to build configurable infrastructures that ArchExplorer depends on.

1 $ cd /path/to/arch-explorer
2 $./tools/settings.sh

3 $ export PYTHONPATH=pwd"

Run experiments with three modes

There are three possible factors that will probably prevent users reproducing our

results:

e benchmark availability

e hard-coded workload absolute paths

e long runtime

We assume that SPEC CPU benchmarks are available for users. However, if

it is not true, we provide a demo mode for users successfully run through some of

151

our experiments. Under the demo mode, we use open source RISC-V bare model
benchmarks [1] rather than SPEC CPU benchmarks.

Moreover, some SPEC benchmarks MUST contain hard-coded workloads absolute
paths, e.qg., 464.h264ref from SPEC CPU2006 benchmark. These hard-coded absolute
paths would prevent users reproducing results in a push-button way. Human efforts
are required to configure the hard-coded absolute paths before results related to these
benchmarks are expected.

Last, the whole process for reproducing all results in this chapter will take approx-
imately 15 days on our testing systems (for high-end Linux server machines, e.g., 96
cores of Intel Xeon Platinum 8163 CPU @ 2.50GHz with 400 GB main memory).

Therefore, if users have SPEC CPU benchmarks, and do not want to manually
resolve the hard-coded absolute paths, or cannot accept the long runtime, we set the
partial mode in which only the benchmarks without hard-coded absolute paths will
be run.

We also provide the full mode which can reproduce the experimental results with
all utilized benchmarks as in this chapter.

Which mode to choose depends on your time budget.

Commands for three modes

In the Docker environment, enter the artifacts directory.

1 $ cd arch-explorer/artifacts/

The steps for running experiments with three modes are shown below.

152

I

=]

$./exp_demo_mode.sh # demo mode: about 5 \
hours, but only reproduce \
Figure 2 and Figure 3.

$./exp_partial_mode.sh # partial mode: about |\
9 days, and can reproduce all figures.

$./exp_full_mode.sh # full mode: about \

15 days, and can reproduce all figures.

6.10.6 Evaluation and expected results

Results are figures in PDF format. The demo and partial mode have some distinctions
from the figures in the chapter due to the different workloads utilized in the experi-
ments. However, the generated figures do not affect the conclusions claimed in this
chapter. Results are stored in respective sub-directories in artifacts, and the paths

of these results are demonstrated in the README.md file.

6.10.7 Notes
Benchmark reconfiguration for full mode

Before running in full mode, users are required to reconfigure SPEC CPU benchmarks.
Otherwise, those benchmarks would fail in simulations and prevent the entire DSE
process from continuing to run. These benchmarks are 464.h264ref, 600.perlbench s,
623.xalanchmk_s, 625.x264_s, and 638.imagick_s, where 464.h264ref is from SPEC
CPU2006 benchmarks, and others are from SPEC CPU2017 benchmarks.

153

For the detailed steps of the reconfiguration, please refer it to in the README . md.

About README.md

The README.md documents of the artifact provide additional information on the il-

lustration of code organizations and detailed steps regarding running experiments.

154

Chapter 7

Conclusion and Future Work

In this thesis, we have presented a series of research outcomes to tackle microproces-
sor microarchitecture design space exploration. In this chapter, we summarize the

proposed methodologies and then discuss the future work.

7.1 Summary

During years of recent research, we delve into the problem stepwise, proposing method-
ologies from black-box to white-box, from data-driven to interpretable, and from

statistical techniques to formal analysis. [28, 29, 120, 31, 27|

e In Chapter 3, we present BOOM-Explorer, using a customized Bayesian op-
timization flow for the DSE of the RISC-V BOOM microprocessor. With
a dedicated initialization algorithm (MicroAL), a powerful surrogate model
(DKL-GP), a negatively correlated multi-objective exploration (EIPV), and a

diversity-guided enhancement, we make the DSE of microprocessor microar-

155

chitectures at the RTL level for the first time. Experiments using commercial
electronic design automation (EDA) tools at 7-nm technology demonstrate that
BOOM-Explorer can outperform previous representative arts by an average of
18.75% higher Pareto hypervolume, 34.57% less average distance to reference
set (ADRS), and 65.38% less overall running time (ORT).

In Chapter 4, we propose a reinforcement learning pathway, pointing out the
mathematical limitations of previous data-driven methodologies, e.g., using the
Gaussian process. The formulated Markov decision process is tightly coupled
with the microarchitecture scaling graph, and a single agent trained using enve-
lope learning can explore different designs with diverse PPA preferences. The
solution achieves an average PPA trade-off improvement of 16.03% compared

to previous works, with 4.07x higher efficiency.

In Chapter 5, we provide a microarchitecture DSE open benchmarking platform,
which has been used in the CAD Contest of ICCAD in 2022. We release the
benchmarking tools, associated data set, and online team ranking platform,

expecting researchers worldwide to propose better algorithms than the baseline.

In Chapter 6, we perform massive simulation analysis for microexecutions with
different microarchitectures and workloads. We demonstrate the error sources
of previous dynamic event-dependence graph formulation in the critical path
analysis. We summarize the learned lessons from error sources and propose
a new graph representation of microexecutions based on two design principles
for an explainable DSE process. ArchExplorer, a DSE algorithm via bottleneck

analysis, can search for Pareto-optimal solutions and elucidate how to find them

156

stepwise. Experiments show that ArchExplorer can find better Pareto PPA
microarchitectures with an average of 6.80% higher Pareto hypervolume using

at most 74.63% fewer simulations than state-of-the-art approaches.

It is noted that all research outcomes mentioned above are open-sourced for the
community. We help researchers worldwide to reproduce our published experimental
results and expect innovations and better achievements than our methodologies. The

links to the codes are shown below.

e BOOM-Explorer: https://github.com/baichen318/boom-explorer-public.
e Reinforcement learning pathway: https://github.com/baichen318/rl-explorer.

e Microarchitecture DSE open benchmarking platform: https://github.com/

iccad-contest.

e ArchExplorer: https://github.com/baichen318/arch-explorer.

7.2 Future Work

Although we have presented methodologies proposed in these years of research, many
problems remain to be answered, and we leave these problems as future work, as
summarized below.

First, we have provided design space exploration at the microarchitectural level
but omit characteristics of circuit implementations. A design space exploration
that considers architecture and circuit implementation for design technology co-
optimization (DTCO) remains to be discussed. For example, the interaction be-

tween microarchitectural parameters and the robustness of voltage change or dynamic

157

https://github.com/baichen318/boom-explorer-public
https://github.com/baichen318/rl-explorer
https://github.com/iccad-contest
https://github.com/iccad-contest
https://github.com/baichen318/arch-explorer

voltage and frequency scaling (DVFS) capability for different workloads is unknown.
What kind of microarchitecture parameters are sensitive when we dynamically change
the frequency or voltage for each functional block, e.g., a wide issue width to com-
pensate for the performance loss if a base clock speed is enabled for handling light
workloads [201, 202]? The research direction requires domain knowledge combining
computer architecture, electronic design automation, and microelectronics.

Second, many domain-specific accelerators have emerged except for microproces-
sors, especially machine learning accelerators [58, 50, 51, 82, 105, 71, 193, 97, 176,
72, 73, 15, 96]. How to design an appropriate DSE algorithm for domain-specific
accelerators is a hot research topic and valuable future work [212]. The PPA models
for deep learning accelerators have been proposed, and many DSE algorithms have
been published based on these tools [148; 113]. Similarly, the DSE algorithms can
be categorized as white-box and black-box methodologies [87, 99, 110]. The search
objectives can be PPA values or other metrics related to economic costs, such as total
cost of ownership (TCO) [212]. Different from the DSE of microprocessor microarchi-
tecture, the DSE algorithms for deep learning accelerators can focus on the hardware
and software levels due to the characteristics of domain-specific applications [203, 12].

Third, design space exploration is only one small problem in computer archi-
tecture research. With the fast-changing nature of our application, a higher-level
problem is how to build a better computer architecture or microarchitecture to ex-
ecute newly-emerged applications efficiently due to the limitations of conventional
microprocessors [17]. The key point is to analyze the characteristics of applications
and extract more parallelism, including instruction level, memory level, etc.. Re-

garding emerging massive uncertainty in Al workloads nowadays, dataflow architec-

158

ture, which contrasts with the traditional von Neumann architecture, may be revived
(175, 191, 142, 32]. A fundamental distinction from traditional control-flow-based
microprocessors is the execution model. Namely, in dataflow architecture, the exe-
cutability and execution of instructions are solely determined based on the availability
of input operands to the instructions [55, 192, 88]. Many dataflow computers have
been proposed in history [79, 149, 89, 177, 147, 77, 21, 140, 138, 160]. Nevertheless,
these dataflow computers failed in the commercialization. One significant factor is
the high difficulty of developing the code generation framework for dataflow architec-
ture [57, 139, 56]. Nowadays, Al algorithm innovation promotes new applications and
rekindles the hope for dataflow architecture. High investment is made, and new pro-
totypes emerge [161, 90, 74]. We also propose Klotski, the latest research prototype
of dataflow architecture accelerators for deep neural network applications [30]. Fu-
ture work could focus on code generation for dataflow computers and the application
of dataflow computers to new workloads like robotics. Another promising research
direction could focus on three-dimensional computer architecture and implementa-
tion [122]. Although the research topic has been discussed for many years [37], we
have witnessed the emergence of prototypes and commercial products [199, 76]. For
example, TSMC has announced 3D Fabric technologies to build 3D silicon stacking
chips [10]. However, many problems regarding the architecture technology co-design

need to be sufficiently discussed in the future.

159

References

[9]

[10]

[11]

2013. Official RISC-V Benchmark Suites. https://github.com/
riscv-software-src/riscv-tests.

2018. SEMICO Research & Consulting Group. SoC Silicon and Software 2018
Design Cost Analysis: How Rising Costs Impact SoC Design Starts. https:
//semico.com/sites/default/files/TOC_SC103-18_1.pdf.

2018. SPEC CPU 2006. https://www.spec.org/cpu2006/.

2019. RISC-V Specifications Volume 1, Unprivileged Specification ver-
sion 20191213. https://drive.google.com/file/d/1s01ZxUZaa7eV_00_
WsZzaurFLLww7oub/view?usp=drive_link.

2021. RISC-V Specifications Volume 2, Privileged Specifica-
tion version 20211203. https://drive.google.com/file/d/
1EMip5dZ1nypTk7pt4WWUKmt jUKTOkBgh/view?usp=drive_link.

2022. CAD Contest at ICCAD. https://iccad-contest.org/.
2022. SPEC CPU 2017. https://www.spec.org/cpu2017/.

2023. Tenstorrent RISC-V OoO Superscalar Processor Family. https://
tenstorrent.com/risc-v/.

2024. Intel Emerald Rapids. https://en.wikipedia.org/wiki/Emerald_
Rapids.

2024. TSMC 3DFabric Technology. https://3dfabric.tsmc.com/english/
dedicatedFoundry/technology/3DFabric.htm.

2024. What is Functional ECO? https://www.synopsys.com/glossary/
what-is-functional-eco.html.

160

https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://semico.com/sites/default/files/TOC_SC103-18_1.pdf
https://semico.com/sites/default/files/TOC_SC103-18_1.pdf
https://www.spec.org/cpu2006/
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?usp=drive_link
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?usp=drive_link
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
https://iccad-contest.org/
https://www.spec.org/cpu2017/
https://tenstorrent.com/risc-v/
https://tenstorrent.com/risc-v/
https://en.wikipedia.org/wiki/Emerald_Rapids
https://en.wikipedia.org/wiki/Emerald_Rapids
https://3dfabric.tsmc.com/english/dedicatedFoundry/technology/3DFabric.htm
https://3dfabric.tsmc.com/english/dedicatedFoundry/technology/3DFabric.htm
https://www.synopsys.com/glossary/what-is-functional-eco.html
https://www.synopsys.com/glossary/what-is-functional-eco.html

[12]

[13]

[14]

[15]

[18]

[19]

Mohamed S Abdelfattah, Lukasz Dudziak, Thomas Chau, Royson Lee, Hyeji
Kim, and Nicholas D Lane. 2020. Best of Both Worlds: AutoML Codesign
of a CNN and its Hardware Accelerator. In ACM/IEEE Design Automation
Conference (DAC). IEEE, 1-6.

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckel-
macher. 2019. Dynamic Weights In Multi-objective Deep Reinforcement Learn-
ing. In International Conference on Machine Learning (ICML). PMLR, 11-20.

Santosh G Abraham and B Ramakrishna Rau. 2000. Efficient Design Space
Exploration in PICO. In International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems (CASES). T1-79.

Dennis Abts, Garrin Kimmell, Andrew Ling, John Kim, Matt Boyd, Andrew
Bitar, Sahil Parmar, Ibrahim Ahmed, Roberto DiCecco, David Han, et al. 2022.
A Software-defined Tensor Streaming Multiprocessor for Large-scale Machine

Learning. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). 567-580.

Abien Fred Agarap. 2018. Deep Learning using Rectified Linear Units (ReLU).
arXiv preprint arXiw:1803.08375 (2018).

Vikas Agarwal, MS Hrishikesh, Stephen W Keckler, and Doug Burger. 2000.
Clock Rate versus IPC: The End of the Road for Conventional Microarchi-

tectures. In IEFEE/ACM International Symposium on Computer Architecture
(ISCA). 248-259.

Ayaz Akram and Lina Sawalha. 2019. Validation of the GEM5 Simulator for
x86 Architectures. In IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). IEEE, 53-58.

A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A.
Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright, J.
Zhao, Y. S. Shao, K. Asanovi¢, and B. Nikoli¢. 2020. Chipyard: Integrated
Design, Simulation, and Implementation Framework for Custom SoCs. [EFE
Micro 40, 4 (2020), 10-21.

Jennifer M Anderson, Lance M Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R Henzinger, Shun-Tak A Leung, Richard L Sites, Mark T Vande-
voorde, Carl A Waldspurger, and William E Weihl. 1997. Continuous Profiling:
Where Have All The Cycles Gone? ACM Transactions on Computer Systems
(TOCS) 15, 4 (1997), 357-390.

161

[21]

22]

23]

[26]

[28]

[29]

K Arvind and Rishiyur S Nikhil. 1990. Executing a Program on the MIT
Tagged-Token Dataflow Architecture. IEEE Trans. Comput. 39, 3 (1990), 300
318.

Krste Asanovic, David A Patterson, and Christopher Celio. 2015. The Berke-
ley Out-of-order Machine (BOOM): An Industry-competitive, Synthesizable,
Parameterized RISC-V Processor. (2015).

Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup
Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto,
Albert Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen
Twigg, Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator.
UCB/EECS-2016-17 (Apr 2016). http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-17 .html

Todd Austin, Eric Larson, and Dan Ernst. 2002. SimpleScalar: An Infrastruc-
ture for Computer System Modeling. Computer 35, 2 (2002), 59-67.

Omid Azizi, Aqgeel Mahesri, Benjamin C Lee, Sanjay Jeram Patel, and Mark
Horowitz. 2010. Energy-performance Tradeoffs in Processor Architecture and
Circuit Design: a Marginal Cost Analysis. In IEEE/ACM International Sym-
posium on Computer Architecture (ISCA). 26-36.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: Con-
structing Hardware in a Scala Embedded Language. In ACM/IEEE Design
Automation Conference (DAC). 1212-1221.

Chen Bai, Jiayi Huang, Xuechao Wei, Yuzhe Ma, Sicheng Li, Hongzhong Zheng,
Bei Yu, and Yuan Xie. 2023. ArchExplorer: Microarchitecture Exploration Via
Bottleneck Analysis. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 268-282.

Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin DF Wong.
2021. BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Explo-
ration Framework. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 1-9.

Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin DF Wong.
2023. BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Ex-

162

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[30]

[31]

32]

ploration. ACM Transactions on Design Automation of FElectronic Systems

(TODAES) (2023).

Chen Bai, Xuechao Wei, Youwei Zhuo, Yi Cai, Hongzhong Zheng, Bei Yu,
and Yuan Xie. 2023. Klotski: DNN Model Orchestration Framework for
Dataflow Architecture Accelerators. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1-9.

Chen Bai, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin D. F. Wong.
2024. Towards Automated RISC-V Microarchitecture Design with Reinforce-
ment Learning. AAAI Conference on Artificial Intelligence 38, 1, 12-20.
https://doi.org/10.1609/aaai.v38i1.27750

Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven
Hand, Daniel Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy,
et al. 2022. Pathways: Asynchronous Distributed Dataflow for ML. Machine
Learning and Systems (MLSys) 4 (2022), 430-449.

Scott Beamer and David Donofrio. 2020. Efficiently Exploiting Low Activ-
ity Factors to Accelerate RTL Simulation. In ACM/IEEE Design Automation
Conference (DAC). 1-6.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. 2019. Max-value
Entropy Search for Multi-objective Bayesian Optimization. Annual Conference
on Neural Information Processing Systems (NIPS) 32 (2019).

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. 2011. Al-
gorithms for Hyper-parameter Optimization. Annual Conference on Neural
Information Processing Systems (NIPS) 24 (2011).

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, So-
mayeh Sardashti, et al. 2011. The GEM5 Simulator. ACM SIGARCH computer
architecture news 39, 2 (2011), 1-7.

Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei Jiang,
Gabriel H Loh, Don McCaule, Pat Morrow, Donald W Nelson, Daniel Pantuso,
et al. 2006. Die Stacking (3D) Microarchitecture. In IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 469-479.

Pradip Bose. 2021. The POWER Processor Family: A Historical Perspective
From the Viewpoint of Presilicon Modeling. IEEE Micro 41, 6 (2021), 71-77.

163

https://doi.org/10.1609/aaai.v38i1.27750

[39]

[42]

[43]

David Brooks, Pradip Bose, Viji Srinivasan, Michael K Gschwind, Philip G
Emma, and Michael G Rosenfield. 2003. New Methodology for Early-stage,
Microarchitecture-level Power-performance Analysis of Microprocessors. IBM
Journal of Research and Development 47, 5.6 (2003), 653-670.

D. Brooks, V. Tiwari, and M. Martonosi. 2000. Wattch: A Framework for
Architectural-level Power Analysis and Optimizations. In IEEFE/ACM Interna-
tional Symposium on Computer Architecture (ISCA). 83-94.

J Adam Butts and Gurindar S Sohi. 2000. A Static Power Model for Architects.
In IEEE/ACM International Symposium on Microarchitecture (MICRO). 191
201.

Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In ACM/IEEE Supercomputing Conference (SC). 1-12.

Trevor E Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven
Eeckhout. 2014. An Evaluation of High-level Mechanistic Core Models. ACM
Transactions on Architecture and Code Optimization (TACO) 11, 3 (2014), 1-
25.

Christopher Patrick Celio. 2017. A Highly Productive Implementation of an
Out-of-Order Processor Generator. University of California, Berkeley.

Po-Yung Chang, Marius Evers, and Yale N Patt. 1997. Improving Branch
Prediction Accuracy by Reducing Pattern History Table Interference. Springer
International Journal of Parallel Programming 25 (1997), 339-362.

Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu,
Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, et al. 2020. Xuantie-910: A
Commercial Multi-core 12-stage Pipeline Out-of-Order 64-bit High Performance
RISC-V Processor with Vector Extension: Industrial product. In IEEE/ACM
International Symposium on Computer Architecture (ISCA). IEEE, 52-64.

Tianqgi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In ACM International Conference on Knowledge Discovery and Data
Mining (KDD). 785-794.

Tianshi Chen, Qi Guo, Ke Tang, Olivier Temam, Zhiwei Xu, Zhi-Hua Zhou,
and Yunji Chen. 2014. ArchRanker: A Ranking Approach to Design Space Ex-

ploration. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). IEEE.

164

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Yu-Guang Chen, Chun-Yao Wang, Tsung-Wei Huang, and Takashi Sato. 2022.
Overview of 2022 CAD Contest at ICCAD. In IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). 1-3.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Ar-
chitecture for Energy-Efficient Dataflow for Convolutional Neural Networks.
In IEEE/ACM International Symposium on Computer Architecture (ISCA).
IEEE, 367-379.

Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. 2016. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neu-
ral Networks. In IEEE International Solid-State Circuits Conference (ISSCC).
IEEE, 262-263.

George Z Chrysos and Joel S Emer. 1998. Memory Dependence Prediction Using
Store Sets. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). IEEE, 142-153.

Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh
Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. 2016.
ASAPT7: A 7-nm FinFET Predictive Process Design Kit. Microelectronics Jour-
nal 53 (2016), 105-115.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Differentiable
Expected Hypervolume Improvement for Parallel Multi-objective Bayesian Op-
timization. Annual Conference on Neural Information Processing Systems

(NIPS) 33 (2020), 9851-9864.

Jack B Dennis. 1980. Data Flow Supercomputers. Computer 13, 11 (1980),
48-56.

Jack B Dennis. 2005. First Version of a Data Flow Procedure Language. In
Programming Symposium: Proceedings, Colloque sur la Programmation Paris,
April 9-11, 1974. Springer, 362-376.

Jack B Dennis and David P Misunas. 1974. A Preliminary Architecture for a
Basic Data-Flow Processor. In IEEE/ACM International Symposium on Com-
puter Architecture (ISCA). 126-132.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting
Vision Processing Closer to the Sensor. In IEEE/ACM International Symposium
on Computer Architecture (ISCA). 92-104.

165

[59]

[60]

[61]

[62]

[63]

[64]

Christophe Dubach, Timothy Jones, and Michael O’Boyle. 2007. Microarchi-
tectural Design Space Exploration Using an Architecture-centric Approach. In
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
262-271.

Christophe Dubach, Timothy M Jones, and Michael FP O’Boyle. 2008. Ex-
ploring and predicting the architecture/optimising compiler co-design space. In
International Conference on Compilers, Architecture, and Synthesis for Embed-

ded Systems (CASES). 31-40.

Philip G Emma. 1997. Understanding Some Simple Processor-performance Lim-
its. IBM Journal of Research and Development 41, 3 (1997), 215-232.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith. 2006. A
Performance Counter Architecture for Computing Accurate CPI Components.

ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) 41, 11 (2006), 175-184.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith. 2009. A
Mechanistic Performance Model for Superscalar Out-of-order Processors. ACM
Transactions on Computer Systems (TOCS) 27, 2 (2009), 1-37.

M. L. Fair, C. R. Conklin, S. B. Swaney, P. J. Meaney, W. J. Clarke, L. C.
Alves, I. N. Modi, F. Freier, W. Fischer, and N. E. Weber. 2004. Reliability,
Availability, and Serviceability (RAS) of the IBM eServer z990. IBM Journal
of Research and Development 48, 3.4 (2004), 519-534. https://doi.org/10.
1147/rd.483.0519

Kai-Tai Fang and Yuan Wang. 1993. Number-theoretic Methods In Statistics.
Vol. 51. CRC Press.

Johannes Feldmann, Kira Kraft, Lukas Steiner, Norbert Wehn, and Matthias
Jung. 2020. Fast and Accurate DRAM Simulation: Can We Further Accel-
erate It?. In IEEE/ACM Proceedings Design, Automation and Test in FEurpoe
(DATE). 364-369.

Brian Fields, Rastislav Bodik, and Mark D Hill. 2002. Slack: Maximizing Per-
formance Under Technological Constraints. In IEEE/ACM International Sym-
posium on Computer Architecture (ISCA). IEEE, 47-58.

Brian Fields, Shai Rubin, and Rastislav Bodik. 2001. Focusing Processor Poli-
cies via Critical-path Prediction. In IEEE/ACM International Symposium on
Computer Architecture (ISCA). IEEE, 74-85.

166

https://doi.org/10.1147/rd.483.0519
https://doi.org/10.1147/rd.483.0519

[69]

[70]

[71]

[72]

[74]

Brian A Fields, Rastislav Bodik, Mark D Hill, and Chris J Newburn. 2003. Using
Interaction Costs for Microarchitectural Bottleneck Analysis. In IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 228-239.

Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An Efficient
Boosting Algorithm for Combining Preferences. Journal of Machine Learning
Research (JMLR) 4, Nov (2003), 933-969.

Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis.
2017. Tetris: Scalable and Efficient Neural Network Acceleration with 3D
Memory. In ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). 751-764.

Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis.
2019. Tangram: Optimized Coarse-Grained Dataflow for Scalable NN Acceler-
ators. In ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). 807-820.

Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav
Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, et al. 2021.
Gemmini: Enabling Systematic Deep-learning Architecture Evaluation via Full-
stack Integration. In ACM/IEEE Design Automation Conference (DAC). IEEE,
769-774.

Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony
Nowatzki, Nathan Beckmann, and Brandon Lucia. 2022. RipTide: A
Programmable, Energy-Minimal Dataflow Compiler and Architecture. In
IEEE/ACM International Symposium on Microarchitecture (MICRO). 546-564.
https://doi.org/10.1109/MICR056248.2022. 00046

Hossein Golestani, Rathijit Sen, Vinson Young, and Gagan Gupta. 2022.
Calipers: A Criticality-aware Framework for Modeling Processor Performance.
ACM International Conference on Supercomputing (1CS) (2022).

Wilfred Gomes, Altug Koker, Pat Stover, Doug Ingerly, Scott Siers, Srikrishnan
Venkataraman, Chris Pelto, Tejas Shah, Amreesh Rao, Frank O’Mahony, et al.
2022. Ponte Vecchio: A Multi-Tile 3D Stacked Processor for Exascale Comput-
ing. In IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65.
IEEE, 42-44.

V Gerald Grafe and Jamie E Hoch. 1990. The Epsilon-2 Multiprocessor System.
J. Parallel and Distrib. Comput. 10, 4 (1990), 309-318.

167

https://doi.org/10.1109/MICRO56248.2022.00046

78]

[82]

[36]

[87]

Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A
Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas
Sinha, et al. 2020. Evolution of the Samsung Exynos CPU Microarchitecture.
In IEEE/ACM International Symposium on Computer Architecture (ISCA).
IEEE, 40-51.

John R. Gurd, Chris C. Kirkham, and Ian Watson. 1985. The Manchester
Prototype Dataflow Computer. Commun. ACM 28, 1 (1985), 34-52.

Anthony Gutierrez, Joseph Pusdesris, Ronald G Dreslinski, Trevor Mudge,
Chander Sudanthi, Christopher D Emmons, Mitchell Hayenga, and Nigel Paver.
2014. Sources of Error in Full-system Simulation. In IEEFE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). IEEE,
13-22.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-Critic: Off-policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. In International Conference on Machine Learning (ICML).

PMLR, 1861-1870.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. 2016. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. In IEEE/ACM International Symposium
on Computer Architecture (ISCA). IEEE, 243-254.

John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1-17.

Mark D Hill and Alan Jay Smith. 1989. Evaluating Associativity in CPU
Caches. IEEE Trans. Comput. 38, 12 (1989), 1612-1630.

MS Hrishikesh, Norman P Jouppi, Keith I Farkas, Doug Burger, Stephen W
Keckler, and Premkishore Shivakumar. 2002. The Optimal Logic Depth per
Pipeline Stage is 6 to 8 FO4 Inverter Delays. In IEEE/ACM International
Symposium on Computer Architecture (ISCA). IEEE, 14-24.

M. Y. Hsiao, W. C. Carter, J. W. Thomas, and W. R. Stringfellow. 1981. Re-
liability, Availability, and Serviceability of IBM Computer Systems: A Quarter
Century of Progress. IBM Journal of Research and Development 25, 5 (1981),
453-468. https://doi.org/10.1147/rd.255.0453

Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kala-
iah, James Demmel, John Wawrzynek, and Yakun Sophia Shao. 2021.

168

https://doi.org/10.1147/rd.255.0453

[33]

[89]

[90]

[91]

[92]

93]

[94]

[95]

[96]

CoSA: Scheduling by Constrained Optimization for Spatial Accelerators.
In IEEE/ACM International Symposium on Computer Architecture (ISCA).
[EEE, 554-566.

Ali R Hurson and Krishna M Kavi. 2007. Dataflow Computers: Their History
and Future. Wiley Encyclopedia of Computer Science and Engineering (2007).

W. Hwu and Y. N. Patt. 1986. HPSm, A High Performance Restricted Data
Flow Architecture Having Minimal Functionality. In IEEE/ACM International
Symposium on Computer Architecture (ISCA) (Tokyo, Japan). 297-306.

Drago Ignjatovi¢, Daniel W. Bailey, and Ljubisa Baji¢. 2022. The Wormhole
AT Training Processor. In IEEFE International Solid-State Chircuits Conference
(ISSCC), Vol. 65. 356-358. https://doi.org/10.1109/ISSCC42614.2022.
9731633

Engin Ipek, Sally A McKee, Rich Caruana, Bronis R de Supinski, and Martin
Schulz. 2006. Efficiently Exploring Architectural Design Spaces Via Predictive
Modeling. ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) 40, 5 (2006), 195-206.

Engin Ipek, Sally A McKee, Karan Singh, Rich Caruana, Bronis R de Supinski,
and Martin Schulz. 2008. Efficient Architectural Design Space Exploration via
Predictive Modeling. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 4, 4 (2008), 1-34.

Hanhwi Jang, Jae-Eon Jo, Jaewon Lee, and Jangwoo Kim. 2018. RpStacks-
MT: A High-throughput Design Evaluation Methodology for Multi-core Proces-
sors. In IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 586-599.

PJ Joseph, Kapil Vaswani, and Matthew J Thazhuthaveetil. 2006. Construction
and Use of Linear Regression Models for Processor Performance Analysis. In
IEEFE International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 99-108.

Norman P. Jouppi. 1989. The Nonuniform Distribution of Instruction-level and
Machine Parallelism and Its Effect on Performance. IEEE Trans. Comput. 38,
12 (1989), 1645-1658.

Norman P Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan,
Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles,
et al. 2023. TPU v4: An Optically Reconfigurable Supercomputer for Machine

169

https://doi.org/10.1109/ISSCC42614.2022.9731633
https://doi.org/10.1109/ISSCC42614.2022.9731633

[98]

[100]

[101]

[102]

[103]

[104]

[105]

Learning with Hardware Support for Embeddings. IEEE/ACM International
Symposium on Computer Architecture (ISCA) (2023).

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, et al. 2017. In-datacenter Performance Analysis of a Tensor Process-
ing Unit. In IEFEE/ACM International Symposium on Computer Architecture
(ISCA). 1-12.

Andrew B Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. 2009. ORION
2.0: A Fast and Accurate NoC Power and Area Model for Early-stage Design
Space Exploration. In IEEE/ACM Proceedings Design, Automation and Test
in Eurpoe (DATE). IEEE, 423-428.

Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. 2020. Confuciux: Au-
tonomous Hardware Resource Assignment for DNN Accelerators using Rein-
forcement Learning. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 622-636.

Tejas S Karkhanis and James E Smith. 2004. A First-order Superscalar Proces-
sor Model. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). IEEE, 338-349.

Tejas S Karkhanis and James E Smith. 2007. Automated Design of Applica-
tion Specific Superscalar Processors: An Analytical Approach. In IEEE/ACM
International Symposium on Computer Architecture (ISCA). 402-411.

T Karn, Shishpal Rawat, Desmond Kirkpatrick, Rabindra Roy, Gregory S Spi-
rakis, Naveed Sherwani, and Craig Peterson. 2000. EDA Challenges Facing

Future Microprocessor Design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD) 19, 12 (2000), 1498-1506.

Vinod Kathail, Shail Aditya, Robert Schreiber, B Ramakrishna Rau, Darren C
Cronquist, and Mukund Sivaraman. 2002. PICO: Automatically Designing Cus-
tom Computers. Computer 35, 9 (2002), 39-47.

Richard E Kessler. 1999. The Alpha 21264 Microprocessor. IEEE Micro 19, 2
(1999), 24-36.

Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. 2016. Neurocube: A Programmable Digital Neuromorphic Ar-
chitecture with High-Density 3D Memory. In IEEE/ACM International Sym-
posium on Computer Architecture (ISCA). 380-392. https://doi.org/10.
1109/ISCA.2016.41

170

https://doi.org/10.1109/ISCA.2016.41
https://doi.org/10.1109/ISCA.2016.41

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Young-Il Kim and Chong-Min Kyung. 2004. Automatic Translation of Behav-
ioral Testbench for Fully Accelerated Simulation. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 218-221.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Op-
timization. In International Conference on Learning Representations (ICLR),
Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

Toru Koizumi, Ryota Shioya, Shu Sugita, Taichi Amano, Yuya Degawa, Ju-
nichiro Kadomoto, Hidetsugu Irie, and Shuichi Sakai. 2023. Clockhands:
Rename-free Instruction Set Architecture for Out-of-order Processors. In
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1-16.

Ronny KRASHINSKY, Christopher BATTEN, Mark HAMPTON, Steve
GERDING, Brian PHARRIS, and Jared CASPER. 2004. The Vector-Thread
Architecture. In IEEE/ACM International Symposium on Computer Architec-
ture (ISCA). 52-63.

Srivatsan Krishnan, Amir Yazdanbakhsh, Shvetank Prakash, Jason Jabbour,
Ikechukwu Uchendu, Susobhan Ghosh, Behzad Boroujerdian, Daniel Richins,
Devashree Tripathy, Aleksandra Faust, et al. 2023. ArchGym: An Open-Source
Gymnasium for Machine Learning Assisted Architecture Design. In IEEE/ACM
International Symposium on Computer Architecture (ISCA). 1-16.

Balasubramanian Kumar and Edward S. Davidson. 1980. Computer System

Design Using a Hierarchical Approach to Performance Evaluation. Commun.
ACM 23,9 (1980), 511-521.

Metin KUZHAN and Veysel Harun SAHIN. 2020. MBBench: A WCET Bench-
mark Suite. Sakarya Uniwversity Journal of Computer and Information Sciences
3, 1 (2020), 40-50.

Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. 2019. Understanding Reuse, Perfor-
mance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach.
In IEEE/ACM International Symposium on Microarchitecture (MICRO). 754—
768.

Benjamin C. Lee and David M. Brooks. 2006. Accurate and Efficient Regres-
sion Modeling for Microarchitectural Performance and Power Prediction. In
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). 185-194. https://doi.org/10.
1145/1168857.1168881

171

http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1168857.1168881
https://doi.org/10.1145/1168857.1168881

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Benjamin C Lee and David M Brooks. 2007. Illustrative Design Space Studies
with Microarchitectural Regression Models. In IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 340-351.

Jaewon Lee, Hanhwi Jang, and Jangwoo Kim. 2014. RpStacks: Fast and Ac-
curate Processor Design Space Exploration Using Representative Stall-event
Stacks. In [EEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 255-267.

Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Al-
berto Puggelli, Jachwa Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blagojevic,
et al. 2016. An Agile Approach to Building RISC-V Microprocessors. [FEE
Micro 36, 2 (2016), 8-20.

Dandan Li, Shuzhen Yao, Yu-Hang Liu, Senzhang Wang, and Xian-He Sun.
2016. Efficient Design Space Exploration Via Statistical Sampling and Ad-
aBoost Learning. In ACM/IEEE Design Automation Conference (DAC). IEEE,
1-6.

Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In IEEE/ACM
International Symposium on Microarchitecture (MICRQO). 469-480.

Sicheng Li, Chen Bai, Xuechao Wei, Bizhao Shi, Yen-Kuang Chen, and Yuan
Xie. 2022. 2022 ICCAD CAD Contest Problem C: Microarchitecture De-

sign Space Exploration. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 1-7.

Shuangnan Liu, Francis CM Lau, and Benjamin Carrion Schafer. 2019. Accel-
erating FPGA Prototyping Through Predictive Model-based HLS Design Space
Exploration. In ACM/IEEE Design Automation Conference (DAC). 1-6.

Gabriel H Loh, Yuan Xie, and Bryan Black. 2007. Processor Design in 3D
Die-Stacking Technologies. IEEE Micro 27, 3 (2007), 31-48.

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,
Rico Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Brad Beck-
mann, Srikant Bharadwaj, et al. 2020. The GEMb5 Simulator: Version 20.04.
arXiv preprint arXiv:2007.03152 (2020).

Yuzhe Ma, Subhendu Roy, Jin Miao, Jiamin Chen, and Bei Yu. 2018. Cross-
layer Optimization for High Speed Adders: A Pareto Driven Machine Learning

172

[125]

[126]

[127)

[128]

[129]

[130]

[131]

132]

[133]

[134]

Approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 38, 12 (2018), 2298-2311.

Yuzhe Ma, Ziyang Yu, and Bei Yu. 2019. CAD Tool Design Space Exploration
via Bayesian Optimization. In ACM/IEEE Workshop on Machine Learning
CAD (MLCAD). 1-6.

Philippe Magarshack and Pierre G Paulin. 2003. System-on-chip Beyond the
Nanometer Wall. In ACM/IEEE Design Automation Conference (DAC). 419
424,

Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph
Zuckerman, Emilio G Cota, Michele Petracca, Christian Pilato, and Luca P
Carloni. 2020. Agile SoC Development with Open ESP. In IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD). IEEE, 1-9.

Francisco Javier Mesa-Martinez, Joseph Nayfach-Battilana, and Jose Renau.
2007. Power Model Validation Through Thermal Measurements. In IEEE/ACM

International Symposium on Computer Architecture (ISCA). 302-311.

Pierre Michaud, André Seznec, and Stéphan Jourdan. 2001. An Explo-
ration of Instruction Fetch Requirement in Out-of-Order Superscalar Proces-
sors. Springer International Journal of Parallel Programming 29 (2001), 35-58.

Tom M Mitchell. 1999. Machine Learning and Data Mining. Commun. ACM
42, 11 (1999), 30-36.

Volodymyr Mnih, Adria Puigdomenech Badia, et al. 2016. Asynchronous Meth-
ods for Deep Reinforcement Learning. In International Conference on Machine
Learning (ICML), Vol. 48. 1928-1937.

Mayan Moudgill, Pradip Bose, and Jaime H Moreno. 1999. Validation of Turan-
dot, a Fast Processor Model for Microarchitecture Exploration. In International
Performance Computing and Commaunications Conference (IPCCC). 451-457.

Mayan Moudgill, J-D Wellman, and Jaime H Moreno. 1999. Environment for
PowerPC Microarchitecture Exploration. IEEE/ACM International Symposium
on Microarchitecture (MICRO) 19, 3 (1999), 15-25.

Trevor Mudge. 2001. Power: A First-Class Architectural Design Constraint.
Computer 34, 4 (2001), 52-58.

173

[135]

[136]

[137]

138

[139]

[140]

141]

142]

[143]

[144]

Johannes M Mulder, Nhon T Quach, and Michael J Flynn. 1991. An Area
Model for On-Chip Memories and its Application. IEEE Journal Solid-State
Circuits 26, 2 (1991), 98-106.

Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H Loh,
Mahesh Subramony, and Sean White. 2021. Pioneering Chiplet Technology
and Design for the AMD EPYC™ and Ryzen™ Processor Families: Industrial
Product. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). IEEE, 57-70.

Ramadass Nagarajan, Xia Chen, Robert G McDonald, Doug Burger, and
Stephen W Keckler. 2006. Critical Path Analysis of the TRIPS Architecture.
In IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). IEEE, 37-47.

Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug Burger, and
Stephen W Keckler. 2001. A Design Space Evaluation of Grid Processor Archi-
tectures. In IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 40-51.

Rishiyur S Nikhil. 1989. Can Dataflow Subsume von Neumann Computing?.
In IEEE/ACM International Symposium on Computer Architecture (ISCA).
262-272.

Rishiyur S Nikhil, Gregory M Papadopoulos, and Arvind. 1992. T: A Mul-
tithreaded Massively Parallel Architecture. IEEE/ACM International Sympo-
sium on Computer Architecture (ISCA) 20, 2, 156-167.

Derek B Noonburg and John P Shen. 1994. Theoretical Modeling of Superscalar
Processor Performance. In IEEE/ACM International Symposium on Microar-

chitecture (MICRO). IEEE.

Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. 2019. Het-
erogeneous Von Neumann/Dataflow Microprocessors. Commun. ACM 62, 6
(2019), 83-91.

Tony Nowatzki, Venkatraman Govindaraju, and Karthikeyan Sankaralingam.
2015. A Graph-based Program Representation for Analyzing Hardware Special-
ization Approaches. IEEE Computer Architecture Letters (CAL) 14, 2 (2015),
94-98.

Tony Nowatzki and Karthikeyan Sankaralingam. 2016. Analyzing Behavior Spe-
cialized Acceleration. ACM International Conference on Architectural Support

174

[145]
[146]

[147]

[148]

[149]

[150]

151]

152]

[153]

[154]

for Programming Languages and Operating Systems (ASPLOS) 51, 4 (2016),
697-711.

OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. 2009. ReSPIR: A
Response Surface-based Pareto Iterative Refinement For Application-specific
Design Space Exploration. IEEFE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 28, 12 (2009), 1816-1829.

GM Papadopoulos and DE Culler. 1990. Monsoon: an Explicit Token-Store Ar-
chitecture. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). IEEE Computer Society, 82-91.

Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach
to DNN Accelerator Evaluation. In IEEFE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). IEEE, 304-315.

Y. N. Patt, W. M. Hwu, and M. Shebanow. 1985. HPS, A New Microarchi-
tecture: Rationale and Introduction. In IEEE/ACM International Symposium
on Microarchitecture (MICRO). 103-108. https://doi.org/10.1145/18927.
18916

Jing Peng and Ronald J Williams. 1994. Incremental Multi-step Q-learning. In
Machine Learning Proceedings 1994. Elsevier, 226-232.

Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,
and Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation.
ACM SIGMETRICS Performance Evaluation Review 31, 1 (2003), 318-319.

Chris H Perleberg and Alan Jay Smith. 1993. Branch Target Buffer Design and
Optimization. IEEE Trans. Comput. 42, 4 (1993), 396-412.

Laurence J Peter, Raymond Hull, et al. 1969. The Peter Principle. Vol. 4.
Souvenir Press London.

Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson,
Paul Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, et al.
2020. BlackParrot: An Agile Open-source RISC-V Multicore for Accelerator
SoCs. IEEFE Micro 40, 4 (2020), 93-102.

175

https://doi.org/10.1145/18927.18916
https://doi.org/10.1145/18927.18916

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

[163)]

Ramakrishna B Rau and George E Rossmann. 1977. The Effect of Instruc-
tion Fetch Strategies upon the Performance of Pipelined Instruction Units. In
IEEE/ACM International Symposium on Computer Architecture (ISCA). 80—
89.

Behnam Robatmili, Sibi Govindan, Doug Burger, and Stephen W Keckler. 2011.
Exploiting Criticality to Reduce Bottlenecks in Distributed Uniprocessors. In
IEEFE International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 431-442.

Diederik M Roijers and Shimon Whiteson. 2017. Multi-objective Decision Mak-
ing. Synthesis Lectures on Artificial Intelligence and Machine Learning 11, 1
(2017), 1-129.

Diederik Marijn Roijers, Shimon Whiteson, and Frans A Olichoek. 2015. Com-
puting Convex Coverage Sets for Faster Multi-objective Coordination. Journal
of Artificial Intelligence Research 52 (2015), 399-443.

Sami Salamin, Martin Rapp, Anuj Pathania, Arka Maity, Jorg Henkel, Tulika
Mitra, and Hussam Amrouch. 2021. Power-Efficient Heterogeneous Many-Core
Design With NCFET Technology. [EEE Trans. Comput. 70, 9 (2021), 1484—
1497. https://doi.org/10.1109/TC.2020.3013567

Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu
Kim, Jaehyuk Huh, Doug Burger, Stephen W Keckler, and Charles R Moore.
2003. Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Archi-
tecture. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). 422-433.

Karthikeyan Sankaralingam, Tony Nowatzki, Vinay Gangadhar, Preyas Shah,
Michael Davies, William Galliher, Ziliang Guo, Jitu Khare, Deepak Vijay,
Poly Palamuttam, Maghawan Punde, Alex Tan, Vijay Thiruvengadam, Rongyi
Wang, and Shunmiao Xu. 2022. The Mozart Reuse Exposed Dataflow Pro-
cessor for Al and Beyond: Industrial Product. In IEEE/ACM International
Symposium on Computer Architecture (ISCA) (New York, New York). 978-992.
https://doi.org/10.1145/3470496.3533040

Majid Sarrafzadeh and CK Wong. 1996. An Introduction to VLSI Physical
Design. McGraw-Hill Higher Education.

Tsutomu Sasao. 1993. Logic Synthesis and Optimization. Vol. 2. Springer.

176

https://doi.org/10.1109/TC.2020.3013567
https://doi.org/10.1145/3470496.3533040

[164]

[165]

[166]

[167]

[168]

[169]

[170]

171]

[172]

[173]

[174]

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2008. The Graph Neural Network Model. IEEE Transac-
tions on Neural Networks (TNN) 20, 1 (2008), 61-80.

Robert E Schapire. 2003. The Boosting Approach to Machine Learning: An
Overview. Nonlinear estimation and classification (2003), 149-171.

Robert E Schapire and Yoav Freund. 2013. Boosting: Foundations and algo-
rithms. Kybernetes 42, 1 (2013), 164-166.

Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B Ramakrishna
Rau, Darren Cronquist, and Mukund Sivaraman. 2002. PICO-NPA: High-level
synthesis of nonprogrammable hardware accelerators. Journal of VLSI Signal
Processing Systems for Signal, Image and Video Technology 31 (2002), 127-142.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering Atari, Go, Chess and Shogi by Planning
with a Learned Model. Nature 588, 7839 (2020), 604—609.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. 2016. High-Dimensional Continuous Control Using Generalized Ad-
vantage Estimation. In International Conference on Learning Representations
(ICLR), Yoshua Bengio and Yann LeCun (Eds.).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. 2017. Proximal Policy Optimization Algorithms. arXiv preprint
arXiv:1707.06347 (2017).

André Seznec. 2011. A New Case for the Tage Branch Predictor. In IEEE/ACM
International Symposium on Microarchitecture (MICRQO). 117-127.

André Seznec and Pierre Michaud. 2006. A Case for (partially) TAgged GE-
ometric History Length Branch Prediction. The Journal of Instruction-Level
Parallelism 8 (2006), 23.

Amar Shah and Zoubin Ghahramani. 2016. Pareto Frontier Learning with Ex-
pensive Correlated Objectives. In International Conference on Machine Learn-
ing (ICML). 1919-1927.

Amar Shah and Zoubin Ghahramani. 2016. Pareto Frontier Learning with Ex-
pensive Correlated Objectives. In International Conference on Machine Learn-
ing (ICML). PMLR, 1919-1927.

177

[175]

[176]

[177]

[178]

[179]

[180]

[181]

182

[183]

[184]

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc
Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously Large Neural Net-
works: The Sparsely-Gated Mixture-of-Experts Layer. In International Confer-
ence on Learning Representations (ICLR). https://openreview.net/forum?
id=B1ckMDqlg

Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximizing CNN
accelerator efficiency through resource partitioning. In IEEE/ACM Interna-

tional Symposium on Computer Architecture (ISCA). IEEE Computer Society,
535-547.

T Shimada, K Hiraki, K Nishida, and S Sekiguchi. 1986. Evaluation of a Pro-
totype Data Flow Processor of the SIGMA-1 for Scientific Computations. In
IEEE/ACM International Symposium on Computer Architecture (ISCA). 226
234.

Premkishore Shivakumar and Norman P Jouppi. 2001. CACTTI 3.0: An Inte-
grated Cache Timing, Power, and Area Model. (2001).

Durga L Shrestha and Dimitri P Solomatine. 2006. Experiments with AdaBoost.
RT, An Improved Boosting Scheme for Regression. Neural computation 18, 7
(2006), 1678-1710.

Kevin Skadron, Pritpal S Ahuja, Margaret Martonosi, and Douglas W Clark.
1998. Improving Prediction for Procedure Returns with Return-Address-Stack

Repair Mechanisms. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 259-271.

James E. Smith and Andrew R. Pleszkun. 1988. Implementing Precise Inter-
rupts in Pipelined Processors. IEEE Trans. Comput. 37, 5 (1988), 562-573.

Guangyu Sun, Christopher Hughes, Changkyu Kim, Jishen Zhao, Cong Xu,
Yuan Xie, and Yen-Kuang Chen. 2011. Moguls: A Model to Explore the Mem-
ory Hierarchy for Bandwidth Improvements. In IEEE/ACM International Sym-
posium on Computer Architecture (ISCA). IEEE, 377-388.

Qi Sun, Tinghuan Chen, Siting Liu, Jin Miao, Jianli Chen, Hao Yu, and Bei Yu.
2021. Correlated Multi-objective Multi-fidelity Optimization for HLS Directives
Design. In IEEE/ACM Proceedings Design, Automation and Test in FEurpoe
(DATE).

Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to Reinforcement
Learning. Vol. 135. MIT press Cambridge.

178

https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

[185]

[186]

[187]

[188]

[189)]

[190]

[191]

192]

193]

194]

[195]

Tarek M Taha and Scott Wills. 2008. An Instruction Throughput Model of
Superscalar Processors. IEEE Trans. Comput. 57, 3 (2008), 389-403.

Teruo Tanimoto, Takatsugu Ono, Koji Inoue, and Hiroshi Sasaki. 2017. En-
hanced Dependence Graph Model for Critical Path Analysis on Modern Out-
of-order Processors. IEEE Computer Architecture Letters (CAL) 16, 2 (2017),
111-114.

Ben Tu, Axel Gandy, Nikolas Kantas, and Behrang Shafei. 2022. Joint En-
tropy Search for Multi-objective Bayesian Optimization. Annual Conference on
Neural Information Processing Systems (NIPS) 35 (2022), 9922-9938.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing Data Using
t-SNE. Journal of Machine Learning Research (JMLR) 9, 11 (2008).

Peter JM Van Laarhoven and Emile HL. Aarts. 1987. Simulated Annealing. In
Simulated annealing: Theory and applications. Springer, 7-15.

Vinay Vashishtha, Manoj Vangala, and Lawrence T Clark. 2017. ASAP7 Pre-
dictive Design Kit Development and Cell Design Technology Co-optimization.
In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
992-998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You
Need. Annual Conference on Neural Information Processing Systems (NIPS)
30.

Arthur H Veen. 1986. Dataflow Machine Architecture. Comput. Surveys 18, 4
(1986), 365-396.

Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,
Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj,
Bharat Kaul, Pradeep Dubey, et al. 2017. SCALEDEEP: A Scalable Com-
pute Architecture for Learning and Evaluating Deep Networks. In IEFE/ACM
International Symposium on Computer Architecture (ISCA). 13-26.

Chris Williams, Edwin V Bonilla, and Kian M Chai. 2007. Multi-task Gaus-
sian Process Prediction. Annual Conference on Neural Information Processing
Systems (NIPS), 153-160.

Christopher K Williams and Carl Edward Rasmussen. 2006. Gaussian Processes
for Machine Learning. Vol. 2. MIT press Cambridge, MA.

179

[196]

197]

198

[199]

200]

[201]

202]

203]

204]

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing.
2016. Deep Kernel Learning. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS). PMLR, 370-378.

Steven JE Wilton and Norman P Jouppi. 1996. CACTI: An Enhanced Cache
Access and Cycle Time Model. IEEE Journal Solid-State Circuits 31, 5 (1996),
677-688.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A Comprehensive Survey on Graph Neural Networks. I[EFE
Transactions on Neural Networks and Learning Systems 32, 1 (2020), 4-24.

John Wuu, Rahul Agarwal, Michael Ciraula, Carl Dietz, Brett Johnson, Dave
Johnson, Russell Schreiber, Raja Swaminathan, Will Walker, and Samuel Naf-
fziger. 2022. 3D V-Cache: the Implementation of a Hybrid-Bonded 64MB
Stacked Cache for a Tnm x86-64 CPU. In IEEFE International Solid-State Clir-
cuits Conference (ISSCC), Vol. 65. IEEE, 428-429.

Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue
Jin, Qianruo Li, Xin Li, Zuojun Li, et al. 2022. Towards Developing High
Performance RISC-V Processors Using Agile Methodology. In IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). IEEE, 1178-1199.

Jawad Haj Yahya, Jeremie S Kim, A Giray Yaglikci, Jisung Park, Efraim
Rotem, Yanos Sazeides, and Onur Mutlu. 2022. DarkGates: A Hybrid Power-
Gating Architecture to Mitigate the Performance Impact of Dark-Silicon in
High Performance Processors. In IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). IEEE, 1170-1183.

Shun Yamaguchi, Mahfuzul Islam, Takashi Hisakado, and Osami Wada. 2023. A
Fully Synchronous Digital LDO with Built-in Adaptive Frequency Modulation
and Implicit Dead-zone Control. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC). 186-187.

Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Kr-
ishna, Vikas Chandra, Weiwen Jiang, and Yiyu Shi. 2020. Co-Exploration of
Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting
Multiple Tasks. In ACM/IEEE Design Automation Conference (DAC). IEEE,
1-6.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. 2019. A Generalized
Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation.

180

[205]

[206]

1207]

[208]

209

[210]

211]

212]

[213]

In Annual Conference on Neural Information Processing Systems (NIPS). Ar-
ticle 1311, 12 pages.

Ahmad Yasin. 2014. A Top-down Method for Performance Analysis and Coun-
ters Architecture. In IEEFE International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE, 35-44.

Kenneth C Yeager. 1996. The MIPS R10000 Superscalar Microprocessor. [EEE
Micro 16, 2 (1996), 28-41.

Tse-Yu Yeh and Yale N Patt. 1991. Two-level Adaptive Training Branch Predic-
tion. In IEEE/ACM International Symposium on Microarchitecture (MICRO).
51-61.

Joshua J Yi, David J Lilja, and Douglas M Hawkins. 2003. A Statistically Rig-
orous Approach for Improving Simulation Methodology. In IEEFE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 281—
291.

Kai Yu, Jinbo Bi, and Volker Tresp. 2006. Active Learning Via Transductive Ex-
perimental Design. In International Conference on Machine Learning (ICML).
1081-1088.

Ziyang Yu, Chen Bai, Shoubo Hu, Ran Chen, Taohai He, Mingxuan Yuan,
Bei Yu, and Martin Wong. 2023. IT-DSE: Invariance Risk Minimized Trans-
fer Microarchitecture Design Space Exploration. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 1-9.

Jianwang Zhai, Chen Bai, Binwu Zhu, Yici Cai, Qiang Zhou, and Bei Yu.
2021. McPAT-Calib: A Microarchitecture Power Modeling Framework for Mod-
ern CPUs. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 1-9.

Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna
Goldie, and Azalia Mirhoseini. 2022. A Full-stack Search Technique for Domain
Optimized Deep Learning Accelerators. In ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (AS-
PLOS). 27-42.

Shuhan Zhang, Fan Yang, Dian Zhou, and Xuan Zeng. 2020. An Efficient Asyn-
chronous Batch Bayesian Optimization Approach for Analog Circuit Synthesis.
In ACM/IEEE Design Automation Conference (DAC). 1-6.

181

[214] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Son-
icBOOM: The 3rd Generation Berkeley Out-of-order Machine. In Workshop on
Computer Architecture Research with RISC-V (CARRV), Vol. 5.

[215] Zhi-Hua Zhou. 2012. Ensemble Methods: Foundations and Algorithms. CRC
press.

[216] V. Zivojnovic, J. Martinez, C. Schlidger, and Heinrich Meyr. 1994. DSPstone:
A DSP-Oriented Benchmarking Methodology. In International Conference on
Signal Processing Applications and Technology (ICSPAT).

182

	Abstract
	Acknowledgments
	Introduction
	A General Problem Formulation
	Major Challenges of Microarchitecture Design Space Exploration
	Thesis Structure and Contributions

	Preliminaries
	Microprocessor Microarchitecture
	Representative RISC-V Microprocessor Implementations
	Literature Review

	BOOM-Explorer
	Introduction
	Preliminaries
	RISC-V BOOM Microarchitecture Design Space
	Bayesian Optimization
	Problem Formulation for BOOM-Explorer

	The BOOM-Explorer Framework
	Overview of BOOM-Explorer
	Microarchitecture-aware Active Learning Algorithm
	Gaussian Process with Deep Kernel Learning
	Correlated Multi-Objective Optimization
	Diversity-Guided Parallel Exploration

	Experiments
	Experiments Settings
	Benchmarks, Baselines & Evaluation Metrics
	Evaluation Results
	Comparison of Pareto-Optimal BOOM Microarchitectures
	Effectiveness of MicroAL

	Summary

	Reinforcement Learning Pathway
	Introduction
	Preliminaries
	Microarchitecture PPA Modeling
	Microarchitecture Scaling Graph
	Problem Formulation for Reinforcement Learning Pathway

	Methodology
	Overview
	Combine RL w. Microarchitecture Scaling Graph
	Dynamic-weighted Reward
	Embed Preference Space into RL
	Conditioned Actor-Critic Network
	Accelerate Learning via Lightweight Environment
	Training Details

	Why RL?
	Experiments
	Our Microarchitecture Design Space Specification
	Experimental Settings & Baselines
	Accuracy of Lightweight PPA Models
	RL Training
	Comparison w. Human Efforts & Prior Arts
	Analysis w. More Workloads

	Summary

	Microarchitecture DSE Open Benchmarking Platform
	Introduction
	Contest Objective
	Problem Formulation for CAD Contest

	Benchmark Suite
	Microarchitecture Design Space in the Benchmark Suite
	Dataset Format

	Evaluation
	Overview of Benchmarking Platform
	Benchmarking Platform Solution Implementation
	Application Programming Interface for Design Space
	Benchmarking Platform Command Usage
	Benchmarking Platform Evaluation Metrics
	Online Ranking

	Summary

	ArchExplorer
	Introduction
	Motivation
	Bottleneck Analysis Matters in DSE
	Critical Path Analysis

	Lessons Learned & Design Principles
	The ArchExplorer Approach
	New DEG Formulation of Microexecution
	Induced DEG & Critical Path Construction
	Bottleneck-removal-driven DSE

	Experimental Setup & Evaluation Metrics
	Simulation Environment
	Evaluation Metrics

	Results
	Comparison w. DSE Methodologies
	Comparison w. Best Balanced Designs
	Comparison w. Calipers

	Discussions
	Additional Related Work
	Summary
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected results
	Notes

	Conclusion and Future Work
	Summary
	Future Work

	References

