RICCV STREAT Fast and Efficient DNN Deployment via Deep Gaussian Transfer Learning 💹 SmartMore

Qi Sun, Chen Bai, Tinghuan Chen, Hao Geng, Xinyun Zhang, Yang Bai, Bei Yu, CUHK & SmartMore,

Background & Motivation

- Heavy communication and computation workloads.
- Optimizing the model deployment is indispensable.

Preliminaries

Deployment Configuration

All of the settings (e.g., blocks, threads, and etc.) to be determined are encoded as a feature vector **x** which is termed a deployment configuration.

Challenges:

- Extremely large design space
- Slow compilation process
- Underutilized historical information

Problem Formulation

Design Space

For each DNN laver, the design space \mathcal{D} contains all of the candidate configurations.

Optimization Objective

For each layer, find the deployment configuration $x_* \in \mathcal{D}$ which has the best performance.

Deep Gaussian Transfer Learning

- Learn from the historical optimization records.
- Speedup the searching process.
- Find better deployment configurations.

Transfer Learning & Deep Gaussian Processes:

- Layer-wise optimization
- Stage 1 preparation: learn a deep Gaussian process model from historical data (model pre-training)
- Stage 2 transfer: transfer knowledge of the DGP ٠ model to new tasks (model tuning)
- Stage 3 optimal searching: guide the optimization of new tasks with the tuned DGP model

Our Flow:

- Source Task: history tuning data
- Target Task: new deployment tasks
- Maximum-a-posteriori (MAP) estimation

DGP-selected Tuning Set vs. Random Samples

DGP Prediction Errors (Some Examples):

Performance with Randomly Sampled Tuning Set:

Final Results:

Table 1: Comparisons of Search Time and End-to-end Model Inference Latency										
	AutoTVM		CHAMELEON			Ours				
	Search	Inference	Search	Inference	HV	Search	Search	Inference	Inference	
	(h)		Redu. (%)	Redu. (%)			Redu. (%)		Redu. (%)	
MobileNet-vi	31.14	0.8980	-			10.06	67.69	0.7664		9.9168
AlexNet	6.28	1.3467	72.16		4.2409		65.96	1.2537		4.5573
VGG-16	19.92	6.7847	82.56	3.44	2.8418		76.83	6.4972		3.2556
ResNet-18	32.04	1.8248	76.67	4.16	3.1915	9.47	70.43	1.7305	5.17	3.6423

Our method achieves the best inference performance while accelerating the optimization simultaneously.

Results