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Abstract—The 55th Design Automation Conference (DAC) held its first System Design Contest (SDC) in 2018. SDC’18 features a

lower power object detection challenge (LPODC) on designing and implementing novel algorithms based object detection in images

taken from unmanned aerial vehicles (UAV). The dataset includes 95 categories and 150k images, and the hardware platforms include

Nvidia’s TX2 and Xilinx’s PYNQ Z1. DAC-SDC’18 attracted more than 110 entries from 12 countries. This paper presents in detail the

dataset and evaluation procedure. It further discusses the methods developed by some of the entries as well as representative results.

The paper concludes with directions for future improvements.
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1 INTRODUCTION

THE 55th Design Automation Conference (DAC) held its
first SystemDesign Contest (SDC) in 2018 which features

a lower power object detection challenge (LPODC) on design-
ing and implementing novel algorithms based object detec-
tion in images taken from unmanned aerial vehicles (UAV).
This challenge provides a unified platform to develop and
compare state-of-the-art object detection algorithms, and dis-
cusses the lessons learned from these participated entries.

The LPODC at DAC-SDC’18 focuses on unmanned aerial
vehicles applications as such applications have stringent
accuracy, real-time, and energy requirements [29]. Specifi-
cally, first, the LPODC task is to detect a single object of inter-
est, one of the most important tasks in UAV applications [25].
Second, different from general computer visual challenges,
such as ImageNet [22] and PASCAL VOC dataset [9], which
focused only on accuracy, LPODC evaluates the final perfor-
mance based on a combination of throughput, power, and
detection accuracy. Thus, LPODC takes into full consideration
the features of UAV applications: real-time processing,
energy-constrained embedded platform, and detection accu-
racy. Third, the images of the dataset are all captured from

actual UAVs which reflect the real circumstances and prob-
lems of UAV applications. Fourth, LPODC provides two
hardware platforms: embedded GPU (Jetson TX2 from Nvi-
dia [5]) and FPGA SoC (PYNQ Z-1 board from Xilinx [7]) to
all the participating teams to choose from for their implemen-
tations. Note that GPUs and FPGAs are widely adopted for
energy-efficient processing onUAVs [8].

The publically released dataset contains a large quantity
of manually annotated training images, while the testing
dataset is withheld for the evaluation purpose. There are a
total of 150k images provided by a UAV company DJI [4].
Participating teams trained their models/algorithms with
the training dataset, and sent the trained models/algorithms
to the organizers to get the final testing results including
throughput, energy, and detection accuracy. Such evaluation
was performed at the end of each month and the detailed
rank was released then. The final rank was released at the
end of the competition and the top-3 entries from both GPU
and FPGA categories were invited to present their work at a
technical session at DAC.

This paper describes the LPODC in detail including: the
task, the evaluation method and the dataset. Furthermore, a
comprehensive discussion of the methods and results of the
top-3 entries frombothGPUand FPGAcategories is presented
to provide insights and rich lessons for future development of
object detection algorithms especially for UAV applications.
Particularly, we will elaborate hardware-software co-design
for efficient processing on embedded platforms.

The training dataset, the source codes of the top-3 entries
of both GPU and FPGA categories, and additional informa-
tion about this challenge can be found at www.github.com/
xyzxinyizhang/2018-DAC-System-Design-Contest.

1.1 Related Work

In this section we briefly discuss the related work about ben-
chmark image datasets for object detection. As segmentation
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datasets can also be used for object detection, some widely-
used segmentation datasets are also included.

Most of the datasets for object detection contain common
photographs. LabelMe [23] has 187k images each of which
contains multiple objects annotated with bounding polygon.
It also provides a web-based online annotation tool for easy
contribution by the public. Like LabelMe, PASCAL VOC
dataset [9] further increases the number of images to 500k.
ImageNet [22] is one of the most popular datasets in com-
puter vision community, and it contains more than 14 mil-
lion images. It was primarily for classification in 2010 and
extended to support object detection and scene recognition
in 2013. Compared with ImageNet, SUN database [28]
mainly focuses on scene recognition and contains about
131k images. Microsoft Common Objects in Context
(COCO) [18] contains complex everyday scenes of common
objects in their natural context and has 2.5 million images.
Open Images [6] contains more than 9 million real-life
images within 6,000 categories which is much larger than
that of ImageNet (about 1,000).

There are also some datasets for specific applications, and
the images are taken from particular views. KITTI vision
benchmark dataset [12] is specific for autonomous driving,
and the images are taken from an autonomous driving plat-
form in a mid-size city. FieldSAFE [16] is for agriculture
application and has approximately 2 hours of raw sensor
data from a tractor-mounted sensor system in a grass mow-
ing scenario. DOTA [27] focuses on aerial applications, and
all the images are captured from cameras on aircrafts.

The dataset in this paper is specific for UAV applications.
The images in the dataset are taken from UAVs which oper-
ates on a much lower height than general aircrafts in
DOTA. The associated environment in the images is also
much more complex than that in DOTA.

The most related work to our challenge is the Low-Power
Image Recognition Challenge (LPIRC) [10], [11], [20], which
considers accuracy, speed, and power consumption for effi-
cient object detection and classification on different plat-
forms. LPIRC adopts a popular dataset ImageNet for
general classification and detection, while LPODC is spe-
cific for UAV applications which is a more realistic scenario
of computer vision on embedded systems. In addition, the
tasks of LPODC and LPIRC are different. In LPIRC, the
detection task is to detect all the related objects in the image,
and usually the number of objects can be more than five.
The task of LPODC, on the other hand, is to detect only one
object in the image which is also specific for UAV scenarios.
Compared with LPIRC, our UAV-specific challenge of one
object detection is even more challenging. Fox example, our
task need to detect the object from many similar objects,
and some object is with very small size (less then 20 pixels)
or within very dim environment. More details of the dataset
is discussed in Section 3. Furthermore, our challenge has
more specific hardware constraint. For example, LPIRC in
2018 has two tracks: a GPU platform and platforms without
hardware and software restrictions, while in other years
LPIRC has no hardware or software restrictions. LPODC
constrains to two specific GPU and FPGA platforms. To
accommodate the differences between the compute capabil-
ities of the two platforms, we have designed different scor-
ing methods for GPU and FPGA platforms, and more

weight is given to accuracy on the GPU platform as it is
more powerful.

1.2 Paper Layout

We have given an overview of the LPODC at DAC’18. The
rest of the paper is organized as follows. In Section 2, the
challenge task and its evaluation method, as well as the pro-
vided two hardware platforms are described. The details of
the dataset and its analysis are given in Section 3. The analy-
sis and discussion of the methods for object detection of
GPU and FPGA entries are presented in Section 4. Section 5
details the results of the GPU and FPGA entries. We con-
clude the paper with some discussions of the challenge and
possible improvements.

2 LPODC TASK AND EVALUATION CRITERIA

In this section, the details of the challenge task are
presented, followed with an introduction of the hardware
platforms and the evaluation method.

2.1 Object Detection

The LPODC task is to perform single object detection in each
image with an axis-aligned bounding box indicating the
object’s position and scale. As the challenge is targeted at
UAV applications, there are several aspects that need to be
emphasized. First, the object detection task is to locate a spe-
cific object from the training dataset, rather than objects from
a training category. For example, if images containing person
A are in the training dataset, then the task is to detect person
A rather than other persons. More details about the detection
objects are discussed in Section 3. Second, the object detec-
tion task needs to be executed with high throughput and
high accuracy which are required by UAV applications. This
requirement is achieved through the weighting of through-
put in the scoring system, discussed in Section 2.3.

2.2 Hardware Platforms

In this challenge, two hardware platforms, either FPGA or
GPU, were provided to the participating teams from the chal-
lenge sponsors Xilinx [7] and Nvidia [5], respectively. Partic-
ularly, the FPGA platform is Xilinx PYNQ Z-1 board which is
an embedded system based platform combining Zynq sys-
tem and Python [15]. Participants are allowed to use Cortex-
A9 processor and ZYNQ XC7Z020-1CLG400C on the plat-
form to realize their solutions to the challenge. The embed-
ded FPGA chip contains 53K 6-input look-up-tables, 220
DSPs, and 630 KB fast block RAM. A 512 MB DDR3 memory
with 16-bit bus at 1,050 Mbps is also embedded on the plat-
form which can be accessed by both the processor and the
FPGA. The power consumption of the FPGA platform is
about 1-4watts.

The GPU platform is Nvidia Jetson TX2, which is an
embedded AI computing device. This GPU is very power-
ful with a 6-core CPU (Dual-core NVIDIA Denver2 +
quad-core ARM Cortex-A57), a 256-core Pascal GPU, and
8 GB LPDDR4 DRAM. It can provide more than 1TFLOPS
of FP16 compute performance in less than 7.5 watts of
power. Note that both hardware platforms target low-
power embedded computation and are suitable for UAV
applications.
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2.3 Evaluation Method

The evaluation for the challenge is based on detection accu-
racy, throughput, and energy consumption. For simplicity,
test images are stored in the on-board memory of the GPU
platform or a Secure Digital (SD) card of the FPGA platform
and fed to the object detection algorithm.

The metric for object detection accuracy is Intersection
over Union (IoU). Suppose there are two bounding boxes
(BB): a predicted BB and the ground-truth BB. Then the
accuracy or IoU of the predicted BB is the ratio between the
area of the union of the predicted BB and the ground-truth
BB and the area of the overlap encompassed by both the
predicted BB and the ground-truth BB, i.e.,

IoU ¼ BBp \BBg

BBp [BBg
; (1)

where BBp and BBg are the areas of the predicted and
ground-truth BBs, respectively. Note that the challenge only
cares the IoU results, but does not care the object categories.

The metric for throughput is frames per second (FPS).
For real-time processing in UAV applications, the minimum
throughput requirement in this challenge was set to 20 FPS
on the GPU platform and 5 FPS on the FPGA platform. If
the FPS is lower than the requirement, then a penalty to IoU
is added, i.e.,

IoUr ¼ IoUm � ðminðFPSm; FPSrÞÞ=FPSr; (2)

where IoUr and IoUm are the actual and measured IoUs,
respectively, and FPSr and FPSm are the required and mea-
sured FPSs, respectively. Themin function outputs the min-
imum one of its inputs.

Energy consumption is the energy consumed in the
whole evaluation. For the GPU platform, the realtime power
consumption is measured using the on-board power moni-
tors [1] and recorded using a bash script. For the FPGA plat-
form, a power meter is used, and power consumption is
sampled with a frequency of 0.01 Hz. Finally the energy
consumption is obtained by multiplying the power con-
sumption with the runtime.

The final score is a combination of accuracy, throughput,
and energy consumption. Suppose there are I registered
entries and the dataset contains K evaluation images. Let
IoUi;k be the IoU score of image k (k � K) for entry i (i � I).
Then the IoU score RIoUi

for entry i is computed as

RIoUi
¼

PK
k¼1 IoUi;k

K
: (3)

Let Ei be the energy consumption of processing all K
images for entry i. Let �EI be the average energy consump-
tion of the I entries. �EI is computed as

�EI ¼
PI

i¼1 Ei

I
: (4)

Then the energy consumption score ESi for entry i is

ESi ¼ maxf0; 1þ 0:2� logx
�EI

Ei
g; (5)

where x is set to 2 and 10 for FPGA category and GPU cate-
gory, respectively. Through profiling, we find that the

energy-performance Pareto frontier of the GPU platform
exhibits much smaller gradient than that of the FPGA plat-
form, reflecting the fact that the FPGA is more resource con-
strained than the GPU and thus its performance is much
more sensitive to energy consumption. As such, we stress
more on the accuracy for the GPU, while more on the
energy for the FPGA. The final total score TSi for entry i is

TSi ¼ RIoUi
� ð1þ ESiÞ: (6)

The factor 0.2 in Equation (5) is set based on the esti-
mated range of energy consumption variation in participat-
ing teams. Through our profiling of the platform, we
anticipate that a team will normally have an energy con-
sumption from 1/4x to 4x the average of all teams for both
GPU and FPGA categories. As such, logx �EI=Ei will take a
range of �2 to 2, and a factor of 0.2 will make ESi in the
range of 0.6 to 1.4. Thus, the final (1+ESi) in Equation (6) is
in the range of 1.6 to 2.4 which is appropriate to act as a
reward factor for energy efficiency. The max function and
the addition of 1 to ESi are for teams with extremely low
performance on energy efficiency. In such condition,
logx �EI=Ei is a large negative number, and the max function
ensures that ESi is not a negative number but zero. Then
the addition of 1 to ESi ¼ 0 further ensures that TSi can still
be graded based on accuracy with no multiplying reward-
ing factor for energy efficiency rather than being frozen to
zero even if very high IoUs are obtained.

3 DATASET

As shown in Fig. 1, the adopted dataset from DJI [4] con-
tains 12 categories of images and 95 sub-categories. For each
sub-category, 70 percent of the images are provided for
training and 30 percent are reserved for evaluation. It
should be highlighted that compared with existing general
purpose datasets such as ImageNet [22] and PASCAL VOC
dataset [9], the object is captured in a UAV view and with
different points of view.

The distributions of the training and testing datasets with
respect to category, object size ratio, image brightness and
amount of information are shown in Figs. 2, 3, 4, and 5. Here,
object size ratio is the ratio of the object size to the image size.
The brightness of a pixel is defined as in Equation (7) [24]
(r, g, b are the three channels of images), where the image
brightness is the average brightness of all its pixels.The
amount of information is the amount of textures or edges in
the area of objects in the image, and it is defined as the aver-
age pixel entropy of the object where the pixel entropy is cal-
culated in amoderate 5� 5 region [26].

brightness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:241� r2 þ 0:691� g2 þ 0:068� b2

p
: (7)

Fig. 2 shows that the ratio of quantity of training and test-
ing images in different categories are almost the same, which
is manually segmented to achieve a good balance of training
and testing dataset. The categories person, car, and rider con-
tainmuchmore images than others as they containmore sub-
categories than others. It can be noticed that there is also a
good balance between the training dataset and the testing
dataset for different object sizes except for some large object
size ratio as shown in Fig. 3. As the object size ratio increases,
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the image quantity decreases. Note that the average object
size ratio in ILSVRC is 17 percent and in PASCAL VOC is 20
percent. However, in this dataset, most of the images have an
object size of 1-2 percent of the captured images (640 x 360),
which is the main character of UAV-view images. This good
balance still holds for image brightness and amount of

information as shown in Figs. 4 and 5. Both the two distribu-
tions in the two figures have the same shape: most of the
images have a moderate brightness/amount of information,
while many fewer images contain too large or too small
brightness/amount of information, which are like a Gaussian
distribution.

Fig. 1. Overview of the dataset provided by DJI. There are 12 categories, each of which includes several sub-categories as indicated in the bracket,
and there are totally 95 sub-categories. Note that there is only one object in each image.
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4 METHODS FOR OBJECT DETECTION

In this section, the analysis and discussion of the methods
for object detection reported by the representative GPU and
FPGA entries are presented. The details of the top-3 entries
of GPU and FPGA categories are discussed, and statistical
significance analysis is also presented.

4.1 GPU

A total of 24 out of the 53 participating teams successfully
implemented their designs in the GPU category, and all of
them adopted deep learning based approaches. The distri-
bution of used neural network models and deep learning
frameworks are shown in Fig. 6. The popular light-weight
detection framework, Tiny YOLO [21] is the most widely
used model in the challenge, and a majority of the entries
achieve high performance by adding some revision to the
network structure. Darknet is the most popular deep learn-
ing framework as tiny YOLO is originally implemented in
Darknet. The top three entriesICT-CAS,DeepZ, andSDU-Leg-
end all adopted the YOLO model as the base design and
improved it with structure and computation optimization.
Note that the image size is 640 � 360 in the challenge, and
ICT-CAS and SDU-Legend resized it to improve accuracy
and throughput.

ICT-CAS adopted the original tiny YOLO as their net-
work structure as shown in Fig. 7a, and deployed the
Tucker decomposition and hard example mining for accu-
racy enhancement, and low-bits computation for fast proc-
essing. In Tucker decomposition, they tested different
decomposition parameters for optimal precision and
throughput. By extracting the hard examples, re-training
was performed to increase accuracy. In order to speed up
the inferencing stage, they deployed half precision float
point computation to reduce computation complexity and

power consumption. In the TX2 GPU platform, this entry
also adopted TensorRT [2] as the inference optimizer to
speed up the inference.

DeepZ implemented their own network structure as
shown in Fig. 7b. It combined Feature Pyramid Network
[17] to fuse fine-grained features with strong semantic fea-
tures to enhance the ability in detecting small objects. Mean-
while, DeepZ utilized focal loss function to mitigate the
imbalance between the single ground truth box and the can-
didate boxes in the training phase, thereby partially resolv-
ing occlusions and distractions.

SDU-Legend focused on both neural network and archi-
tectural level optimization to achieve better balance
between system performance and detection accuracy. SDU-
Legend chose YOLO v2 as the starting design point, and
performed design space exploration to choose the key train-
ing parameters including anchors, coordinates scale in the
loss function, batch size, and learning rate policy. Moreover,
SDU-Legend reduced YOLO v2 network architecture from
32 layers to 27 layer (as shown in Fig. 7c), and decreased the
downsampling rate to strengthen the performance on small
targets. At the architectural level, SDU-Legend aimed at bal-
ancing the workload between the GPU and the CPU by exe-
cuting the last 2 layers on the CPU. SDU-Legend utilized
the half data type (16-bit float) instead of 32-bit float to
improve the memory throughput and reduce computation
cost with minimum loss in accuracy.

4.2 FPGA

There are a total of seven out of the 61 participating teams
that successfully implemented their designs on the FPGA
platform provided. Among these entries, only entry TGIIF
adopted Verilog hardware description language for com-
pact FPGA implementation, while the rest utilized Xilinx
high-level synthesis for fast FPGA implementation.

Fig. 2. Distributions of the training and testing datasets with respect to
image categories.

Fig. 3. Distributions of the training and testing datasets with respect to
object size ratio.

Fig. 4. Distributions of the training and testing datasets with respect to
image brightness.

Fig. 5. Distributions of the training and testing datasets with respect to
amount of information.
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The top three entries TGIIF, SystemsETHZ, and iSmart2
adopted Convolution Neural Network and used variations
on the general approaches such as Single Shot MultiBox
Detector (SSD) [19], SqueezeNet [14], MobileNet [13], and
Yolo [21]. From the original models, the proposed models
used 1) fewer layers, 2) dynamic precision, 3) pruned topol-
ogy, and 4) layer-shared Intellectual Property (IP). To fur-
ther speed up inferencing, these entries downsized the
images in the ARM processor before FPGA processing. In
order to compensate the limited on-chip BRAM, these
entries utilized the off-chip 512 MB DRAM to store the inter-
mediate data between network layers.

The entry TGIIF proposed an optimized SSD network. It
downsized the SSD network topology by removing the last
two convolutional layers and quantized the network param-
eters to eight-bit fixed point. After modifying the network
depth, it also pruned and fine-tuned the resultant network,
making it with 14.2x less parameters and 10x less opera-
tions. The network topology proposed by TGIIF is shown in
Fig. 8a.

The entry SystemsETHZ proposed a variation of Squeeze-
Net+Yolo networks. It reduced the number of parallel con-
volution operations in fire layer of SqueezeNet [14] to half
and binaried the fire layer, and introduced a deep network
consisting of 18 convolutional layers where the halfFire
layers are binary. The network topology proposed by Sys-
temsETHZ is shown in Fig. 8b. It also adopted dynamic pre-
cision weights among different layers: five-bit fixed point
parameters in all activation layers, eight-bit fixed point

parameters in the first convolutional layer, and binary
weights in all fire layers. With dynamic precision, it reduced
the weight size to 64 KB and the number of multiplication
operations to 154 millions.

The entry iSmart2 proposed a variation on MobileNet
+Yolo networks. It introduced a hardware-friendly net-
work, consisting of multiple depth-wise separable convolu-
tion kernels. In each kernel, it adopted a convolution-Relu-
Convolution-Relu topology. The network topology proposed
by iSmart2 is shown in the Fig. 8c. By calling one depth-
wise separable convolution IP when processing different
layers, the proposed network achieved a relatively low
resource utilization with minimum look-up-table and Flip-
Flop usage.

The entry traix proposed a varied SSD network with six-
teen-bit fixed-point parameters. The entry hwac_object_-
tracker proposed a varied Tiny YOLO network topology
with half-precision floating point parameters. The entry
Lilou proposed a binaried VGG16 network topology with
less pooling layers, thus retaining the inference data flow on
the FPGA. The entry Qiu’s Team proposed a varied PYNQ-
BNN [3], adopting 2-bit precision for all layers’ parameters.

The FPGA resource utilization of all the entries is shown
in Table 1. For entries with sixteen or eight bit-width (TGIIF,
SystemsETHZ, iSmart2, traix, hwac_object_tracker), the DSP
utilization is close to 90 percent. The top entry TGIIF
achieved a 100 percent DSP utilization. For entries with one
or two bit-width (Lilou, Qiu’s Team), the DSP utilization is as
low as 12 percent (LiLou), while the LUT utilization can be
as high as 100 percent (Qiu’s Team).

Fig. 6. Number of entries using (a) neural network models and (b) deep
learning frameworks.

Fig. 7. Neural network structure of the top-3 GPU entries: (a) ICT-CAS,
(b) DeepZ, and (c) SDU-Legend.

Fig. 8. Neural network structure of the top-3 FPGA entries: (a) TGIIF, (b)
SystemETHZ, and (c) iSmart2.

TABLE 1
Resource Utilization of FPGA Entries

Entries LUTs Flip-Flop BRAM DSP

(53K) (106K) (630KB) (220)

TGIIF 83.89% 54.24% 78.93% 100%
SystemsETHZ 88% 62% 77% 78%
iSmart2 63% 22% 95% 86%
traix 90% - 90% 90%
hwac_object_tracker 85.02% 41.51% 42.14% 87.73%
Lilou 75% 38% 98% 12%
Qiu’s Team 100% 61% 96% 23%
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5 RESULTS AND ANALYSIS

In this section, we will discuss and analyze the result with
respect to method, category, object size, image brightness,
and amount of information for both GPU and FPGA entries.
As power and throughput are determined once the method
is chosen, we focus on the detection accuracy in this section.

5.1 Results of GPU Entries

5.1.1 Overall Results

As shown in Fig. 9, the optimal IoU, power and FPS are
0.6975, 4,834 mW, and 58.91 FPS, respectively. Note that all
the top-3 entries (ICT-CAS, DeepZ, SDU-Legend) have high
IoUs and FPS. Only high IoU or FPS is not enough to
achieve a high total score/good ranking. For example, the
entry OSSDC obtains a rather high FPS and a low IoU,
which only ranks the 15th. While another entry Talos-G
achieved a high IoU and a low FPS (lower than 20), which
triggers the penalty as discussed in Equation (2) and only
ranks the 14th.

Actually all the top-8 entries get IoUs higher than 0.60
and throughput higher than 20 FPS. Moreover, their values
are both very close to each other which shows rather fierce
competition among the top entries. Compared with IoUs,
the power has a less influence on the final ranking. The large
variation in power consumption is due to fact that the GPU
platform has several power modes and these entries choose
different modes.

In order to analyze whether results of different entries
are statistically significantly different from each other, sta-
tistical significance analysis is performed. The bootstrap
method is adopted here which is also employed by PAS-
CAL VOC [9] and ImageNet [22]. In each bootstrap round,
M images are sampled with replacement from the available
M testing images and the average IoU for the sampled
images is obtained for one entry. The above process iterates
for each entry until reaching the pre-defined bootstrapping
round. With the results obtained from all the bootstrapping

rounds, the lower and upper a fraction are discarded, and
the range of the remaining results are the 1-2a confidence
interval. We set the number of bootstrapping rounds to
20,000 and a to 0.0005 (99.9 percent confidential interval),
and the final results of the entries are shown in Fig. 10. It
can be observed that almost all the entries are statistically
significantly different from each other, and the difference of
the top-4 entries are also very obvious even with minor
differences.

5.1.2 Detection Results by Category

As shown in Fig. 11a, the category boat is with the highest
detection accuracy as it contains moderate quantity of
images and its object size is relatively larger than other cate-
gories as shown in Fig. 1. The category person, rider, and car
are with a high accuracy as their image quantities are large
which can provide a large variety of the object for training
as shown in Fig. 2. The category drone and paraglider also get
high accuracy (though their image quantities are small)
which is due to the fact that their backgrounds are usually
simple such as the sky and their structures are also very spe-
cial compared with others.

The rest six categories are with relatively lower accuracy
as their image quantities are small as shown in Fig. 2. Fur-
thermore, the category whale has a very low contrast
between the object and the background (the sea) as shown
in Fig. 1. The category building is rather challenging as there
exists many similar objects which results in a very low accu-
racy. The category group gets the lowest accuracy as there
also exists multiple similar objects which makes it very hard
to detect the right one.

5.1.3 Detection Results by Object Size

In Fig. 3 the quantity of images with 1 percent object size ratio
is larger than that of images with 2 percent object size ratio.
However, as shown in Fig. 11b, the accuracy of images with 1
percent object size ratio is much lower than that of images
with 2 percent object size ratio. The main reason is that too
small object ismuch harder to be detectedwith high accuracy.
The accuracy of the images with 2-5 percent object size ratios
is almost the same and relatively higher than others as their

Fig. 9. Overall results of GPU entries. Note that the entries are ranked
from high to low in the horizontal axis. The details of the scores can be
found on the website of the challenge.

Fig. 10. Statistical significance analysis using bootstrapping with
99.9 percent confidence intervals for GPU entries. Note that the entries
are ranked from high to low in the vertical axis.
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corresponding image quantity is large and the object size is
moderate. However, when the object size ratio increases from
6 percent, the accuracy decreases as the corresponding train-
ing image quantity ismuch lower than others.

5.1.4 Detection Results by Image Brightness

As shown in Fig. 11c, there is a almost linear trend between
the accuracy and the image brightness. As the image bright-
ness increases, the accuracy also increases. However, if the
accuracy is directly correlated with the image brightness,
the accuracy with a brightness of about 135 should be the
highest as the image quantity with this brightness is the
largest. Thus, we tend to believe that higher brightness will
make the object more clear to show its features which will
make it relatively easier to be detected with high accuracy.

5.1.5 Detection Results by Amount of Information

As shown in Fig. 11d, images with larger amount of infor-
mation tend to have higher accuracy as larger amount of

information contains more features which are relatively eas-
ier to be detected. The images with amount of information
of 0.35-0.40 get a slightly higher accuracy than that with
amount of information of 0.45-0.50 which may caused by
that these images are with unique characteristics and a
small quantity. We can also notice that the entry ICT-CAS
can get a much higher accuracy for images with amount of
information of 0.35-0.40 than others, and get relatively lower
accuracy for images with amount of information of 0.90
than other top-3 entries.

5.2 Results of FPGA Entries

5.2.1 Overall Results

Fig. 12 summarizes the performance of all FPGA entries.
Entry TGIIF stands out as the most successful method,
obtaining an IoU score of 0.6238 and a throughput of 11.96
FPS. The adopted deep network leads to a high IoU score,
and the network pruning ensures the inference throughput.
Entry SystemsETHZ comes second while it achieves a

Fig. 11. Detection accuracy of GPU entries with respect to (a) category, (b) object size, (c) brightness and (d) amount of information. Note that in (a)
the category is sorted in a ranked order and the left-most one is the one with the highest average total score.
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throughput of 25.97 FPS and an IoU score of 0.4919. Its
dynamic precision architecture and binarized layers acceler-
ate the inference throughput at the expense of IoU loss.
iSmart2 comes third with a throughput of 7.35 FPS and an
IoU score of 0.5733. Its uniform-layer deep network design
gives rise to IP reuse and fine-grained memory allocation,
keeping a good balance between throughput and accuracy.
The top four entries have similar total scores, but each entry
has different accuracy, throughput, and power values. All
four entries except SystemETHZ achieve high IoU, while
SystemETHZ puts more effort on FPS and obtains a much
higher FPS than others. Compared with TGIIF, iSmart2 and
traix achieve lower FPS with lower power.

Many entries achieved IoUs of around 0.5-0.6, such as
entry traix which achieves an IoU of 0.6100 with sixteen-bit
fixed-point network parameters. Despite the success in
accuracy, there is a quite range in inference throughput. As
mentioned in Sections 2.2 and 4.2, the FPGA platform has
630 KB on-chip BRAM, which is not sufficient to retain all
parameters and output feature maps of layers. Thus, a fre-
quent data transfer between DRAM and FPGA are observed
in all designs, and then keeping a proper balance between
accuracy and network size is very important in this chal-
lenge. The standout top-3 entries adopted network pruning,
parameters binarization and IP-reuse to ensure the infer-
ence throughput.

The statistical significance analysis is shown in Fig. 13. It
can be easily noticed that all the entries are statistically sig-
nificantly different from each other, and the difference of
the top-3 entries are even larger and there is also moderate
difference between their accuracies.

5.2.2 Detection Results by Category

Fig. 14a summaries the results obtained according to object
category. The categories are listed in sequence of average
IoU. There is drastic variation among categories and in dif-
ferent entries, in which, boat keeps the most promising aver-
age IoU of 0.5734 and group with an average IoU of 0.2060 is

the most challenging category to be detected. On average
IoU, the most promising categories are boat, person, rider,
and car, while those four categories have moderate quanti-
ties of images and their object sizes are relatively larger
than other categories. Among those four categories, boat
stands out as the most promising category while it contains
5k (the least) training images compared with person which
contains 28k (the most) training images. This is due to the
fact that the background in the boat category is simple (the
sea) and the target is distinct, while the person category con-
tains numerous noise such as trees, grass, and even other
non-objected persons. The rider stands ahead of car while
the car category contains 25k training images and rider con-
tains only 1.6k training images. This is due to the fact that
the rider category is captured from a relatively close view
while car category is captured from a distant view.

For these challenging categories such as whale, truck,
building, and wakeboard, there is an approximately 20 percent
accuracy gap between these categories and the promising cat-
egories for bothmaximum IoU and average IoU. Not only the
low image quantity, but also the complex object features
worsen the detection accuracy. The features of these four chal-
lenging categories can be summarized as follows: the category
whale contains blurry object and background, while catego-
ries truck,wakeboard, and building have tiny objects or similar
objects to the target objects such as the same color and
shadow.

We notice an interesting phenomenon where entry traix
achieves the highest accuracy except the category car but does
not have the highest IoU as shown in Fig. 12. This is due to the
fact that the category car occupies a large part (more than a
quarter) of all the test images as shown in Fig. 2. Though traix
can achieve slightly higher accuracy on all categories except
car than TGIIF, it obtains much lower accuracy (0.44) than
TGIIF (0.65) on the category car. Considering the large num-
ber of test images in the category car, TGIIF finally achieves a
slightly higher overall accuracy than traix.

5.2.3 Detection Results by Object Size, Image

Brightness, and Amount of Information

Considering the object size, image brightness, and amount of
information, the detection results of FPGA entries show the
same trend as that of GPU entries. A moderate object size can
usually achieve the highest detection accuracy as shown in
Fig. 14b. Higher brightness usually leads to higher detection
accuracy as shown in Fig. 14c. In Fig. 14d, we can notice that
larger amount of information tends to achieve higher accuracy.

5.3 Hard Examples and Lessons

The results for GPU and FPGA entries show almost the
same phenomena and trends as they adopted the same

Fig. 12. Overall results of FPGA entries. The details of the scores can be
found on the website of the challenge.

Fig. 13. Statistical significance analysis using bootstrapping with 99.9
confidence intervals for FPGA entries.
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method (deep neural networks), and their hard-to-detect
images are also almost the same. Fig. 15 shows some hard
examples with hard categories, small sizes, low brightness,
and low amount of information for both GPU and FPGA
entries. The most challenge category is group as discussed in
Sections 5.1.2 and 5.2.2. As shown in Figs. 15a and 15b, the
objects in the two images are very small, and there are sev-
eral similar objects around, which makes accurate detection
rather hard. The two images (c) and (d) contain very small
objects (rider in image (c) and truck in image (d)), both of
which are hard to be recognized even by humans. Images
(e) and (f) are two images with very low brightness, and the
objects are very blurry without clear outlines. With the con-
text in image (e), humans can infer that the object is a car.
However, the object in image (f) is very hard for humans to
recognize as the light is too dim. The objects in image (h)
and (i) are with very low average amount of information,
which is also hard to recognize. Image (h) contains a very
small object which is almost invisible and has very limited

information, while image (i) has a object which is large how-
ever with smooth surfaces and unclear boundaries with the
sea. Within all the hard examples, it can be observed that
almost all the images are within very small objects. In fact
small objects are common for UAV applications which is
the major challenge for accurate object detection. Further-
more, similar objects (persons, rider, buildings, boats, cars, etc.)
and special scenarios (wake board, operation at night) add
more difficulties.

With the above hard examples and previous results dis-
cussed, we present the learned lessons as follows. First,
FPGA is much more energy efficient than GPU. Though
FPGA achieves a relatively lower FPS than GPU, it can
achieve almost the same accuracy but with only 1/3-1/2
energy consumption as that of GPU, which is promising for
long-term UAV applications. Second, object detection from
UAV views in real world is complicated. In the challenge,
there are many images that can not be accurately detected
by all the entries. Dividing the task into well-defined sub-

Fig. 15. Hard examples with hard categories, small size, low brightness, and low amount of information in the challenge.

Fig. 14. Detection accuracy of FPGA entries with respect to (a) category, (b) object size, (c) brightness and (d) amount of information. Note that in (a)
the category is sorted in a ranked order and the left-most one is with the highest average total score.
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tasks for specific scenarios may improve the performance.
Third, more data is preferred for more accurate detection.
In the challenge we find that many objects get a low detec-
tion accuracy when their brightness or view-angle changes.
Training images with more diversity (scale, view-angel,
etc.) of the object will further improve the overall accuracy.

6 CONCLUSION

In this paper we present the DAC-SDC low power object
detection challenge for UAV applications. Specifically, we
describe the unique dataset from UAV views, and give a
detailed discussion and analysis of the participating entries
and their adopted methods. We also discuss the details of
methods proposed by the LPODC entries for efficient pro-
cessing for UAV applications. The result analysis provides a
good practical lesson for researchers and engineers to fur-
ther improve energy-efficient object detection in UAV
applications.
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