
2036 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

CRMA: Incorporating Cut Redistribution With
Mask Assignment to Enable the Fabrication

of 1-D Gridded Design
Jian Kuang , Evangeline F. Y. Young, and Bei Yu, Member, IEEE

Abstract—1-D gridded design is one of the most promising
solutions that can enable the scaling to 10 nm technology node
and beyond. Line-end cuts are needed to fabricate 1-D lay-
outs, where two techniques are available to resolve the conflicts
between cuts: 1) cut redistribution and 2) cut mask assignment.
In this paper, we consider incorporating the two techniques to
enable the manufacturing of cut patterns in 1-D gridded design.
We consider both 2-mask case (double patterning is performed
on the cuts) and 3-mask case (triple patterning is performed on
the cuts). We first present an accurate integer linear program-
ming (ILP) formulation that can solve the co-optimization of cut
redistribution and mask assignment optimally. In addition, we
propose efficient graph-theoretic approaches based on a novel
integrated graph model and a longest-path-based refinement
algorithm. Experimental results demonstrate that our graph-
theoretic approaches are orders of magnitude faster than the
ILP-based method and meanwhile it can obtain very comparable
results. For 2-mask case, comparing with the method that solves
mask assignment and cut redistribution optimally but separately,
our graph-theoretic approach that solves the two tasks simul-
taneously can achieve 95.0× smaller cost on average. We also
extend our graph-theoretic approach to 3-mask case. Comparing
with the method that reduces the 3-mask problem to 2-mask
problem and solves it indirectly, our innovative approach that
solves the problem directly based on a novel framework of iden-
tifying and solving 4-cliques can achieve 7.6% smaller cost on
average.

Index Terms—1-D design, design for manufacturability, lithog-
raphy, mask assignment, multiple patterning.

I. INTRODUCTION

ONE-DIMENSIONAL (1-D) gridded design (also known
as unidirectional design) is widely believed to be a

promising manufacturing solution for 10 nm technology node
and beyond [2]–[4]. The major advantages of 1-D layouts over
conventional 2-D ones are lower design complexity and higher
yield.

Manuscript received May 21, 2017; revised August 10, 2017; accepted
October 25, 2017. Date of publication November 28, 2017; date of cur-
rent version September 18, 2018. This work was supported by the Research
Grants Council of the Hong Kong Special Administrative Region, China,
under Project CUHK14209214. The preliminary version has been presented
at the International Conference on Computer-Aided Design in 2016 [1]. This
paper was recommended by Associate Editor I. H.-R. Jiang. (Corresponding
author: Jian Kuang.)

The authors are with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Hong Kong (e-mail:
jkuang@cse.cuhk.edu.hk; fyyoung@cse.cuhk.edu.hk; byu@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2778069

Fig. 1. (a) 1-D target layout. (b) Dense lines. (c) Cuts and dummy
wires. (d) Cuts are redistributed. (e) Cuts are assigned to different masks.
(f) Incorporating cut redistribution with cut mask assignment.

To fabricate a 1-D layout, first some dense lines will be
printed, and then cut masks will be used to trim off the
unwanted parts. For example, given a target layout in Fig. 1(a),
the 1-D dense lines are first printed as shown in Fig. 1(b).
Then some rectangular cuts, usually referred as line-end cuts,
are applied to generate wires obeying the target layout [see
Fig. 1(c)]. The wires other than the target layout will have no
electronic functionality and are called dummy wires. The real
wires in Fig. 1(a) are located on different tracks and a space
between two real wires on the same track is called a gap.
Thanks to the uniformity, the dense lines are easy to print
through a variety of lithography techniques, e.g., self-aligned
double patterning. However, the manufacturing of cut patterns
is very challenging, as two cuts that are too close to each
other will result in a conflict and an error in manufacturing.
For example, in Fig. 1(c), cut a conflicts with cut b while cut
c conflicts with cut d.

To resolve the conflicts among cuts, two techniques are
widely exploited: 1) cut redistribution [5], [6] and 2) mask
assignment [7]. On one hand, an example of cut redistribution
is illustrated in Fig. 1(d), where a conflict between two cuts can
be resolved by either merging them together (e.g., cuts a and b)
or locating them far away enough (e.g., cuts c and d). Note that
through cut redistribution the wires will be extended, thus the
timing may be affected. To limit such side effects along with
wire extension, some additional constraints would be intro-
duced, e.g., the wires on timing-critical nets are less flexible
to be extended. On the other hand, through mask assignment,
two conflicting cuts can be assigned to different masks as in
multiple patterning lithography (MPL) [8], [9], and manufac-
tured by separate litho-etch processes [see Fig. 1(e)]. Since
relying solely on either approach may result in a large number

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2659-0040

KUANG et al.: CRMA TO ENABLE FABRICATION OF 1-D GRIDDED DESIGN 2037

of unresolved conflicts, in this paper, we propose to incor-
porate cut redistribution with cut mask assignment to enable
1-D grided design. We consider two cases, namely 2-mask
case (double patterning is performed on the cuts) and 3-mask
case (triple patterning is performed on the cuts), i.e., the mask
assignment process is similar to the 2-coloring or 3-coloring
problem. An example of incorporating cut redistribution with
mask assignment in 2-mask case is shown in Fig. 1(f).

Even with cut redistribution and multiple cut masks, there
may still be conflicts that cannot be resolved, especially in
the presence of native conflict, i.e., a conflict that cannot be
resolved by any cut redistribution nor coloring. There are two
ways to handle the unresolved conflicts. The first way is to
minimize and report the unresolved conflicts to designers for
further layout modification [8]. The second way is to use com-
plementary e-beam cuts [3], [10], i.e., some of the cuts with
unresolved conflicts will be manufactured by e-beam lithogra-
phy [5], [6]. Due to the high resolution of e-beam lithography,
we can assume that an e-beam cut will not conflict with any
other cut, but the number of e-beam cuts should be minimized
to improve throughput. In this paper, we assume the second
way to handle unresolved conflicts. Note that using e-beam cut
or not has very little impact on the contribution of this paper,
as our approaches can be easily extended to handle unresolved
conflicts in the first way above as well.

There have been works studying the problem of cut redis-
tribution for 1-D design [5], [6], where the problems are
formulated as integer linear programming (ILP). Note that
in [6] another type of cut mask that directly removes the whole
gap between wires is studied, but it may greatly increase the
mask complexity. Besides, [11] formulates the problem as a
network flow problem. However, the formulation in [11] is dif-
ferent from the others, which allows not only cut redistribution
but also new cut insertion. There have also been works trying
to redistribute the cuts to match with directed self-assembly
(DSA) templates [12]–[14] or trying to incorporate MPL with
DSA [15]. A recent work [16] proposes ILP-based method to
co-optimize cut mask, dummy fill, and timing. Note that all
the above-mentioned ILP formulations have some limitations,
as shown in Section III.

In this paper, we study the problem of co-optimization of
cut redistribution and mask assignment (CRMA) for 1-D grid-
ded design such that: 1) no violation in design rules occurs;
2) the number of e-beam cuts is minimized; and 3) the total
wire extensions are minimized. We first present an accurate
and optimal ILP formulation that overcomes the limitations
of previous works. In addition, we propose graph-theoretical
approaches based on a novel integrated graph model and a
longest-path-based refinement algorithm to solve the problem
efficiently and effectively. We consider both 2-mask case and
3-mask case.

The rest of this paper is organized as follows. Section II
introduces some preliminaries and the problem formulation.
Section III presents our accurate ILP formulation. Section IV
describes our graph-theoretic approach that can solve the co-
optimization problem efficiently in 2-mask case. Section V
presents the extension of the graph-theoretic approach to
3-mask case. Section VI proposes native conflict identifica-
tion methods. Section VII reports experimental results and
Section VIII concludes this paper.

TABLE I
IMPORTANT NOTATIONS AND THEIR MEANINGS

II. PROBLEM FORMULATION

The input to our problem is a set of n wires {w1, . . . wn}
and 2n cuts {c1, . . . c2n} = C. Variable ei indicates whether ci
is printed using e-beam, where 1 ≤ i ≤ 2n. If ci is an e-beam
cut, ei = 1; otherwise, ei = 0. The wires are labeled by 1 to n
from the bottom to the top and from the left to the right in the
layout. The tracks are labeled by 1 to the total number of tracks
from the bottom to the top. We use L(wi)/R(wi) to represent
the left/right end of wi. The cuts c2i−1 and c2i are located at the
two ends of wi, i.e., L(wi) and R(wi), respectively. The width of
a rectangular cut is W. li/ri and x2i−1/x2i are used to represent
the x-coordinates of L(wi)/R(wi) in the input and the output,
respectively. Note that in gridded design, these coordinates
are discrete. Variable yi is the label of the track on which wi
is located. Frequently used notations and their meanings are
summarized in Table I.

In this paper, we assume the following 1-D gridded design
rules as in previous works [6], [16].

1) Rule 1: There is an array D = {d(0), d(1), . . . , d(H)}
that defines the horizontal critical distances (or called
safe distances) between cuts. d(0) is the critical distance
between two cuts located on the same track, and d(1) is
the critical distance between two cuts located on adja-
cent tracks (i.e., the difference between the labels of
their tracks is 1), etc. The x-coordinate of a cut is the
x-coordinate of its lower-left corner and the horizon-
tal distance between two cuts is the difference between
their x-coordinates. All coordinates should be on grid.
H is the largest difference between the track labels of
two conflicting cuts. Note that such modeling of criti-
cal distance is general enough to handle critical distance
measured in Euclidean distance.

2) Rule 2: The wires can be extended but not shortened,
i.e., x2i−1 ≤ li and x2i ≥ ri. The total extension of a
wire cannot exceed a limit for this wire, denoted as δi,
i.e., (x2i−x2i−1)− (ri− li) ≤ δi. Besides, the wires after
extensions cannot exceed the boundaries of the layout.

3) Rule 3: Two cuts assigned to the same mask are in con-
flict if: 1) neither of them is an e-beam cut; 2) they
are within critical distance; and 3) they are not merged.
Such a conflict is disallowed.

4) Rule 4: Only the cuts on the same mask can be merged.
There are three types of merging. The first type, as
shown in Fig. 2(a), is that two cuts on the same track
can be merged if they abut (e.g., cuts c and d in the
figure) or overlap with each other (e.g., cuts a and b).

2038 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Fig. 2. Different types of merging. (a) Merging on the same track. a is
merged with b. c is merged with d. (b) Cuts a and b on adjacent tracks are
merged. (c) Cuts a and c on nonadjacent tracks are merged. In such case, a,
b, and c should be vertically aligned.

The second type is that two cuts on adjacent tracks can
be merged if they are aligned vertically [Fig. 2(b)]. The
third type is that two cuts on nonadjacent tracks can be
merged if they are aligned vertically and they are both
merged with the cuts located on the tracks in between.
As a result, all these merged cuts should be vertically
aligned [Fig. 2(c)].

We formally define the problem for co-optimization of
CRMA as follows.

Problem 1 (CRMA): Given a set of design rules, K masks,
and a layout of n wires and 2n cuts, decide the manufactur-
ing method (using e-beam or not), the mask and the location
of each cut, such that all the design rules are satisfied. The
objective is to minimize

n∑

i=1

[
(x2i − x2i−1)− (ri − li)

]+ α

2n∑

i=1

ei (1)

where α is a variable to represent the relative importance
between e-beam cuts and wire extensions (α is typically a
large number).

In this paper, we consider the cases of K = 2 and K = 3.
We denote Problem 1 as CRMA2 when K = 2 and CRMA3
when K = 3.

III. ACCURATE ILP FORMULATION

There have been works [5], [6] using ILP to solve the
problem of single-mask cut redistribution for 1-D design
exactly. As the ILP formulation in [6] can be solved much
faster than that in [5], we will extend the formulation in [6] to
simultaneously perform CRMA. Although the ILP formulation
in [16] can also perform simultaneous CRMA, its limitations
will be analyzed in Section III-B.

A. Extensions for General Cut Redistribution

We first give some introductions to the ILP in [6]. Two
gaps are called overlapping gaps if they overlap in horizontal
direction. The objective of the ILP is to minimize (1). There
are five sets of constraints: C1. constraints for line end exten-
sions; C2. constraints for gaps between wires; C3. constraints
for nonoverlapping gaps; C4. constraints for overlapping gaps
on adjacent tracks; and C5. constraints for overlapping gaps
on nonadjacent tracks.

Now, we explain how these constraints satisfy the design
rules Rules 1–4. Rule 1 can be satisfied by simply only allow-
ing integral coordinates in ILP. C1 is for Rule 2. C2–C5 cover
all situations about the relationship between two cuts, which
thus make sure there is no conflict between any two cuts,
obeying Rules 3 and 4.

Fig. 3. Illustration for the constraint between (a) nonoverlapping gaps and
(b) overlapping gaps on nonadjacent tracks.

The ILP in [6] can be written as

ILP1 : min (1) (2a)

s.t. C1− C5. (2b)

However, the ILP in [6] has some limitations when handling
C3 and C5, which will be analyzed in the Appendix. Note that
these limitations exist for both single-mask and multiple-mask
scenarios. In the following, we will extend the ILP in [6] to
overcome these limitations and handle C3 and C5 correctly.
Details of the constraints of the original ILP can be found
in [6], and are not repeated here due to space limitation.

1) Constraints for C3: As shown in Fig. 3(a), there are two
nonoverlapping gaps denoted as gapi and gapj, where gapi is
between the wires wi and wi+1 and gapj is between the wires
wj and wj+1. Without loss of generality, we can assume gapi
is on the right of gapj, as i and j are symmetric. We have the
following constraints for C3:

x2i −
(
x2j+1 −W

)+ I
(
e2i + e2j+1

) ≥ d
(|yi − yj|

)
(3)

x2i − x2j + I
(
e2i + e2j

) ≥ d
(|yi − yj|

)
(4)

(x2i+1 −W)− x2j + I
(
e2i+1 + e2j

) ≥ d
(|yi − yj|

)
(5)

x2i+1 − x2j+1 + I
(
e2i+1 + e2j+1

) ≥ d
(|yi − yj|

)
. (6)

In the above equations, I represents a big enough num-
ber. Regarding gapi and gapj, there are four pairs of possible
conflicts between the ends of the wires and we need four equa-
tions: 1) the conflict between R(wi) and L(wj+1) is considered
by (3); 2) the conflict between R(wi) and R(wj) is consid-
ered by (4); 3) the conflict between L(wi+1) and R(wj) is
considered by (5); and 4) the conflict between L(wi+1) and
L(wj+1) is considered by (6). In (3), x2j+1 is the x-coordinate
of L(wj+1), and x2i and (x2j+1 −W) are the x-coordinates of
c2i and c2j+1, respectively. If either of c2i and c2j+1 is printed
using e-beam, the constraint can be satisfied. Otherwise, the
distance between R(wi) and L(wj+1) must be larger than or
equal to the corresponding critical distance. Equations (4)–(6)
are similar.

2) Constraints for C5: As shown in Fig. 3(b), the gap
between wi and wi+1 and the gap between wj and wj+1 are
two overlapping gaps. Again, there are four pairs of line ends
that need to be considered regarding the constraint between
the two gaps. For simplicity, we only describe the constraint
between R(wi) and R(wj) as the others are similar. Without loss
of generality, we assume yi − yj = 2. We have the following
constraints for C5:

x2i − x2j + I
(

e2i + e2j + d2i
2j + m2i

2j

)
≥ d

(|yi − yj|
)

(7)

x2j − x2i + I
(

e2i + e2j + 1− d2i
2j + m2i

2j

)
≥ d

(|yi − yj|
)

(8)

KUANG et al.: CRMA TO ENABLE FABRICATION OF 1-D GRIDDED DESIGN 2039

x2i − x2j + I
(

1− m2i
2j

)
≥ 0 (9)

x2i − x2j − I
(

1− m2i
2j

)
≤ 0 (10)

m2i
2j ≤ m2i

2k + m2i
2k+1 + m2i

2k+2 + m2i
2k+3. (11)

In the above equations, d2i
2j and m2i

2j are two binary variables.
If c2i is merged with c2j, m2i

2j = 1; otherwise, m2i
2j = 0. It can be

seen that if either c2i or c2j is printed using e-beam or the two
cuts are merged, the constraints can be satisfied. Otherwise,
either (7) or (8) will be activated depending on the value of the
auxiliary variable d2i

2j to ensure that the distance between c2i
and c2j is at least the corresponding critical distance, i.e., (7)
will be activated if d2i

2j = 0, while (8) will be activated if
d2i

2j = 1.
If the two cuts are merged, they must be vertically aligned.

Equations (9) and (10) are used to enforce this.
Besides, as required in Rule 4, c2i and c2j can be merged

only if they are both merged with a cut cv located on the
track between the tracks of c2i and c2j. In our example, there
are four choices for cv, namely c2k, c2k+1, c2k+2, and c2k+3.
Equation (11) is used to make sure that c2i and c2j are merged
with at least one of the four cuts.

Furthermore, to make sure that two cuts are merged only
when neither of them is an e-beam cut, we add

1− eu ≥ mv
u & 1− ev ≥ mv

u (12)

for each variable mv
u appeared in (11).

B. Extensions to Handle Simultaneous Cut Redistribution
and Mask Assignment

This section discusses how to handle simultaneous CRMA.
For 2-mask case (CRMA2), we add a binary variable si for

each cut ci to indicate the mask for ci, and a binary variable f j
i

to indicate whether ci is with a different color from cj, where

f j
i = si ⊕ sj. (13)

For 3-mask case (CRMA3), we add two binary variable s1
i

and s2
i for each cut ci to indicate the mask for ci : s1

i = s2
i = 0

means mask 1, s1
i = 1 and s2

i = 0 mean mask 2, and s1
i = 0

and s2
i = 1 mean mask 3. We thus need

s1
i + s2

i ≤ 1 (14)

for each i to limit the number of masks to 3. We still use a
binary variable f j

i to indicate whether ci is with a different
color from cj, which is constrained by

f 1
ij = s1

i ⊕ s1
j (15)

f 2
ij = s2

i ⊕ s2
j (16)

f j
i = f 1

ij ∨ f 2
ij (17)

where f 1
ij and f 2

ij are intermediate binary variables.
The above-mentioned notation “⊕” means “XOR” and “∨”

means “OR”. Both of them can be linearized easily for binary
variables.

In both 2-mask and 3-mask cases, to make sure that two
cuts are merged only when they are in the same mask, we add

1− f j
i ≥ mj

i (18)

for each variable mj
i.

There is no conflict between two cuts in different masks.
Thus, we modify (3) as follows:

x2i −
(
x2j+1 −W

)+ I
(

e2i + e2j+1 + f 2i
2j+1

)
≥ d

(|yi − yj|
)

(19)

and similarly for other constraints.
Although the ILP formulation in [16] can also perform

simultaneous CRMA, our ILP formulation has the following
major advantages. First, the formulation in [16] does not dif-
ferentiate overlapping gaps and nonoverlapping gaps and thus
may introduce some unnecessary variables and constraints,
e.g., two cuts in nonoverlapping gaps can never be merged but
the formulation in [16] may also try to merge them. Second,
the formulation in [16] only minimizes extensions. However,
without incorporating the variables for unresolved conflicts or
complementary e-beam cuts, an ILP may not have a solution.
Third, the formulation in [16] does not have limits on the
extensions of wires. Fourth, the formulation in [16] does not
force the merged cuts to be in the same mask, thus, as shown
in Fig. 3(b), it may incorrectly align and merge c2i, c2k, and
c2j even if c2i and c2j are in mask 1 while c2k is in mask 2.
Finally, the formulation in [16] also has the same problem
for constraint C5 as in [6], which will be discussed in the
Appendix. By overcoming these limitations, the ILP in [16]
can also be extended to our accurate ILP.

IV. GRAPH-THEORETIC APPROACH FOR CRMA2

Although the accurate ILP formulation can solve Problem 1
optimally, the solving process is very time-consuming. As
reported in [6], the ILP formulation only performing cut redis-
tribution takes about 13 000 s to solve an M1 layout with 8000
tracks. After extending the formulation to Problem 1, the ILP
solver must decide the mask for each cut. Thus, the running
time grows exponentially with the number of cuts and may be
much longer than that in [6]. In view of this, we propose novel
graph-theoretic approaches that can give a very comparable
solution in a short time. This section presents our approach
for CRMA2.

A. Potential Conflict Graph and Conflict Graph

Given a layout of wires and cuts, we can build a conflict
graph G (throughout this paper, we use G to represent a con-
flict graph or a component of a conflict graph), in which a
node represents a cut and an edge between two nodes rep-
resents a conflict between the two corresponding cuts. For
example, Fig. 4(b) shows the conflict graph for the cuts in
Fig. 4(a).

However, with cut redistribution, G is not static, meaning
that the conflicts between the cuts can change dynamically. In
view of this, we will build another potential conflict graph Gp
before building G. Gp is similar to G, except that there is an
edge between two nodes in Gp iff there is a potential conflict
between the two corresponding cuts with cut redistribution. To
construct Gp, we first find the possible moving range mri of
each cut ci. As shown in Fig. 4(a), the moving range (of the
lower left corner) of c2i is computed as follows. According
to Rule 2, we have ri + δi ≥ x2i ≥ ri and x2i ≤ li+1 − W.
For c2i+2, we have an additional constraint that x2i+2 ≤ Br,
where Br is the x-coordinate of the right boundary of the given

2040 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Fig. 4. (a) Input layout and cuts. (b) Conflict graph G. (c) Potential conflict
graph Gp.

layout. The moving ranges of the other cuts can be calculated
similarly. For any k and l, there is a potential conflict between
ck and cl if ck may conflict with cl when they move within
their moving ranges. For instance, the potential conflict graph
for the cuts in Fig. 4(a) is shown in Fig. 4(c).

With Gp, we can safely split the graph into independent
components and process those components separately. We can
also find bridges and articulation nodes in the graph to further
simplify it. Details of the graph simplification methods can be
found in [17]. Applying these simplification methods on Gp is
guaranteed to be safe because Gp will never change. For the
same reason, we only need to build Gp once.

B. Overview

We use the graph simplification methods to split Gp into
subgraphs, and then we will process the layouts corresponding
to these subgraphs separately without losing any optimality.
For each layout, we build a conflict graph G, and in the
following, we mainly work on each conflict graph G.

Our first task is to try to relocate the cuts to make G 2-
colorable. As a result, e-beam cuts can be totally saved for
this layout. If G cannot be made 2-colorable by relocating the
cuts, our second task is to select some of the cuts to be printed
by e-beam lithography such that the remaining subgraph is
2-colorable.

At first glance, our first task is similar to the problem of
layout legalization for double patterning, i.e., modifying the
layout to make the features 2-colorable. There have been some
previous works [18]–[20] on this problem. In [18], a wire per-
turbation method is called iteratively as long as the odd cycles
in the conflict graph are reduced. In [19], the conflict graph is
first colored heuristically and then an LP is used to decide the
locations of the features such that two features with the same
color are far away enough. These methods are not applicable
to our problem because of the unfixed horizontal order and the
high density of the cuts, as well as the high complexity of the
conflict graph in our problem. In [20], an ILP is used to decide
the colors and locations of the features simultaneously, which
will be very time-consuming. Besides, in the layout legaliza-
tion problem, the features can only be spaced to resolve the
conflicts, but in our problem the cuts can be merged. Last but
not least, the existing approaches are for general 2-D layouts
and do not make use of the features of 1-D design.

Our approach is an iterative method, whose flow can be
found in Fig. 5. In each iteration, we will construct the conflict
graph G, and split it into subgraphs (components) by find-
ing independent components, bridges and articulation nodes.
Besides, we can recursively remove the nodes with degree

Fig. 5. Flow of our graph-theoretic approach for CRMA2.

less than 2 temporarily as there is always at least one avail-
able color for these nodes. However, different from Gp, G
is not static, and thus at the beginning of each iteration, we
will repeat the conflict graph construction and splitting pro-
cess. If every component is 2-colorable (which can be tested
through depth-first search), we can combine these components,
post-process and output the solution. Otherwise, for each non-
2-colorable component, we try to select some moves to relocate
the cuts so as to resolve some of the conflicts in that compo-
nent. The definition of moves will be given later. The objective
of move selection is to resolve all odd cycles. If there are any
selected moves, all of them will be performed. Otherwise, we
will select some of the cuts to be printed using e-beam. After
performing moves or selecting e-beam cuts for all the uncol-
orable components, we move on to the next iteration. The
key steps of our approach, i.e., move selection, e-beam cut
selection, and post-processing, will be elaborated below.

C. Odd Cycle-Based Move Selection

We define the meaning of a “move” as follows. A move
involves one or two cuts, and the moving directions and mov-
ing distances of these cuts. Formally, a move is {(ci,±di)} or
{(ci,±di), (cj,±dj)}, where ci and cj are cuts, and di and dj
are discrete distances. We use “+” to represent moving right-
wards and “−” to represent moving leftwards. The basic cost
of a move is the total extensions it will cause. For example,
given the cuts in Fig. 6(a) and the conflict graph in Fig. 6(b),
we generate three moves as shown in Fig. 6(c), and the cost
of each move is 1.

It is well-known that a graph is 2-colorable iff it contains
no odd cycle. Thus, the key idea of odd cycle-based move
selection is to select some moves to shift the cuts, so as to
resolve odd cycles.

At each iteration, we only allow moves to shift cuts away
from their original positions to avoid moving a cut back
and forth. In post-processing, a cut can be moved toward its
original position to compensate for the loss of quality.

1) Move Generation: Given a conflict edge in G, we will
generate a set of moves that can resolve this conflict, under the
limit on extensions. Basically, there are two types of moves
that can resolve conflicts. The first type is to align two conflict-
ing cuts or make one abut/overlap with another (so that they
can be merged) and the second type is to space two conflicting

KUANG et al.: CRMA TO ENABLE FABRICATION OF 1-D GRIDDED DESIGN 2041

Fig. 6. Illustration for odd cycle-based move selection in CRMA2. Dashed
line is incompatible edge between moves. cl0 is the cycle of a, b, and c. (a)
Cuts. (b) Conflict graph G, and the odd cycle in its cycle basis is highlighted.
(c) Moves. (d) Move constraint graph. (e) Bipartite graph B1 between Cf and
M. (f) Bipartite graph B2 between Cl and Cf . (g) Integrated graph model.

cuts, e.g., among the moves in Fig. 6(c), m2 can align b and
c and m1 can space a and b. After we generate the moves for
each conflict edge separately, there may be duplicated moves
because one move may solve the conflicts corresponding to
multiple conflict edges at the same time, e.g., m1 can solve
the conflicts for edges (a, b) and (a, c) at the same time. Thus,
after generating all the moves, we will detect and remove the
duplicated ones.

Note that a move that tries to resolve one conflict may cause
another new conflict, e.g., m1 in Fig. 6(c) will cause a new
conflict between a and e. If we simply forbid such moves, the
cut redistribution process may get stuck because such moves
may be the only possible moves for some conflicts and the
newly caused conflict may be resolved by 2-coloring or mov-
ing other cuts further. Thus, our strategy is to allow such moves
but increase their costs by β (which is set to 1 in our exper-
iments) for each newly caused conflict to give preference to
the moves that cause fewer new conflicts. If there are new
conflicts, they will be solved in the next iteration.

2) Integrated Graph Model: In this section, we will intro-
duce how to select moves based on an integrated graph
model.

With the generated moves in the previous section, we will
first build a move constraint graph, in which a node represents
a move and an edge between two nodes means that the two
corresponding moves are incompatible. Two moves are incom-
patible if: 1) after applying both moves, the total extension of
a wire will exceed the limit; or 2) the two moves shift a cut
in different ways; or 3) applying both moves cannot resolve
the conflicts that we intend to solve. For example, m2 and m3
in Fig. 6(c) are incompatible regarding the conflict between b
and c because applying both of them cannot resolve the con-
flict. The move constraint graph for m1, m2, and m3 is shown
in Fig. 6(d).

Given a set Cf of conflict edges and a set M of moves, we
will build a bipartite graph B1 between Cf and M as shown
in Fig. 6(e). Each edge between a conflict and a move in B1
means that the move can resolve the conflict.

A graph is 2-colorable iff it has no odd cycle. Thus, we
need to select a set of edges from G to be resolved by
the moves such that there is no odd cycle in the remaining
subgraph. However, the problem of removing the minimum
number of edges from a graph to break all the odd cycles is

NP-hard in general [21]. Enumerating all the odd cycles will
also be time-consuming because the number of odd cycles
grows exponentially with the number of nodes even in pla-
nar graphs [22]. Thus, in each iteration, we only resolve
the odd cycles in a cycle basis of G. A cycle basis of a
graph is a minimal set of cycles that can be combined to
form every cycle in the graph using a sequence of symmetric
differences1 [18], [23].

A simple cycle basis of a connected graph G can be found
as follows. Let T be a spanning tree of G, then each edge ε /∈ T
combined with the path in T that connects the endpoints of ε

forms a cycle in the cycle basis [23]. For instance, considering
the graph G in Fig. 6(b), for the connected subgraph (without
the isolated node e), a spanning tree T = {(c, a), (b, c), (c, d)},
and the only edge not in T is (a, b). Thus, there is only one
cycle cl0 = {(c, a), (a, b), (b, c)} in the cycle basis of G.

It is easy to see that if there is no odd cycle in the cycle
basis of G, then G has no odd cycles and is thus 2-colorable.
On the other hand, if there is any odd cycle in the cycle basis
of G, G is not 2-colorable. Therefore, in each iteration, we
try to break the odd cycles in the cycle basis of G, which
would be a good way to break all the odd cycles iteratively.2

Our problem can be modeled as a bipartite graph B2 between
the odd cycles in a cycle basis (denoted as Cl) and the conflict
edges Cf in these odd cycles. An example is shown in Fig. 6(f),
where an edge between a cycle and a conflict edge means that
resolving the conflict can break the odd cycle.

We then combine the graph models in Fig. 6(d)–(f) together
to get an integrated graph GI as shown in Fig. 6(g). In
Fig. 6(g), the incompatible edge between moves is the same
as that in Fig. 6(d). There is an edge in GI between cl ∈ Cl
and m ∈ M, iff ∃cf ∈ Cf such that an edge exists between
cl and cf in B2 and an edge exists between cf and m in B1.
The problem of move selection based on the integrated graph
model can be formulated as follows.

Problem 2: Given a graph GI(Cl,M), select a minimum
weight subset Ms of the nodes in M, subject to the con-
straints between the nodes in M, such that every node in Cl
is connected to at least one node in Ms.

In other words, Problem 2 is to select moves with the mini-
mum cost, subject to the constraints, to resolve the odd cycles.
It can be seen that this problem is equivalent to the following
set cover problem but with constraints.

Problem 3 (Set Cover Problem): Given a set U of elements
(the universe) and a collection S of sets whose union equals
the universe and each set in S is with a cost, find the least-cost
subcollection of S whose union equals the universe.

The equivalence is that, in Problem 2, Cl is the universe and
M is the collection of sets, and there are additional constraints
among the sets. Problem 2 is Problem 3 with constraints. We
thus denote Problem 2 as the constrained set cover problem
(CSCP), which will be solved in the next section.

Given a set of design rules, a cut can only conflict with
a constant number of other cuts, and a move can also only

1The symmetric difference of two cycles is the set of edges which appear
in either of the two cycles but do not appear in both of them.

2Notice that breaking all the odd cycles in a cycle basis of a graph may not
break all the odd cycles of the graph, because the graph may have a different
cycle basis after removing some edges. In our approach, the unresolved odd
cycles in one iteration will be resolved in later iterations.

2042 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Fig. 7. Vertically aligned Cuts. (a) 2 cuts. (b) 3 cuts. (c) n̄ cuts. (d) Example
for merging vertically aligned cuts.

be incompatible with a constant number of other moves.
Therefore, it is clear that |Cf |, |Cl| and |M| are all linear to
|C|, and each step to build the integrated graph, i.e., building
Gp, G, move constraint graph, B1, B2, and GI , can be done in
at most O(|C| · log |C|) time.

3) Solving the Constrained Set Cover Problem: The set
cover problem, even without constraints, is NP-hard. To get
high quality result, we formulate CSCP as an ILP and use an
ILP solver to solve it optimally. The formulation is as follows:

ILP2 : min
|M|∑

j=1

bj · cost
(
mj

)
(20a)

s.t.
|M|∑

j=1

aij · bj ≥ 1, ∀i ∈ {1, . . . , |Cl|} (20b)

bi + bj ≤ 1, ∀mi incompatible with mj (20c)

where aij is a binary number and bj is a binary variable. aij = 1
iff there is an edge between cli and mj in GI . bj = 1 iff mj is
selected.

By solving ILP2, some moves will be selected. Note that
although the complexity is still exponential, ILP2 can be
solved much more efficiently than the ILP in Section III
(ILP1). There are three major reasons. First, we solve the
problem iteratively as shown in Fig. 5 and in each iteration
we split the conflict graph into smaller components, while such
acceleration techniques cannot be applied to ILP1. Second,
the numbers of constraints are O(P) and O(|Cl|) in ILP1 and
ILP2, respectively, where P is the total number of pairs of
gaps that may have conflicts. Generally speaking, |Cl| << P.
Third, the solution space of ILP1 is very large because there
are many different positions to place the cuts, while in ILP2,
a move can only be either selected or not, and the solution
space is thus much smaller. The efficiency of our approach can
be seen clearly from the experimental results in Section VII.

If ILP2 has no feasible solution, no move will
be selected, and e-beam cut selection will be triggered
(see Fig. 5).

4) Handling Vertically Aligned Cuts: In this section, we
discuss how to handle vertically aligned cuts specially when
constructing the conflict graph.

For two vertically aligned cuts on adjacent tracks, such as
a and b in Fig. 7(a), we will not add an edge between them
when constructing the conflict graph. This is because, if a and
b are finally colored differently, there is no conflict between
them. On the other hand, if they are colored the same, they
can always be merged and there is still no conflict.

If H ≥ 2, for three or more consecutive and vertically
aligned cuts, such as a, b, and c in Fig. 7(b), the situation

is more complicated. If a and c are colored the same, then b
must be colored the same with a and c, as otherwise a and c
cannot be merged and a conflict between them occurs. On the
other hand, if a and c are colored differently, then the color of
b will be the same as one of them. If we add an edge between
a and c, it will force the solver to space them or to color them
differently, which may result in suboptimality. Actually, from
the above analyses we can see that there is no need to add an
edge between a and c as long as we can make sure that b is
colored the same as at least one of a and c.

In general, consider n̄ consecutive and vertically aligned
cuts {c1, ...cn̄} where 3 ≤ n̄ ≤ H + 1, as shown in Fig. 7(c).
(There is no need to consider n̄ > H + 1 as there will be no
conflict between c1 and cn̄.) We have the following lemma.

Lemma 1: There is no conflict among c1, . . . cn̄ iff the fol-
lowing condition is satisfied: ∃i where 2 ≤ i ≤ n̄ such that
c1, . . . ci−1 are colored the same and ci, . . . cn̄ are colored the
same.

Proof: (⇐) Assume there exists such i. If c1, . . . cn̄ are all
colored the same, all of them can be merged together and
there is thus no conflict. If c1, . . . ci−1 are with one color and
ci, . . . cn̄ are with another color, there is no conflict between
any cut in {c1, . . . ci−1} and any cut in {ci, . . . cn̄}. Besides,
c1, . . . ci−1 can be merged together and ci, . . . cn̄ can also be
merged. Thus, there is no conflict.

(⇒) Assume there does not exist such i. If c1 and cn̄ are
colored the same, there must exist 2 ≤ i ≤ n̄− 1 such that ci
is colored differently from c1, which will result in a conflict
because c1 and cn̄ cannot be merged. If c1 and cn̄ are colored
differently, there must exist 2 ≤ i < j ≤ n̄ − 1 such that ci
is colored the same as cn̄ while cj is colored the same as c1,
which will result in a conflict between ci and cn̄ and a conflict
between cj and c1.

According to Lemma 1, to make sure that some of the
cuts are colored the same to avoid conflicts, we merge some
of the nodes into one node when constructing the conflict
graph. Consider constructing the conflict graph for m verti-
cally aligned cuts. If 2 < m ≤ 2H, we will merge the nodes
corresponding to the bottom �(m/2) cuts, and the nodes cor-
responding to the upper m − �(m/2) cuts; if m > 2H, we
will merge the nodes in groups of H. This will make sure
that among the m cuts, for any n̄ consecutive cuts, where
3 ≤ n̄ ≤ H + 1, the condition in Lemma 1 is satisfied. An
example of m = 5 and H = 2 is shown in Fig. 7(d), and the
merging will make sure that for any n̄ consecutive cuts, where
3 ≤ n̄ ≤ H + 1, the condition in Lemma 1 is satisfied and
there is no conflict.

Note that there are different ways to merge the nodes.
Experimental results show that our merging strategy is effec-
tive to resolve the conflicts among vertically aligned cuts.

D. E-Beam Cut Selection

For some of the components, there may not be available
moves to make them 2-colorable, especially when there is
native conflict. In this case, we will select some of the cuts to
be printed using e-beam lithography. This operation is equiv-
alent to deleting some nodes from the conflict graph G. We
want to delete a minimum set of nodes from G such that at
least one node is deleted from each odd cycle in a cycle basis
of G. The problem is again formulated as a set cover problem

KUANG et al.: CRMA TO ENABLE FABRICATION OF 1-D GRIDDED DESIGN 2043

Fig. 8. Illustration for the longest-path-based extension reduction method.
(a) Cut redistribution and coloring solution, where the x-coordinates for a, b,
c, and d are 4, 1, 1, and 4, respectively. (b) Left-compaction graph and the
longest paths. (c) Cut distribution after left-compaction.

and an ILP. The formulation is as follows:

ILP3 : min
|C|∑

j=1

ej (21a)

s.t.
|C|∑

j=1

aij · ej ≥ 1. ∀i ∈ {1, . . . , |Cl|}. (21b)

ILP3 is similar to ILP2 but without the incompatible con-
straints. We are working on a set of odd cycles Cl in a cycle
basis of the conflict graph, and a set C of cuts that are can-
didates for e-beam cuts. ej is a binary variable, which is 1
iff cut cj is selected as e-beam cuts. aij is a binary number
which is 1 iff cj is a part of odd cycle cli. The objective is to
minimize the number of e-beam cuts, and the constraints are
to ensure every odd cycle has at least one cut been selected
as e-beam cut.

E. Post-Processing

In this section, we present two post-processing methods to
reduce the extensions of the wires.

1) Longest-Path-Based Global Extension Reduction: The
first method to reduce wire extensions is a longest-path-based
method. The key idea is to compact the cuts to their original
locations. Given a solution of the locations and masks of the
cuts, inspired by compaction in floorplanning [24], we want to
compact the cuts at the right (left) ends of the wires to the left
(right) as much as possible, subject to the spacing constraints
between the cuts in the same mask, so as to reduce the total
extensions.

For example, as shown in Fig. 8(a), where we only consider
the cuts in mask 1, we construct a left-compaction graph as
follows [see Fig. 8(b), where we assume that cuts on nonad-
jacent tracks have no conflicts]. There is a node i for each
cut ci and a dummy source node s. There is a directed edge
from s to each node i. If ci is merged with some other cuts
or ci is at the left end of some wire, the cost of the edge
between s and i is the x-coordinate of ci to avoid moving it in
left-compaction. Otherwise, the cost is the x-coordinate of the
leftmost point in the moving range of ci. We add a directed
edge eij from i to j if: 1) there is an edge between ci and cj in
the potential conflict graph Gp; 2) ci has the same color as cj;
and 3) cj is on the right of ci, i.e., xj > xi. The cost of eij is the
required distance between ci and cj. With the left-compaction
graph, we calculate the longest path from s to each node i, ∀
ci at the right end of some wire. The longest path length from
s to i means the leftmost x-coordinate that we can place ci
without any design rule violation, e.g., as shown in Fig. 8(b),
the longest paths are highlighted and the longest path lengths

from s to a, c, and d are 3, 1, and 4, respectively. Thus, a
can be moved leftwards by 1 and the extension of the corre-
sponding wire can thus be reduced [Fig. 8(c)]. Similarly, we
can build the left-compaction graph for the cuts in mask 2,
and the right-compaction graphs to reduce the extensions at
the left ends of wires.

2) Local Extension Reduction: The longest-path-based
method can minimize the total extensions globally, but it
cannot change the colors of the cuts and the relative orders
between the cuts that have potential conflicts. Thus, after call-
ing the global extension reduction method, we will employ the
following greedy extension reduction method that optimizes
the extensions locally but is flexible to change the colors and
orders of the cuts.

First, all e-beam cuts will be moved to their original posi-
tions as they will not cause any conflict. Then, ∀ ci that is
not printed using e-beam, if xi �= xo

i where xo
i is the original

x-coordinate of ci, we consider the possible positions to place
ci, i.e., {xo

i , xo
i +1, . . . , xi−1} if ci is at the right end of some

wire, or {xo
i , xo

i −1, . . . , xi+1} if ci is at the left end of some
wire. At each position, we consider the two possible colors
for ci, and test whether ci will conflict with cj, ∀ cj that has
an edge with ci in the potential conflict graph Gp. If there is
no conflict, we will commit the position and coloring for ci.
Otherwise, assuming that ci has a conflict with cj, we will try
to change the color of cj to resolve the conflict so that we
can commit the position and coloring for ci to reduce wire
extension. We consider two cases that the color of cj can be
changed. The first case is that ci is the only cut that cj has a
conflict with. The second case is that ci and cj are in different
independent components and the conflict edge between ci and
cj will be a bridge between the two components, and thus we
can change the colors of all the cuts in the component of cj
to resolve the conflict.

Obviously, both extension reduction methods above can
complete in linear time, under a given set of design rules.

V. GRAPH-THEORETIC APPROACH FOR CRMA3

This section presents our graph-theoretic approaches for
CRMA3 that are extended from the approach for CRMA2.

A. Baseline Method—Reducing CRMA3 to CRMA2

This section describes our baseline method to solve
CRMA3, which is used to be compared with the sophisticated
method described in the next section.

A natural thought to solve CRMA3 is to reduce it to
CRMA2. Given a conflict graph in CRMA3, if an independent
set of nodes are removed from it, the problem on remaining
graph becomes CRMA2. In other words, removing an indepen-
dent set from a conflict graph can reduce a 3-coloring problem
to a 2-coloring problem, because the nodes in the independent
set can take the third color. Our baseline method is to find
a maximum independent set (MIS) on the graph to make the
remaining graph as small as possible. The flow is shown in
Fig. 9. We first simplify the conflict graph and divide it into
components similarly to Section IV-B. (The difference here
is that instead of temporarily removing nodes with degree
less than 2, we can temporarily remove nodes with degree
less than 3 to simplify the graph.) And then, for each gen-
erated component, we find an MIS and remove the nodes in

2044 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Fig. 9. Flow of the baseline method for CRMA3 that reduces CRMA3 to
CRMA2.

Algorithm 1 MIS Finding
Input: A graph G, a number kinit.
Output: An MIS.

1: k← kinit;
2: while kMis(G,k)=nil do
3: k← k/2;
4: end while
5: kmax ← binarySearch(k,2k) for the maximum k that has

kMis(G,k) �=nil;
6: return kMis(G,kmax);

the MIS. We then solve CRMA2 on the resulted components
after removing the nodes in the MIS, and the remaining steps
are same as the steps in Fig. 5.

It remains to describe how to find MIS in a graph (the step
of “find MIS” in Fig. 9). Our method to find MIS is based
on the algorithm in [25], which takes a graph and a parameter
k, and returns, in polynomial time, an independent set of size
at least k, or nil if such an independent set cannot be found.
We denote the algorithm in [25] as kMis, and outline our
MIS finding method in Algorithm 1. First, let k be a guess
of the size of the MIS, kinit. If the kMIS algorithm cannot
find a solution with size at least k, the algorithm is called
again by halving k. This process continues until kMIS finds
a solution with size at least k. Then the best solution must
be between k and 2k, which can be found by calling kMIS
at most log(k) times by binary search. In our experiments,
kinit = (#Node in G)/2.

The kMIS algorithm takes at most O(|C|8) time to com-
plete [25]. Thus, Algorithm 1 takes at most O(log |C| · |C|8)
time. Note that this is the worst case complexity. It is actually
much faster in practice.

This MIS finding algorithm will be useful in the next section
as well.

Fig. 10. Flow of our method K4solver for CRMA3 that solves CRMA3
directly.

B. K4Solver: Solving CRMA3 Directly

This section describes our method named K4Solver that can
solve CRMA3 directly.

K4Solver is extended from the approach in Section IV. The
foundation of the approach in Section IV is odd cycle-based
move selection, and the foundation of K4Solver is K4-based
move selection. The key idea is, instead of resolving odd
cycles in each iteration as shown in Fig. 5, we try to solve K4s
(4-cliques) in each iteration. K4s are the key components to
make a graph not 3-colorable, just as odd cycles are the key
components to make a graph not 2-colorable. Containing at
least one K4 is a sufficient condition for a graph to be non-3-
colorable. Although it is not a necessary condition, resolving
K4s can already make most graphs 3-colorable in practice.

There is a chance that some graphs are not 3-colorable even
without K4s. For such graphs, we will first find critical edges
in the graphs and then use moves to resolve the critical edges.
Details of critical edge-based move selection will be elaborated
later.

The flow of K4Solver is shown in Fig. 10. It is simi-
lar to the flow for CRMA2 in Fig. 5 except for three key
steps: 1) 3-colorability checking; 2) K4-based move selection;
and 3) critical edge-based move selection. Critical edge-based
move selection will be invoked only if K4-based move selec-
tion fails. Besides, e-beam selection in CRMA3 is also slightly
different from that in CRMA2. These four steps will be
elaborated in the following.

1) 3-Colorability Checking: In general, to determine the
3-colorability of a graph and to 3-color a graph are both NP-
hard [9]. In K4Solver, We use a set of heuristics as shown in
the flowchart in Fig. 11 to determine whether a component of
a graph is 3-colorable or not, and color it if it is colorable.

The first heuristic we use is graph matching-based on the
method in [26]. A graph library is first built which contains
graphs that: 1) have no articulation nodes nor bridges; 2) have
4–6 nodes; and 3) have no nodes with degree less than 3.

KUANG et al.: CRMA TO ENABLE FABRICATION OF 1-D GRIDDED DESIGN 2045

Fig. 11. Flow of 3-colorability checking.

These conditions can exclude useless graphs from the library
and keep the size of the library reasonable. If the input graph
component can match with a 3-colorable graph in the library,
then it can be colored easily.

The graph matching method can only handle graph compo-
nents with no more than 6 nodes, because it is impractical to
include all of the graphs with 7 or more nodes into the library
as otherwise there will be too many of them. We thus need dif-
ferent heuristics to handle graph components with 7 or more
nodes. The second heuristic we use is MIS-based coloring,
which first calls Algorithm 1 to find an MIS and then tests
whether the remaining nodes are 2-colorable by depth-first
search.

If both of the heuristics described above fail, we will try
ordering-based coloring heuristics, i.e., color the nodes in a
specific order. We consider the following orders based on [27].

1) Largest Degree First (LDF): Always first color the node
with the largest degree.

2) Largest Incident Degree First (LIDF): Always first color
the node with the largest number of colored neighbors.

3) Largest Saturation Degree First (LSDF): Always first
color the node whose neighbors used the largest number
of colors.

We also consider the following orders that mix the above ones.
1) LIDF+LDF: Always first color the node with the largest

number of colored neighbors, and if multiple nodes have
the same number, color the one with the LDF.

2) LSDF+LDF: Always first color the node whose neigh-
bors used the largest number of colors, and if multiple
nodes have the same number, color the one with the
LDF.

As shown in Fig. 11, the above-described heuristics will
be tried one by one, and if any of the heuristics succeed, 3-
coloring of the graph component can be found. Otherwise, the
graph component will be treated as not 3-colorable and move
selection will be invoked as in the following sections.

The graph matching-based coloring can only handle graph
with at most six nodes, which can be assumed to take con-
stant time. The MIS-based coloring takes O(log |C| · |C|8)
time in the worst case as we have analyzed in Section V-A.

Fig. 12. Illustration for K4-based move selection in CRMA3. Dashed line
is incompatible edge between moves. (a) Conflict graph G. (b) Identified K4s
cliq1 and cliq2. (c) Move constraint graph. (d) Bipartite graph B1 between
Cf and M. (e) Bipartite graph B2 between Cq and Cf . (f) Integrated graph
model. Note that (c) and (d) are assumed the same as those in Fig. 6 for
simplicity.

The ordering-based coloring can finish in O(|C|2) time, as
each cut can only conflict with a constant number of other
cuts.

2) K4-Based Move Selection: In K4-based move selection,
we first identify K4 subgraphs in the given conflict graph com-
ponent and use moves to resolve the identified K4s. To identify
all K4s, we enumerate all pairs of edges in the given graph
component, and test whether the endpoints of the edges form
a K4 (in constant time with the help of a look-up table). This
can be done in O(|Cf |2) = O(|C|2) time. For example, the
conflict graph component in Fig. 12(a) has two K4s, cliq1 and
cliq2, as shown in Fig. 12(b).

Then, we describe how to resolve the identified K4s by
moves. Similar to Section IV-C2, we first build the move
constraint graph, and the bipartite graph B1 between the
set of conflict edges Cf and the set of moves M [see
Fig. 12(c) and (d), respectively, where we assume the move
constraint graph and the bipartite graph B1 are the same as
those in Fig. 6 for simplicity].

We then build bipartite graph B2 between the K4s (denoted
as Cq) and the conflict edges Cf in these K4s. An example
is shown in Fig. 12(e), where an edge between a K4 and a
conflict edge means that resolving the conflict can break the
clique.

We then combine the graph models in Fig. 12(c)–(e)
together to get an integrated graph GI as shown in Fig. 12(f).
In Fig. 12(f), the incompatible edge between moves is the
same as that in Fig. 12(c). There is an edge in GI between
cq ∈ Cq and m ∈ M, iff ∃cf ∈ Cf such that an edge exists
between cq and cf in B2 and an edge exists between cf and
m in B1. In other words, the move m can resolve the clique
cq. Therefore, the problem of K4-based move selection can
be reduced to Problem 2 (CSCP) on GI and solved by ILP2.

Similar to Section IV-C2, each step of building the inte-
grated graph takes at most O(|C| · log |C|) time, except that
finding all K4s needs O(|C|2) time as we have analyzed.

2046 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Fig. 13. Flow of critical edge-based move selection.

Fig. 14. Illustration for critical edges. Highlighted critical edges in a graph
(a) in the library and (b) out of the library.

3) Critical Edge-Based Move Selection: In practice, there
is still a small chance that K4-based move selection is unable
to select any move because not all non-3-colorable graphs have
a K4 as a subgraph. In such cases, we use critical edge-based
move selection. Similar to [28], we define a critical edge as
an edge in a non-3-colorable graph whose removal helps to
make remaining subgraph 3-colorable.

As shown in Fig. 13, again, we make use of the graph
library built in Section V-B1. But this time, we match the
conflict graph component with non-3-colorable graphs in the
library. When building the library, we can find and record
the critical edges for each graph in the library that is not 3-
colorable and has no K4s. Here, we only record the critical
edges whose removal directly leave the remaining subgraph
3-colorable. Thus, if a graph component can match with a
non-3-colorable graph in the library, we can get its critical
edges immediately. An example is shown in Fig. 14(a), where
all the highlighted edges are critical edges.

For graph components that cannot match any one in the
library, we select the edges incident on the nodes with the
lowest degree. The reason is, removing one of such edges
has a higher chance to help the graph be simplified (by tem-
porarily removing nodes with degree less than 3), and become
3-colorable after the simplification. For example, the graph in
Fig. 14(b) has no K4 and cannot match any one in the library.
The lowest degree in the graph is 3 and we select all edges
incident on the nodes with degree 3 as critical edges (high-
lighted in the figure). In this particular example, removing
any one of the critical edges highlighted as red will make the
remaining subgraph 3-colorable.

With the selected critical edges, we build a bipartite graph
B1 between critical edges Cf and M, similar to the one in
Fig. 12(d). But this time our problem becomes to use the
moves to resolve at least one of the critical edges. We thus

Fig. 15. Illustration for persistent conflict graph and native conflict.
(a) Layout with one native conflict in CRMA2. (b) persistent conflict graph Gr .

select the move with the smallest cost, as shown in the
flowchart in Fig. 13.

It is clear that the critical edge-based move selection can be
done in O(|C|) time.

4) E-Beam Cut Selection: It could happen that for some of
the components, there are no available moves to make them 3-
colorable. In such case, if K4s are identified in the component,
we use an ILP to select the minimum number of cuts as e-
beam cuts so that at least one cut is selected in each K4, i.e.,
the ILP is similar to ILP3 but this time the constraint is for
each K4 instead of each odd cycle. On the other hand, if K4s
are not identified in the component, we select the cut with
the highest degree as e-beam cut to help the coloring of the
remaining cuts.

VI. NATIVE CONFLICT IDENTIFICATION

In this section, we describe our methods to identify native
conflicts, and the lower bound of the required e-beam cuts due
to native conflicts. Native conflict identification has been stud-
ied in double patterning [18] and triple patterning [29], but the
native conflict identification in CRMA is very different since
the cuts are movable in CRMA through cut redistribution.

A native conflict in CRMA is a conflict that cannot be
resolved by any cut redistribution nor coloring. Given two
cuts c1 and c2 and their moving ranges, they can never be
legally spaced if the largest distance between them within their
respective moving ranges is smaller than the required critical
distance. And they can never be merged if one of the following
conditions is met: 1) their moving ranges do not horizontally
overlap and 2) they are in nonadjacent tracks and it is not
the case that a cut exists on every track between the tracks of
c1 and c2 that can vertically align with both c1 and c2 (see
Rule 4). For example, in Fig. 15(a), cuts a and c can never be
legally spaced within the gaps they are located at. Cuts a and c
can never be merged because they meet condition 1), and cuts
a and b can never be merged because they meet condition 2).
If a pair of cuts can never be legally spaced nor merged, we
say that they have a persistent conflict.

We build a persistent conflict graph Gr, in which a node
represents a cut and an edge between two nodes represents a
persistent conflict between the two corresponding cuts. Note
that Gr is static.3 For CRMA2, we can identify odd cycles
in Gr. If there are k disjoint odd cycles, there are at least
k native conflicts. This is because, any conflict in Gr cannot
be resolved by cut redistribution, and any odd cycle in Gr
cannot be resolved by coloring either. For example, the per-
sistent conflict graph in Fig. 15(b) is built from the layout
in Fig. 15(a), where there is one independent (i.e., disjoint

3In summary, G is conflict graph, Gp is potential conflict graph, and Gr is
persistent conflict graph. Both Gr and Gp are static while G is dynamic and
only represents the conflict at present.

KUANG et al.: CRMA TO ENABLE FABRICATION OF 1-D GRIDDED DESIGN 2047

TABLE II
RESULT COMPARISONS FOR CRMA2

with others) odd cycle and thus at least one native conflict.
Similarly, for CRMA3, we can identify K4s in Gr. If there are k
disjoint K4s, there are at least k native conflicts. Although our
native conflict identification method cannot guarantee to find
all native conflicts, it can find a reasonable lower bound for
native conflicts. If there is at least one native conflict identified
for a design, then using e-beam cut will be inevitable.

Then, we describe how to find a lower bound of e-beam
cuts. For CRMA2, we can apply ILP3 on Gr, and the number
of e-beam cuts in the solution will be the lower bound of
e-beam cuts. For example, if we apply ILP3 on the graph
in Fig. 15(b), we can find that the lower bound of e-beam
cuts is 1. For CRMA3, we can apply ILP on Gr similarly,
but the constraint in the ILP is for each K4 instead of each
odd cycle. The lower bound of e-beam cuts will be useful
to evaluate the difficulty of the benchmark and the quality of
other optimization approaches.

VII. EXPERIMENTAL RESULTS

We implemented the proposed methods in C++, on a
2.39 GHz Linux machine with 16 CPU cores and 48 GB
memory. GUROBI [30] is employed as our ILP solver. The
benchmarks that we use are the M1 layouts used in [6] that
are dense and thus need multiple masks. As in [6], α in (1) is
set to 1000. [The value of α will not impact the results as long
as it is big enough so that the cost of e-beam cuts dominates
the cost of (1).]

A. Results for CRMA2

For the purpose of comparison, we implemented a method
denoted as “optCR” for CRMA2 that solves cut coloring and
cut redistribution optimally but separately. There are two steps.
The first step is to split a conflict graph into components and
2-color the cuts in each component optimally (using ILP) with
the minimum number of unresolved conflicts, which will ben-
efit the next step of cut redistribution. In the second step, the
colors of the cuts will be imported to the ILP formulation in
Section III such that the ILP solver only needs to decide the
positions of the cuts to minimize (1).

We compare the results of our graph-theoretic method,
the accurate ILP extended from [6] and [16], and the
optCR method in Table II. We have applied the techniques
of constructing and simplifying potential conflict graph in

TABLE III
RESULT COMPARISONS FOR CRMA3

Section IV-A to speed up the accurate ILP-based approach.
We also show the published results in [6] that uses a single
mask for reference. (The results of [11] also use a single mask
but the formulation is different as it assumes new cut can be
inserted.) As different machine is used in [6], we do not show
the runtime of [6]. In Table II, “track#” means the number
of tracks, “eb#” means the number of e-beam cuts, “ext” rep-
resents the total extensions of wires, “cost” is ext + α · eb#
[i.e., (1)], “time” is the wall-clock time in seconds, and “OM”
means that there is no solution because the program ran out
of memory.

As shown in the table, with our graph-theoretic method, e-
beam cuts can be totally saved for 8 out of 10 datasets. For
ext, our results are very close to the optimal results reported
by the ILP extended from [6] and [16], for the datasets that
can be solved by the ILP. The ILP cannot solve datasets with
more than 150 tracks in a reasonable amount of time.

Comparing with the optCR method that solves coloring
and redistribution optimally but separately, our method that
solves the two tasks simultaneously can achieve 566.0× fewer
e-beam cuts, 1.1× fewer extensions, and 95.0× smaller cost on
average. For runtime, our method can solve the largest dataset
within 19 s and is 84.8× faster than the optCR method on
average, which clearly demonstrates our efficiency.

For reference, comparing with the results using a single cut
mask, although using two masks will increase the mask cost,
our method can obtain 2107.0× fewer e-beam cuts, 2.5× fewer

2048 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Fig. 16. Convergence of the number of selected moves for the benchmark
with 8000 tracks.

extensions and 352.1× smaller cost on average, and thus the
manufacturing cost can be reduced dramatically.

B. Results for CRMA3

The result comparisons for CRMA3 among the accurate
ILP extended from [6] and [16], the baseline method and
K4solver are shown in Table III. It can be seen that e-beam
cuts are totally saved for all the benchmarks with three masks.
Comparing with the results of CRMA2 in Table II, the wire
extensions and total costs can be reduced dramatically as there
is one more mask available.

As the complexity of ILP increases exponentially with the
number of masks and the number of cuts, the accurate ILP can
only solve the smallest case, for which the other two methods
can both deliver the same result. Comparing with the baseline
method that reduces CRMA3 to CRMA2 and solves it indi-
rectly, the more sophisticated method, K4solver, can reduce
the cost by 7.6% with similar runtime.

C. Convergence Analyses of the Graph-Theoretic Approaches

Our graph-theoretic approaches for both CRMA2 and
CRMA3 are iterative methods. We analyze their convergence
here on the benchmark with 8000 tracks. As can be seen from
Fig. 16, our approaches converge very fast for both CRMA2
and CRMA3. Even for the largest benchmark, our approaches
can finish in no more than seven iterations.

D. Identification of Native Conflicts and Lower Bounds of
E-Beam Cuts

We employ the method described in Section VI to identify
native conflicts and lower bounds of e-beam cuts in the used
benchmarks for CRMA2 and CRMA3, respectively.

The columns “lb#” in Tables II and III show the results of
lower bounds of “eb#” for CRMA2 and CRMA3, respectively.
If lb# is nonzero, it means that native conflict is identified
for the benchmark. It can be seen that our graph-theoretic
methods have achieved the optimal result of eb# for all the
ten benchmarks for both CRMA2 and CRMA3.

VIII. CONCLUSION

In this paper, we have proposed algorithms to co-optimize
CRMA for 1-D gridded design. The experimental results
showed that our graph-theoretic approaches for 2-mask case
and 3-mask case are both very effective and efficient. As 1-D
gridded design is widely recognized as a promising solution

to enable the scaling to 10 nm technology node and beyond,
we expect that this result can benefit the industry of circuit
design and manufacturing and attract more research on the
optimization for 1-D gridded design.

Our future works include the following.
1) Generalization of K4Solver: We believe that the inno-

vative framework of identifying and resolving K4s
presented in K4Solver is not only applicable to the
particular problem of CRMA3 but also general enough
to be extended to other coloring problems with three
masks, e.g., layout decomposition in triple patterning
lithograph [9], [17], [26]. One of our future works is to
implement such extensions.

2) Integration With Detail Router: We will try to integrate
the proposed cut optimization algorithms with detail
router to improve the manufacturability of cut patterns
starting from the routing stage.

APPENDIX

LIMITATIONS OF EXISTING ILP

We First Analyze the Limitation for C3: Consider the two
gaps and the four pairs of line ends in Fig. 3(a). In [6], only
the constraint in (3) is proposed for these two gaps and it
is claimed that this is sufficient. A natural thought is that as
L(wj+1) and R(wi) are the closest pair among all the four pairs
of line ends, if this constraint is satisfied, the conflicts between
other pairs of line ends should also be resolved. However, the
problem for C3 is that if either of c2i and c2j+1 is printed
using e-beam, the distance between L(wj+1) and R(wi) may
be smaller than the required critical distance, and so do the
distances between the other three pairs of line ends.

Next, We Analyze the Limitation for C5: Consider the
potential conflict between R(wi) and R(wj) in Fig. 3(b). The
following constraints are proposed in [6]:

(7)−(10)

x2i − x2k + I
(

1− m2i
2j

)
≥ 0 (22)

x2i − x2k − I
(

1− m2i
2j

)
≤ 0. (23)

Equations (22) and (23) are used to make sure that c2i and
c2j are aligned with a cut located on the track between the
tracks of c2i and c2j, namely c2k.

However, there are two problems with these constraints. The
first problem is that there can be more than one cut that is pos-
sibly aligned with both c2i and c2j, e.g., as shown in Fig. 3(b),
there are four such cuts, namely c2k, c2k+1, c2k+2, and c2k+3,
but the above constraints only consider c2k. A natural thought
to solve the problem is to add the following constraints to
make c2i and c2j vertically aligned with c2k+1:

x2i − (x2k+1 −W)+ I
(

1− m2i
2j

)
≥ 0 (24)

x2i − (x2k+1 −W)− I
(

1− m2i
2j

)
≤ 0. (25)

However, this does not work either because adding these con-
straints will incorrectly force c2i to align with c2k and c2k+1
simultaneously. This problem also exists in [16]. The second
problem is that c2k can be an e-beam cut. In this case, c2i and
c2k cannot be merged even if they are vertically aligned, and
thus c2i and c2j cannot be merged through merging with c2k.

KUANG et al.: CRMA TO ENABLE FABRICATION OF 1-D GRIDDED DESIGN 2049

REFERENCES

[1] J. Kuang, E. F. Y. Young, and B. Yu, “Incorporating cut redistribution
with mask assignment to enable 1D gridded design,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, Austin, TX, USA, Nov. 2016, pp. 1–8.

[2] 2013 International Technology Roadmap for Semiconductors. Accessed:
Nov. 12, 2017. [Online]. Available: http://www.itrs2.net

[3] M. C. Smayling, “1D design style implications for mask making and
CEBL,” in Proc. SPIE Photomask Technol., vol. 8880. Monterey, CA,
USA, Sep. 2013, Art. no. 888012.

[4] L. Liebmann, A. Chu, and P. Gutwin, “The daunting complexity of scal-
ing to 7nm without EUV: Pushing DTCO to the extreme,” in Proc. SPIE
Design Process Technol. Co Optim. Manufacturability IX, vol. 9427.
San Jose, CA, USA, Feb. 2015, Art. no. 942702.

[5] Y. Du, H. Zhang, M. D. F. Wong, and K.-Y. Chao, “Hybrid lithography
optimization with e-beam and immersion processes for 16nm 1D gridded
design,” in Proc. IEEE Asia South Pac. Design Autom. Conf., Sydney,
NSW, Australia, Jan. 2012, pp. 707–712.

[6] Y. Ding, C. Chu, and W.-K. Mak, “Throughput optimization for SADP
and e-beam based manufacturing of 1D layout,” in Proc. ACM/IEEE
Design Autom. Conf., San Francisco, CA, USA, Jun. 2014, pp. 1–6.

[7] W. Gillijns et al., “Impact of a SADP flow on the design and process
for N10/N7 metal layers,” in Proc. SPIE Design Process Technol. Co
Optim. Manufacturability IX, vol. 9427. San Jose, CA, USA, Feb. 2015,
Art. no. 942709.

[8] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decom-
position approaches for double patterning lithography,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 6, pp. 939–952,
Jun. 2010.

[9] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposition for
triple patterning lithography,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 34, no. 3, pp. 433–446, Mar. 2015.

[10] J. Kuang and E. F. Y. Young, “Optimization for multiple patterning
lithography with cutting process and beyond,” in Proc. IEEE Design
Autom. Test Europe Conf., Dresden, Germany, Mar. 2016, pp. 43–48.

[11] Y. Zhang et al., “Network flow based cut redistribution and insertion
for advanced 1D layout design,” in Proc. IEEE Asia South Pac. Design
Autom. Conf., Chiba, Japan, 2017, pp. 360–365.

[12] J. Ou, B. Yu, J.-R. Gao, and D. Z. Pan, “Directed self-assembly cut
mask assignment for unidirectional design,” J. Micro Nanolithography
MEMS MOEMS, vol. 14, no. 3, pp. 1–8, Jul. 2015.

[13] Z. Xiao, Y. Du, M. D. F. Wong, and H. Zhang, “DSA template mask
determination and cut redistribution for advanced 1D gridded design,”
in Proc. SPIE Photomask Technol., vol. 8880. Monterey, CA, USA,
Sep. 2013, Art. no. 888017.

[14] Z.-W. Lin and Y.-W. Chang, “Cut redistribution with directed self-
assembly templates for advanced 1-D gridded layouts,” in Proc. IEEE
Asia South Pac. Design Autom. Conf., Macau, China, Jan. 2016,
pp. 89–94.

[15] Z.-W. Lin and Y.-W. Chang, “Double-patterning aware DSA template
guided cut redistribution for advanced 1-D gridded designs,” in Proc.
ACM Int. Symp. Phys. Design, Santa Rosa, CA, USA, Apr. 2016,
pp. 47–54.

[16] K. Han, A. B. Kahng, H. Lee, and L. Wang, “ILP-based co-optimization
of cut mask layout, dummy fill and timing for sub-14nm BEOL tech-
nology,” in Proc. SPIE Photomask Technol., vol. 9635. Monterey, CA,
USA, Sep. 2015, Art. no. 96350E.

[17] S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decom-
position algorithm for triple patterning lithography,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 3, pp. 397–408,
Mar. 2014.

[18] S.-Y. Fang, S.-Y. Chen, and Y.-W. Chang, “Native-conflict and stitch-
aware wire perturbation for double patterning technology,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 5, pp. 703–716,
May 2012.

[19] R. S. Ghaida et al., “Layout decomposition and legalization for double-
patterning technology,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 2, pp. 202–215, Feb. 2013.

[20] K. Yuan and D. Z. Pan, “WISDOM: Wire spreading enhanced decom-
position of masks in double patterning lithography,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, San Jose, CA, USA, Nov. 2010,
pp. 32–38.

[21] M. Yannakakis, “Node-and edge-deletion NP-complete problems,” in
Proc. ACM Symp. Theory Comput., San Diego, CA, USA, May 1978,
pp. 253–264.

[22] K. Buchin, C. Knauer, K. Kriegel, A. Schulz, and R. Seidel, “On
the number of cycles in planar graphs,” in Proc. Int. Conf. Comput.
Combinatorics, Banff, AB, Canada, Jul. 2007, pp. 97–107.

[23] J. T. Welch, “A mechanical analysis of the cyclic structure of undirected
linear graphs,” J. ACM, vol. 13, no. 2, pp. 205–210, Apr. 1966.

[24] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI mod-
ule placement based on rectangle-packing by the sequence-pair,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 15, no. 12,
pp. 1518–1524, Dec. 1996.

[25] A. Dharwadker. The Independent Set Algorithm. Accessed: Nov. 12,
2017. [Online]. Available: http://www.dharwadker.org/independent_set/

[26] J. Kuang and E. F. Y. Young, “An efficient layout decomposition
approach for triple patterning lithography,” in Proc. ACM/IEEE Design
Autom. Conf., Austin, TX, USA, Jun. 2013, pp. 1–6.

[27] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering
heuristics for parallel graph coloring,” in Proc. ACM Symp. Parallelism
Algorithms Archit., Prague, Czech Republic, Jun. 2014, pp. 166–177.

[28] J. Kuang, J. Ye, and E. F. Y. Young, “Simultaneous template optimization
and mask assignment for DSA with multiple patterning,” in Proc.
IEEE Asia South Pac. Design Autom. Conf., Macau, China, Jan. 2016,
pp. 75–82.

[29] J. Kuang, W.-K. Chow, and E. F. Y. Young, “Triple patterning lithogra-
phy aware optimization and detailed placement algorithms for standard
cell-based designs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 24, no. 4, pp. 1319–1332, Apr. 2016.

[30] Gurobi Optimizer. Accessed: Nov. 12, 2017. [Online]. Available:
http://www.gurobi.com

Jian Kuang received the B.E. degree from Sun
Yat-sen University, Guangzhou, China, in 2012 and
the Ph.D. degree in computer science and engineer-
ing from the Chinese University of Hong Kong,
Hong Kong, in 2016.

He is currently with Cadence Design Systems,
San Jose, CA, USA. His current research interests
include VLSI computer-aided design, physical
design automation, and design for manufacturability.

Evangeline F. Y. Young received the B.Sc.
and M.Phil. degrees in computer science from
the Chinese University of Hong Kong (CUHK),
Hong Kong, and the Ph.D. degree from the
University of Texas at Austin, Austin, TX, USA, in
1999.

She is currently a Professor with the Department
of Computer Science and Engineering, CUHK. She
is actively researching on floorplanning, placement,
routing, design for manufacturability, and algorith-
mic designs. Her current research interests include

algorithms and computer-aided design of VLSI circuits.

Bei Yu (S’11–M’14) received the Ph.D. degree from
the University of Texas at Austin, Austin, TX, USA,
in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of four Best Paper Awards
at International Symposium on Physical Design
2017, the SPIE Advanced Lithography Conference
2016, the International Conference on Computer
Aided Design 2013, and the Asia and South Pacific

Design Automation Conference 2012, and four ICCAD/ISPD contest awards.
He has served in the editorial boards of Integration, the VLSI Journal and
IET Cyber-Physical Systems: Theory & Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

