
43

EBL Overlapping Aware Stencil Planning for MCC System

BEI YU, CSE Department, The Chinese University of Hong Kong, Hong Kong
KUN YUAN, Facebook Inc., Menlo Park, CA
JHIH-RONG GAO, Cadence Design Systems, Austin, TX
SHIYAN HU, ECE Department, Michigan Technological University, Houghton, MI
DAVID Z. PAN, ECE Department, The University of Texas at Austin, Austin, TX

Electron beam lithography (EBL) is a promising, maskless solution for the technology beyond 14nm logic
nodes. To overcome its throughput limitation, industry has proposed character projection (CP) technique,
where some complex shapes (characters) can be printed in one shot. Recently, the traditional EBL system
was extended into a multi-column cell (MCC) system to further improve the throughput. In an MCC system,
several independent CPs are used to further speed-up the writing process. Because of the area constraint of
stencil, the MCC system needs to be packed/planned carefully to take advantage of the characters. In this
article, we prove that the overlapping aware stencil planning (OSP) problem is NP-hard. Then we propose
E-BLOW, a tool to solve the MCC system OSP problem. E-BLOW involves several novel speedup techniques,
such as successive relaxation and dynamic programming. Experimental results show that, compared with
previous works, E-BLOW demonstrates better performance for both the conventional EBL system and the
MCC system.

CCS Concepts: � Hardware → VLSI design manufacturing considerations;

Additional Key Words and Phrases: Electron beam lithography, multi-column cell system, overlapping aware
stencil planning

ACM Reference Format:
Bei Yu, Kun Yuan, Jhih-Rong Gao, Shiyan Hu, and David Z. Pan. 2016. EBL overlapping aware stencil
planning for MCC system. ACM Trans. Des. Autom. Electron. Syst. 21, 3, Article 43 (May 2016), 24 pages.
DOI: http://dx.doi.org/10.1145/2888394

1. INTRODUCTION

As the minimum feature size continues to scale to sub-22nm, conventional 193nm op-
tical photolithography technology is reaching its printability limit. In the near future,
multiple patterning lithography (MPL) has become one of the viable lithography tech-
niques for 22nm and 14nm logic nodes [Kahng et al. 2008; Zhang et al. 2011; Yu et al.
2011; Yu and Pan 2014]. In the longer future, that is, for the logic nodes beyond 14nm,
extreme ultra violet (EUV), directed self-assembly (DSA), and electron beam lithogra-
phy (EBL) are promising candidates as next-generation lithography technologies [Pan
et al. 2013]. Currently, both EUV and DSA suffer from some technical barriers: EUV
technique is delayed due to tremendous technical issues, such as lack of power sources,

This work is supported in part by NSF grants CCF-0644316 and CCF-1218906, SRC task 2414.001, NSFC
grant 61128010, IBM Scholarship, and Chinese University of Hong Kong (CUHK) Direct Grant for Research.
Authors’ addresses: B. Yu, CSE Department, The Chinese University of Hong Kong, NT, Hong Kong; email:
byu@cse.cuhk.edu.hk; K. Yuan, Facebook Inc., Menlo Park, CA 94025 USA; email: bigfish.yuan@gmail.com;
J.-R. Gao, Cadence Design System, TX 78759 USA; email: jrgao@cadence.com; S. Hu, ECE Department,
Michigan Technological University, MI 49931 USA; email: shiyan@mtu.edu; D. Z. Pan, ECE Department,
The University of Texas at Austin, TX 78712 USA; email: dpan@ece.utexas.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1084-4309/2016/05-ART43 $15.00
DOI: http://dx.doi.org/10.1145/2888394

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.

http://dx.doi.org/10.1145/2888394
http://dx.doi.org/10.1145/2888394


43:2 B. Yu et al.

resists, and defect-free masks [Arisawa et al. 2010; Zhang et al. 2012]; DSA has mainly
the potential to generate contact or via layers [Chang et al. 2010].

The EBL system, on the other hand, has been developed for several decades [Pfeiffer
2009]. Compared with the traditional lithographic methodologies, EBL has several
advantages. (1) An electron beam can be easily focused into a nanometer diameter
with a charged particle beam, thus can avoid suffering from the diffraction limitation
of light. (2) The price of a photomask set is getting unaffordable, especially through the
emerging multiple patterning lithography (MPL) techniques. As a maskless technology,
EBL can reduce the manufacturing cost. (3) EBL allows a great flexibility for fast
turnaround times or late design modifications to correct or adapt a given chip layout.
Because of all these advantages, EBL is being used in mask making, small volume
integration circuit production, and research to develop the technological nodes ahead
of mass production.

1.1. EBL System and Extended MCC System

The conventional EBL system applies a variable-shaped beam (VSB) technique
[Fujimura 2010]. In this mode, the entire layout is decomposed into a set of rectangles,
each of which is shot into resist by one electron beam. In the printing process of the
VSB mode, at first, an electrical gun generates the initial beam, which becomes uniform
through a shaping aperture. Then, a second aperture finalizes the target shape with a
limited maximum size. Since each pattern needs to be fractured into pieces of rectangles
and printed one by one, the VSB mode suffers from serious throughput problems.

One improved technique in the EBL system is called character projection (CP)
[Fujimura 2010], where the second aperture is replaced by a stencil. Some complex
shapes, called characters, are prepared on the stencil. The key idea is that if a pattern
is pre-designed on the stencil, it can be printed in one electronic shot; otherwise, it needs
to be fractured into a set of rectangles and printed one by one through VSB mode. By this
way, the CP mode can improve the throughput significantly. In addition, CP exposure
has a good, critical dimension control stability compared with VSB [Maruyama et al.
2008]. However, the area constraint of the stencil is the bottleneck. For modern design,
due to the numerous distinct circuit patterns, only a limited number of patterns can be
employed on the stencil. Those patterns not contained by the stencil are still required
to be written by VSB [Manakli et al. 2009]. Thus, one emerging challenge in CP mode
is how to pack the characters into the stencil to effectively improve the throughput.

Even with decades of development and the employment of the CP technique, the
key limitation of the EBL system has been, and still is, the low throughput. Recently,
a multi-column cell (MCC) system was proposed as an extension of the CP technique
[Yasuda et al. 2004; Maruyama et al. 2012]. In the MCC system, several independent
CPs are used to further speed-up the writing process. Each CP is applied on one
section of wafer, and all the CPs can work in parallel to achieve better throughput.
In the modern MCC system, there are more than 1,300 CPs [Shoji et al. 2010]. Since
one CP is associated with one stencil, there are more than 1,300 stencils in total. The
manufacturing of stencils is similar to mask manufacturing. If each stencil is different,
then the stencil preparation process could be very time consuming and expensive. Due
to the design complexity and cost consideration, different CPs share one stencil design.
One example of the MCC printing process is illustrated in Figure 1, where four CPs are
bundled to generate an MCC system. In this example, the whole wafer is divided into
four regions, w1, w2, w3 and w4, and each region is printed through one CP. The whole
writing time of the MCC system is determined by the maximum one among the four
regions. For modern design, because of the numerous distinct circuit patterns, only a
limited number of patterns can be employed on a stencil. Since the area constraint of
the stencil is the bottleneck, the stencil should be carefully designed/manufactured to
contain the most repeated characters.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:3

Fig. 1. Printing process of MCC system, where four CPs are bundled.

1.2. Previous Works

Many previous works dealt with the design optimization for the EBL system. For VSB
mode, Du et al. [2012a], Gao et al. [2014], Ding et al. [2014], and Yang et al. [2015]
considered EBL as a complementary lithography technique to print via/cut patterns
or additional patterns after multiple patterning mask processes. To avoid stitching
line-induced bad patterns for the parallel EBL system, Fang et al. [2013b] and Lin
et al. [2016] integrated EBL constraints into early routing stage and placement stage,
respectively. Babin et al. [2003] and Fang et al. [2013a] solved the subfield scheduling
problem to reduce the critical dimension distortion. Kahng et al. [2006], Ma et al.
[2011], Yu et al. [2013a], and Chan et al. [2014] proposed a set of layout/mask fracturing
approaches to reduce the VSB shot number. Besides, several works solved the design
challenges under CP technique. Before stencil manufacturing, all design steps should
consider the character projection, that is, character aware library building [Fujino
et al. 2005], technology mapping [Sugihara et al. 2007], and character sizing problem
[Sugihara et al. 2006b]. In addition, Du et al. [2012b] and Ikeno et al. [2013a] proposed
several character design methods for both via layers and interconnect layers to achieve
stencil area-efficiency. After stencil manufacturing, characters are stamped to practical
layout patterns to minimize the electron beam shot number, especially for irregular
routing or via layout [Minh et al. 2006; Du et al. 2012b]. Ikeno et al. [2013b] proposed
a structured routing architecture for high throughput CP mode.

Stencil planning is one of the most challenging problems in CP mode and has earned
more and more attention. When blank overlapping is not considered, this problem
equals to a character selection problem, which can be solved through an integer linear
programming (ILP) formulation to maximize the system throughput [Sugihara et al.
2006a]. When the characters can be overlapped to save more stencil space, the corre-
sponding stencil planning is referred to as overlapping-aware stencil planning (OSP).

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:4 B. Yu et al.

Fig. 2. Two types of OSP problems: (a) one-dimensional problem; (b) two-dimensional problem.

As suggested in Yuan et al. [2012], the OSP problem can be divided into two types:
one-dimensional problem and two-dimensional problem.

In the one-dimensional OSP problem, the standard cells with the same height are
selected into the stencil. As shown in Figure 2(a), each character implements one
standard cell, and the enclosed circuit patterns of all the characters have the same
height. Note that here we only show the horizontal blanks, and the vertical blanks
are not represented because they are identical. Yuan et al. [2012] proposed a set of
heuristics, and the single row reordering was formulated as a minimum cost Hamil-
tonian path. Kuang and Young [2014a] proposed an integrated framework to solve all
the sub-problems effectively: character selection, row distribution, single-row order-
ing, and inter-row swapping. Guo et al. [2015] proved that single row reordering can
be optimally solved in polynomial time. In addition, Chu and Mak [2014] and Mak and
Chu [2014] assumed that the pattern position in each character can be shifted and
integrated the character re-design into the OSP problem.

In the two-dimensional OSP problem, the blank spaces of characters are non-uniform
along both horizontal and vertical directions. By this way, the stencil can contain both
complex via patterns and regular wires (see Figure 2(b) for an example). Yuan et al.
[2012] solved the problem through a modified floor-planning engine, while Yu et al.
[2013b] further sped-up the engine through a clustering technique. Kuang and Young
[2014b] proposed a set of fast and effective deterministic methods to solve this problem.

1.3. Our Contributions

In this article, we focus on the one-dimensional OSP problem. We present a tool, E-
BLOW, to effectively solve this problem. Since only the one-dimensional problem is
studied, for convenience, we use the term OSP to refer to the one-dimensional OSP in
the rest of this article.

Compared with the conventional EBL system, the MCC system introduces two main
challenges in the OSP problem. (1) The objective is new: in the MCC system, the
wafer is divided into several regions and each region is written by one CP. Therefore,
the new OSP should minimize the maximal writing time of all regions. However, in
the conventional EBL system the objective is simply to minimize the wafer writing
time. (2) The stencil for an MCC system can contain more than 4,000 characters,
and previous methodologies for the EBL system may suffer from runtime penalty. No
existing stencil planning work has been done toward the MCC system. In this work
we propose E-BLOW, a tool to overcome both challenges. Our main contributions are
summarized as follows.

—We provide the proof that even a simplified version of the OSP problem is NP-hard.
—We develop an ILP formulation to co-optimize character selection and placement on

the stencil. To the best of our knowledge, this is the first mathematical formulation
for this problem.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:5

Table I. Notations Used in This Article

Term Meaning Term Meaning
W width of each stencil row K number of regions
Tk system writing time on region k T total writing time of all regions
m number of rows n number of characters
w width of each character C set of characters C = {c1, . . . , cn}
ai character ci ’s writing time in VSB mode xi x-position of character ci

sli left blank of character ci sri right blank of character ci

si �(sli + sri)/2� bij 0-1 variable, bij = 1, if ci is on row j
tik repeating times of character ci in region k oij horizontal overlap between ci and c j

pij 0-1 variable, pij = 0, if ci is left of c j

—We proposes a simplified formulation to achieve a good tradeoff in terms of perfor-
mance and runtime.

—We present a successive relaxation algorithm to search for a near-optimal solution.

The rest of this article is organized as follows. Section 2 provides the problem formu-
lation. Section 3 proves the problem is NP-hard. Section 4 presents algorithmic details
of the proposed framework, E-BLOW. Section 5 reports experimental results, followed
by the conclusion in Section 6.

2. PROBLEM FORMULATION

In this section, we give the problem formulation. For convenience, Table I lists the
notations used in this article. Note that in this article, we denote [n] as a set of integers
{1, 2, . . . , n}.

In an MCC system with K CPs, the whole wafer is divided into K regions, and each
region is written by one particular CP. We assume cell extraction [Manakli et al. 2009]
has been resolved first. In other words, a set of n character C = {c1, . . . , cn} has already
been given to the MCC system. For each character ci ∈ C, its width is wi. Meanwhile,
the writing time through VSB mode and CP mode are ai and 1, respectively. The stencil
is divided into m rows, and the width of each row is W . For each row j, bij indicates
whether character ci is selected on row j:

bij =
{

1, candidate ci is selected on row j
0, otherwise.

Different regions have different layout patterns, thus, the throughputs would be also
different. For region k (k ∈ [K]), character ci ∈ C repeats tik times. If ci is prepared on
stencil, the total writing time of character ci on region rc is tik · 1. Otherwise, ci should
be printed through VSB, and its writing time would be tik · ai. Therefore, for region k
(k ∈ [K]), the writing time Tk is as follows:

Tk =
∑
i∈[n]

tik · ai −
∑
i∈[n]

∑
j∈[m]

bij · tik · (ai − 1), (1)

where the first term is the writing time using VSB mode, while the second term is the
writing time improvement through CP mode. Therefore, the total writing time of the
MCC system is formulated as follows:

T = max
k∈[K]

{Tk}. (2)

Based on the above notations, we define the MCC system OSP problem (MOSP) as
follows.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:6 B. Yu et al.

Problem 1 (MCC System OSP). In an MCC system, a stencil is given with m row,
and each row is with width W . A set of character C is also given. We select a subset of
characters in C and place them on the stencil. The objective is to minimize the MCC
system writing time T expressed by Equation (2), while the placement of all characters
is bounded by the outline of the stencil.

Note that when region number K is 1, the MOSP problem equals to the conventional
OSP problem. Our proposed framework can effectively solve both MOSP and OSP
problems.

3. PROOF OF NP-HARDNESS

In this section, we prove that both OSP and MOSP problems are NP-hard. Guo et al.
[2015] provided a polynomial time algorithm to optimally solve the single row ordering
problem, which is a sub-problem of OSP. Mak and Chu [2014] proved that when an
additional constraint, character re-design, is integrated, the extended OSP problem is
NP-hard. Although a sub-problem of OSP is in P [Guo et al. 2015], while an extension of
OSP is NP-hard [Mak and Chu 2014], the complexity of OSP is still an open question.
This article is the first work proving the complexity of the OSP problem. In addition,
we will show that even a simpler version of the OSP problem, where there is only one
row, is NP-hard, as well.

To facilitate the proof, we first define a Bounded Subset Sum (BSS) problem as
follows.

Problem 2 (Bounded Subset Sum). Given a list of n numbers {x1, . . . , xn} and a
number s, where ∀i ∈ [n] 2 · xi > xmax(

�= maxi∈[n]|xi|), decide if there is a subset of the
numbers that sums up to s.

For example, given three numbers 1,100, 1,200, 1,413, and T = 2,300, we can find
a subset {1,100, 1,200} such that 1,100 + 1,200 = 2,300. Note that if we have the
assumption s ≤ c · xmax, where c is some constant, the problem can be solved in O(nc)
time. However, in general, there is no such assumption. Note that without the bounded
constraint ∀i ∈ [n]2 · xi > xmax, the BSS problem becomes the subset sum problem,
which is in NP-complete [Arora and Barak 2009]. In the following, we will prove that
with this additional constraint, the subset sum problem is still NP-complete. For the
simplicity of later explanation, let S denote the set of n numbers. Note that, we can
assume that all the numbers are integer numbers.

THEOREM 1. BSS problem is NP-complete.

The proof is in the Appendix.
In the following, we will show that even a simpler version of the OSP problem is NP-

hard. In the simpler version, there is only one row in the stencil, and each character
ci ∈ C is with the same length w. Besides, for each character, its left blank and right
blank are symmetrical.

Definition 1 (Minimum Packing). Given a subset of characters C ′ ∈ C, its minimum
packing is the packing with the minimum stencil length.

LEMMA 1. Given a set of characters C = {c1, c2, . . . , cn} placed on a single row stencil.
If both left and right blanks are si for each character ci ∈ C, then the minimum packing
is with the following stencil length

n · w −
∑
i∈[n]

si + max
i∈[n]

{si}. (3)

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:7

Fig. 3. (a) OSP instance for the BSS instance S = {1,100, 1,200, 2,000} and s = 2,300. (b) The minimum
packing is with stencil length M + s = 2,000 + 2,300 = 4,300.

PROOF. Without loss of generality, we assume that s1 ≥ s2 ≥ · · · ≥ sn. We prove by
recursion that in a minimum length packing, the overlapping blank is f (n) = ∑n

i=2 si.
If there are only two characters, it is trivial that f (2) = s2. We assume that when
p = n − 1, the maximum overlapping blank f (n − 1) = ∑n−1

i=2 si. For the last character
cn, the maximum sharing blank value is sn. Since for any i < n, si ≥ sn, we can simply
insert it at either the left end or the right end and find the incremental overlapping
blank sn. Thus, f (n) = f (n−1)+sn = ∑n

i=2 si. Because the maximum overlapping blank
for all characters is

∑n
i=2 si, we can see the minimum packing length is the same as in

Equation (3).

LEMMA 2. BSS ≤p OSP.

PROOF. Given an instance of BSS with s and S = {x1, x2, . . . , xn}, we construct an
OSP instance as follows:

—The stencil length is set to M + s, where M = maxi∈[n]{xi}.
—For each xi ∈ S′, in the OSP there is a character ci whose width is M and both left

and right blanks are M − xi. As defined in Problem 2, 2 · xi > xmax, which means
xi > M/2. Therefore, the sum of left blank and right blank is less than or equal
to M.

—We introduce an additional character c0, whose width size is M, and both left and
right blanks are M − mini∈[n]{xi}.

—The VSB writing time of character c0 is set to
∑

i∈[n]xi, while the VSB writing time
for each character ci is set to xi. The CP writing times are set to 0 for all characters.

—There is only one region, and each character ci repeats one time in the region.

For instance, given initial set S = {1,100, 1,200, 2,000} and s = 2,300, the con-
structed OSP instance is shown in Figure 3.

We will show the BSS instance S = {x1, x2, . . . , xn} has a subset that adds up to s if
and only if the constructed OSP instance has minimum packing length M + s and total
writing time smaller than

∑
xi.

(⇒ part) After solving the BSS problem, a set of items S′ are selected that they
add up to s. We denote “m” as the number of items in set S′. For each xi ∈ S′, the
corresponding character ci is also selected into the stencil. Besides, since the system
writing time for c0 is

∑
xi, it is trivial to see that in the OSP instance the c0 must be

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:8 B. Yu et al.

selected. Due to Lemma 1, the minimum total packing length is

(m+ 1) · M −
∑
i∈S′

(M − xi) = M +
∑
i∈S′

xi = M + s.

Meanwhile, the minimum total writing time in the OSP is
∑

i∈[n]xi − s.
(⇐ part) We start from an OSP instance with minimum packing length M + s and

total writing time smaller than
∑

xi, where a set of characters C ′ ∈ C are selected. Since
the total writing time must be smaller than

∑
xi, character c0 ∈ C ′. For all characters

in set ci ∈ C ′ except c0, we select xi into the subset S′ ∈ S, which adds up to s.

THEOREM 2. OSP is NP-hard.

PROOF. Directly from Lemma 2 and Theorem 1.

The OSP problem is a special case of the MOSP problem when region number K is
set to 1. Therefore, from Theorem 2 we can see that the MOSP problem is NP-hard as
well.

4. ALGORITHMS FOR MOSP

In the MOSP problem, each character implements one standard cell, and the enclosed
circuit patterns of all the characters have the same height. This problem can be viewed
as a combination of character selection and single row ordering problems. Different
from a two-step heuristic proposed in Yuan et al. [2012], we show that these two
problems can be solved simultaneously through a unified ILP formulation (4).

min T (4)

s.t T ≥
∑
i∈[n]

tik · ai −
∑
i∈[n]

∑
j∈[m]

bij · tik(ai − 1) ∀k ∈ [K] (4a)

0 ≤ xi ≤ W − w ∀i ∈ [n] (4b)∑
j∈[m]

bij ≤ 1 ∀i ∈ [n] (4c)

xi + wii′ − xi′ ≤ W(2 + pii′ − bij − bi′ j) ∀i, i′ ∈ [n], j ∈ [m] (4d)
xi′ + wi′i − xi ≤ W(3 − pii′ − bij − bi′ j) ∀i, i′ ∈ [n], j ∈ [m] (4e)
bij, bi′ j, pii′ ∈ {0, 1} ∀i, i′ ∈ [n], j ∈ [m] (4 f )

In formulation (4), W is the stencil width, and m is the number of rows. For each
character ci, wi, and xi are its width and its x-position, respectively. If and only if ci is
assigned to row j, bij = 1. Otherwise, bij = 0.

Constraint (4a) is derived from Equations (1) and (2). Constraint (4b) is for the x
position of each character. Constraint (4c) is to make sure one character can be inserted
into at most one row. Constraints (4d) and (4e) are used to check position relationship
between ci and c′

i. Here wii′ = wi − oii′ and wi′i = wi′ − oh
i′i, where oii′ is overlapping

when candidates ci and c′
i are packed together. Only when bij = bi′ j = 1, that is, both

characters ci and ci′ are assigned to row j, can one of the two constraints, (4d) and
(4e), could be active. Besides, all the pii′ values are self-consistent. For example, for any
three characters c1, c2, c3 being assigned to row j, that is, b1 j = b2 j = b3 j = 1, if c1 is
on the left of c2 (p12 = 0) and c2 is on the left of c3 (p23 = 0), then c1 should be on the
left of c3 (p13 = 0). Similarly, if c1 is on the right of c2 (p12 = 1) and c2 is on the right of
c3 (p23 = 1), then c1 should be on the right of c3 (p13 = 1) as well.

Since ILP is a well known NP-hard problem, directly solving it may suffer from
long runtime penalty. One straightforward speedup method is to relax the ILP into

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:9

Fig. 4. E-BLOW overall flow for MOSP problem.

the corresponding linear programming (LP) through replacing constraints (4f ) by the
following:

0 ≤ bij, bi′ j, pii′ ≤ 1.

It is obvious that LP relaxation provides a lower bound to the ILP solution. However,
we observe that the solution of the relaxed LP could be like this: for each i,

∑
j∈[m] bij = 1

and all the pii′ are assigned 0.5. Although the objective function is minimized and all
the constraints are satisfied, this LP relaxation provides no useful information to
guide future rounding, that is, all the characters are selected (bij = 1) and no ordering
relationship is determined (pii′ = 0.5).

To overcome the limitation of the above rounding, we propose a novel successive
rounding framework to search for a near-optimal solution in reasonable runtime. As
shown in Figure 4, the overall flow includes several steps. In Section 4.1, the simplified
formulation will be discussed, and its LP rounding lower bound will be proved. In
Section 4.2, the details of successive rounding will be introduced. In Section 4.3, the Fast
ILP convergence technique will be presented. In Section 4.4, the refinement process will
be proposed. At last, to further improve the performance, in Section 4.5, the post-swap
and post-insertion techniques will be discussed.

4.1. Simplified ILP Formulation

As discussed above, solving the ILP formulation (4) is very time consuming, and the
related LP relaxation may be bad in performance. To overcome the limitations of for-
mulation (4), we introduce a simplified ILP formulation, whose LP relaxation can
provide good lower bound. The simplified formulation is based on a symmetrical blank
(S-Blank) assumption: the blanks of each character are symmetric, that is, left blank
equals to right blank. si is used to denote the blank of character ci. Note that for
different characters ci and ci′ , their blanks si and si′ can be different.

At first glance the S-Blank assumption may lose optimality. However, under S-Blank
assumption, the ILP formulation can be effectively simplified to provide a reasonable
rounding bound, theoretically. Compared with the previous heuristic framework [Yuan
et al. 2012], the proved rounding bound provides a better guideline for a global view
search. In addition, to compensate the inaccuracy in the asymmetrical blank cases,
E-BLOW provides a refinement (see Section 4.4).

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:10 B. Yu et al.

The simplified ILP formulation is shown in Formula (5).

max
∑
i∈[n]

∑
j∈[m]

bij · pi (5)

s.t.
∑
i∈[n]

(w − si) · bij ≤ W − Bj ∀ j ∈ [m] (5a)

Bj ≥ si · bij ∀i ∈ [n], j ∈ [m] (5b)∑
j∈[m]

bij ≤ 1 ∀i ∈ [n] (5c)

bij = 0 or 1 ∀i ∈ [n], j ∈ [m] (5d)

In the objective function of Formula (5), each character ci is associated with one profit
value pi. The pi value is to evaluate the overall system writing time improvement if
character ci is selected. Through assigning each character ci with one particular profit
value, we can simplify the complex constraint (4a). More details regarding the profit
value setting would be discussed in Section 4.2. Besides, due to Lemma 1, constraint
(5a) and constraint (5b) are for row width calculation, where (5b) is to linearize max
operation. Here Bj can be viewed as the maximum blank space of all the characters on
row j. Constraint (5c) implies each character can be assigned into at most one row. It’s
easy to see that the number of variables is O(nm), where n is the number of characters
and m is the number of rows. Generally speaking, single character number n is much
larger than row number m. Thus, compared with basic ILP formulation (4), the variable
number in (5) can be reduced dramatically.

In our implementation, we set blank value si to �(sli +sri)/2�, where sli and sri are ci ’s
left blank and right blank, respectively. Note that here the ceiling function is used to
make sure that under the S-Blank assumption, each blank is still integral.1 Although
this setting may lose some optimality, E-BLOW provides post-stage to compensate the
inaccuracy through incremental character insertion.

Now we will show that the LP relaxation of (5) has reasonable lower bound. To
explain this, let us first look at a similar formulation (6) as follows:

max
∑
i∈[n]

∑
j∈[m]

bij · pi (6)

s.t.
∑
i∈[n]

(w − si) · bij ≤ W − smax ∀ j ∈ [m] (6a)

(5c) − (5d),

where smax is the maximum horizontal blank length of all characters; that is,

smax = max
i∈[n]

{si}.

Program (6) is a multiple knapsack problem [Martello and Toth 1990]. A multiple
knapsack is similar to a knapsack problem, with the difference that there are multiple
knapsacks. In formulation (6), each pi can be rephrased as (wi − si) × ratioi.

LEMMA 3. If each ratioi is the same, the multiple knapsack problem (6) can find a
0.5−approximation algorithm using the LP rounding method.

1We also investigated si = (sli + sri)/2�, and found that, usually, the current setting (ceiling function) can
achieve better performance.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:11

For brevity, we omit the proof, but detailed explanations can be found in Dawande
et al. [2000]. When all ratioi are the same, formulation (6) can be approximated to
a max-flow problem. In addition, if we denote α as min{ratioi}/max{ratioi}, we can
achieve the following Lemma:

LEMMA 4. The LP rounding solution of (6) can be a 0.5α− approximation to optimal
solution of (6).

PROOF. First we introduce a modified formulation to program (6), where each pi is
set to min{pi}. In other words, in the modified formulation, each ratioi is the same.
Let OPT and OPT′ be the optimal value of (6) and the optimal value of the modified
formulation, respectively. Let APR′ be the corresponding LP rounding result in the
modified formulation. According to Lemma 3, APR′ ≥ 0.5 · OPT′. Since min{pi} ≥ pi · α,
we can achieve the following relationships:

OPT′ =
∑
i∈[n]

∑
j∈[m]

(bij · min{pi})

≥
∑
i∈[n]

∑
j∈[m]

(bij · pi · α)

= α ·
∑
i∈[n]

∑
j∈[m]

(bij · pi)

= α · OPT

That is, OPT′ ≥ OPT. In summary, APR′ ≥ 0.5 · OPT′ ≥ 0.5α · OPT.

The difference between (5) and (6) is the right side values at (5a) and (6a). Blank
spacing is relatively small compared with the row length. That is, W � smax and
∀ j ∈ [m], W � Bj , which means W − smax ≈ W − Bj . Thus, we can expect that program
(5) has a similar rounding performance as program (6a). In practical test cases, the
measured α values range from 0.1 to 0.2. Although the α value may not be theoretically
promising, the effectiveness of the LP relaxation will be verified in the experimental
results.

4.2. Successive Rounding

In this section, we propose a successive rounding algorithm to solve program (5), iter-
atively. Successive rounding uses a simple iterative scheme, in which fractional vari-
ables are rounded one after the other until an integral solution is found [Johnson et al.
2000]. The ILP formulation (5) becomes an LP if we relax the discrete constraint to a
continuous constraint as: 0 ≤ bij ≤ 1.

The details of successive rounding are shown in Algorithm 1. At first, we set all bij
as unsolved, since none of them are assigned to rows (line 1). The LP is updated and
solved iteratively (lines 3–4). For each new LP solution, we search for the maximal bij
and store it in bpq (line 6). Then, we find all bij that are closest to the maximum value
bpq, that is, bij ≥ bpq ×β. In our implementation, β is set to 0.9. For each of the selected
variables bij , we try to pack ci into row j, and set bij as solved (line 9). Note that when
one character ci is assigned to one row, all bij would be set as solved. Therefore, the
variable number in updated LP formulation would continue to decrease. This procedure
repeats until no appropriate bij can be found. One key step of Algorithm 1 is the pi
update (line 3). For each character ci, we set its pi as follows:

pi =
∑

k∈[K]

tk
tmax

· (ai − 1) · tik, (7)

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:12 B. Yu et al.

Fig. 5. Unsolved character numbers along the LP iterations for test cases 1M-1, 1M-2, 1M-3, and 1M-4.

ALGORITHM 1: SuccRounding ( )
Input: ILP Formulation (5)

1: Set all bij as unsolved;
2: repeat
3: Update pi for all unsolved bij ;
4: Solve relaxed LP of (5);
5: repeat
6: bpq ← max{bij};
7: for all bij ≥ bpq × β do
8: if ci can be assigned to row rj then
9: bij ← 1 and set it as solved;

10: Update capacity of row j;
11: end if
12: end for
13: until cannot find bpq
14: until no unsolved bij

where tk is the current writing time of region k, and tmax = maxk∈[K]{tk}. Through
applying the pi, the region k with longer writing time would be considered more during
the LP formulation. During successive rounding, if character ci is not assigned to any
row, pi would continue to be updated so that the total writing time of the whole MCC
system can be minimized.

4.3. Fast ILP Convergence

In each LP iteration of successive rounding, we select some characters into rows and
set these characters as solved. In the next LP iteration, only unsolved characters
are considered in formulation. Thus, the number of unsolved characters continues to
decrease through the iterations. For four test cases (1M-1 to 1M-4), Figure 5 illustrates
the number of unsolved characters in each iteration. We observe that in early iterations,
more characters are assigned to rows in one iteration. However, when the stencil
is almost full, fewer of bij can be close to 1. In other words, in late iterations only
few characters are assigned into stencil; thus, the successive rounding requires more
iterations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:13

Fig. 6. For test case 1M-1, solution distribution in last LP, where most values are close to 0.

ALGORITHM 2: Fast ILP Convergence (δ−, δ+)
1: for all bij in relaxed LP solutions do
2: if bij < δ− then
3: Set bij as solved;
4: end if
5: if bij > δ+ then
6: Assign ci to row j;
7: Set bij as solved;
8: end if
9: end for

10: Solve ILP formulation (5) for all unsolved bij ;
11: if bij = 1 then
12: Assign ci to row j;
13: end if

To overcome this limitation so that the successive rounding iteration number can be
reduced, we present a convergence technique based on fast ILP formulation. The basic
idea is that when we observe that only a few characters are assigned into rows in one
LP iteration, we stop successive rounding in advance and call fast ILP convergence to
assign all left characters. Note that in Kuang and Young [2014a], an ILP formulation
with a similar idea was also applied. In our implementation, we trigger ILP convergence
if in one iteration, less than 10% of variables are transferred from unsolved to solved.
This condition is to detect when successive rounding becomes not that effective.

The details of the ILP convergence are shown in Algorithm 2, where δ− and δ+ are
two user defined parameters. First, we check each bij (lines 1–9). If bij < δ−, then we
assume character ci would not be assigned to row j, and set bij as solved. Similarly, if
bij > δ+, we assign ci to row j and set bij as solved. For those unsolved bij , we build up
ILP formulation (5) to assign final rows (lines 10–13).

At first glance, the ILP formulation may be expensive to solve. However, we observe
that in our convergence (Algorithm 2), typically the variable number is small. Figure 6
illustrates the solution distribution in the last LP formulation. We can see that most
of the values are close to 0. In our implementation δ− and δ+ are set to 0.1 and 0.9,
respectively. For this case, although the LP formulation contains more than 2,500
variables, our fast ILP formulation results in only 101 binary variables.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:14 B. Yu et al.

Fig. 7. Greedy-based single row ordering. (a) At first, all candidates are sorted by blank space. (c) One
possible ordering solution where each candidate chooses the right end position. (e) Another possible ordering
solution.

4.4. Refinement

Once some characters are assigned to the rows, the single row ordering problem [Yuan
et al. 2012; Guo et al. 2015] adjusts the relative locations of input p characters to
minimize the total width. Under the S-Blank assumption, because of Lemma 1, this
problem can be optimally solved through the following two-step greedy approach.

(1) All characters are sorted decreasingly by blanks;
(2) All characters are inserted one by one. Each one can be inserted at either left end

or right end.

One example of the greedy approach is illustrated in Figure 7, where four character
candidates A, B, C, and D are to be ordered. In Figure 7(a), they are sorted decreas-
ingly by blank space. Then, all the candidates are inserted one by one. From the second
candidate, each insertion has two options: left side or right side of all inserted candi-
dates. For example, if A is inserted at the right of D, B has two insertion options: one
is at the right side of A (Figure 7(b)) and another is at the left side of A (Figure 7(d)).
Given different choices of candidate B, Figures 7(c) and 7(e) give corresponding final
solutions. Since, from the second candidate each one has two choices, by this greedy
approach n candidates will generate 2n−1 possible solutions.

For the asymmetrical cases, the optimality does not hold anymore. To compensate
the loss, E-BLOW consists of a refinement stage. For n characters {c1, . . . , cn}, single
row ordering can have n! possible solutions. We avoid enumerating such huge solutions,
and take advantage of the order in symmetrical blank assumption. That is, we pick up
one best solution from the 2n−1 possible ones. Note that to search for optimal single
row packing, a straightforward method is to enumerate all n! options. But in E-BLOW,
we only consider the 2n−1 options with the following two reasons. (1) The runtime
complexity of n! is unacceptable in practice. For example, if a single row contains 30
characters, then the enumeration will generate more than 2.6 × 1032 options. (2) Our
preliminary results on small test cases show that the solution quality loss is negligible.
In particular, in the experimental result we will show that E-BLOW can achieve optimal
solutions for small test cases.

The refinement is based on dynamic programming and the details are shown in
Algorithm 3. Refine(k) generates all possible order solutions for the first k characters
{c1, . . . , ck}. Each order solution is represented as a set (w, l, r, O), where w is the total
length of the order, l is the left blank of the left character, r is the right blank of the
right character, and O is the character order. At the beginning, an empty solution set

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:15

ALGORITHM 3: Refine(k)
Input: k characters {c1, . . . , ck};

1: if k = 1 then
2: Add (w1, sl1, sr1, {c1}) into S;
3: else
4: Refine(k − 1);
5: for each partial solution (w, l, r, O) do
6: Remove (w, l, r, O) from S;
7: Add (w + wk − min(srk, l), slk, r, {ck, O}) into S;
8: Add (w + wk − min(slk, r), l, srk, {O, ck}) into S;
9: end for

10: if size of S ≥ γ then
11: Prune inferior solutions in S;
12: end if
13: end if

S is initialized (line 1). If k = 1, then an initial solution (w1, sl1, sr1, {c1}) would be
generated (line 2). Here, w1, sl1, and sr1 are the width of the first character c1, the
left blank of c1, and the right blank of c1. If k > 1, then Refine(k) will recursively call
Refine(k-1) to generate all old, partial solutions. All these partial solutions will be
updated by adding candidate ck (lines 5–9). We propose pruning techniques to speed-up
the dynamic programming process. Let us introduce the concept of inferior solutions.
For any two solutions SA = (wa, la, ra, Oa) and SB = (wb, lb, rb, Ob), we say SB is inferior
to SA, if and only if wa ≥ wb, la ≤ lb, and ra ≤ rb. Those inferior solutions would be
pruned during the pruning section (lines 10–12). In our implementation, γ is set
to 20.

4.5. Post-Swap and Post-Insertion

A post-swap stage is applied to further improve the performance, where some unse-
lected characters would be swapped with some characters on stencil if the swaps can
improve the system writing time. The procedure of post-swap is detailed in Algorithm 4.
The input consists of a set of characters on stencil IN = {i1, . . . , im}, and a set of char-
acters not selected OUT = {o1, . . . , on}. The post-swap is implemented using a greedy
flavor with two steps. In the first step, all the characters are sorted based on profit
values (lines 1–2). The characters in IN are in ascending order, while the characters
in OUT are in descending order. Please refer to Equation (7) about the profit value.
The idea is that if an unselected character is with high profit value, assigning it into
stencil may help the whole system writing time a lot. Similarly, if a character on stencil

ALGORITHM 4: Post-Swap
Input: m characters on stencil IN = {i1, . . . , im};
Input: n characters not selected OUT = {o1, . . . , on};

1: sort IN in ascending order based on profit value;
2: sort OUT in descending order based on profit value;
3: for each ip ∈ IN do
4: for each oq ∈ OUT do
5: if Swap (ip, oq) can improve performance then;
6: Label ip as unselected, while oq as selected on stencil;
7: Remove oq from OUT;
8: Break;
9: end if

10: end for
11: end for

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:16 B. Yu et al.

Fig. 8. Example of maximum weighted matching-based post character insertion. (a) Three additional char-
acters a, b, c and two rows. (b) Corresponding bipartite graph to represent the relationships among characters
and rows.

is with low profit value, we tend to remove it from stencil so that more high value
characters can be pushed in. In the second step (lines 3–11), we traverse two sets of
characters to check whether swapping characters ip ∈ IN and oq ∈ OUT can improve
the performance. If so, then character ip is unselected from stencil, while character oq
is assigned into stencil.

In Algorithm 4, the character sorting (lines 1–2) needs O(n logn + m logm), where n
and mare the character numbers in IN and OUT, respectively. The for loops (lines 3–11)
need O(nm). Thus, the post-swap procedure can be finished in O(nm) time.

After post-swap, a post-insertion stage is applied to further insert more characters
into stencil. Different from the greedy insertion approach in Yuan et al. [2012] that
new characters can be only inserted into one row’s right end. We consider to insert
characters into the middle part of rows. Generally speaking, the character with higher
profit value (7) would have a higher priority to be inserted into rows. We propose a
character insertion algorithm to insert some additional characters into the rows. The
insertion is formulated as a maximum weighted matching problem [Galil 1986], under
the constraint that for each row there is at most one character that can be inserted.
Although this assumption may lose some optimality, in practice it works quite well, as
the remaining space for a row is usually very limited.

Figure 8 illustrates one example of the character insertion. As shown in Figure 8(a),
there are two rows (row 1, row 2) and three additional characters (a, b, c). Characters a
and b can be inserted into either row 1 or row 2, but character c can only be inserted into
row 2. It shall be noted that the insertion position is labeled by arrows. For example,
two arrows from character a mean that a can be inserted into the middle of each row.
We build up a bipartite graph to represent the relationships among characters and
rows (see Figure 8(b)). Each edge is associated with a cost as the character’s profit. By
utilizing the bipartite graph, the best character insertion can be solved by finding a
maximum weighted matching.

We build up a graph to transfer the post-insertion problem into a conventional max-
imum weighted matching problem. The time complexity of the graph construction is
O(mnC), where m is the total row number, n is the additional character number, and
C is the maximum character number on each row. We propose two heuristics to speed
up the graph construction process. First, to reduce n, we only consider those additional
characters with high profits. Second, to reduce m, we skip those rows with very little
empty space.

Based on the constructed graph, we carry out the maximum weighted matching to
assign additional characters into rows. Solving the matching needs O(|V | · log |V | · |E|)
[Galil 1986], where |V | and |E| are the vertex number and the edge number in the
constructed graph, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:17

5. EXPERIMENTAL RESULTS

E-BLOW is implemented in C++ programming language and executed on a Linux
machine with two 3.0GHz CPU and 32GB Memory. GUROBI [Gurobi Optimization
Inc. 2014] is used to solve ILP/LP. The benchmark suite (1D-1, . . . , 1D-4) from Yuan
et al. [2012] is tested for an OSP problem. To evaluate the algorithms for the MCC
system, eight benchmarks (1M-x) are generated for the MOSP problem. In these new
benchmarks, character projection (CP) number are all set to 10. For each small case
(1M-1, . . . , 1M-4) the character candidate number is 1,000, and the stencil size is set to
1,000μm × 1,000μm. For each larger case (1M-5, . . . , 1M-8), the character candidate
number is 4,000, and the stencil size is set to 2,000μm × 2,000μm. The size and the
blank width of each character are similar to those in Yuan et al. [2012].

5.1. E-BLOW vs. Previous Work

In the first experiment, we compare E-BLOW with some previous works: the greedy
method in Yuan et al. [2012], the heuristic framework in Yuan et al. [2012], and the
algorithms in Kuang and Young [2014a]. Table II lists the comparison results. We
have obtained the programs of Yuan et al. [2012] and executed them in our machine.
It should be noted that Yuan et al. [2012] is targeting at a single CP system, and
the MCC system is modified to optimize the total writing time of all the regions. The
results of Kuang and Young [2014a] are directly from their paper. Column “cand #” is
the number of character candidates, while column “CP#” is the number of character
projections. For each algorithm, we report “T,” “char#,” and “CPU(s),” where “T” is
the writing time of the EBL system, “char#” is the character number on final stencil,
and “CPU(s)” reports the computational runtime. From Table II we can see E-BLOW
achieves better performance than both the greedy method and the heuristic method in
Yuan et al. [2012]. Compared with E-BLOW, the greedy method has 32% more system
writing time, while Yuan et al. [2012] introduces 19% more system writing time. One
possible reason is that, different from the greedy/heuristic methods, E-BLOW proposes
mathematical formulations to search for global solution space. Additionally, due to the
successive rounding scheme, E-BLOW is around 15× faster than the work in Yuan
et al. [2012].

In Table II, E-BLOW is also compared with one recent OSP work [Kuang and Young
2014a]. We can see that E-BLOW is able to find stencil placements with better EBL
system writing time for 10 out of 12 test cases. In addition, for all the MCC system
test cases (1M-1, . . . , 1M-8), E-BLOW outperforms [Kuang and Young 2014a]. One
possible reason is that to optimize the overall throughput of the MCC system, a global
view is necessary to balance the throughputs among different regions. E-BLOW uti-
lizes the mathematical formulations to provide such global optimization. Although our
runtimes are longer than those in Kuang and Young [2014b], they are still accept-
able that on average, the runtime is only 8.6 seconds. Even for the largest test case,
E-BLOW can be finished in 22 seconds. In addition, our performance is better than
Kuang and Young [2014b], that it can reduce 2% of the EBL system writing time. For
a specific design, the EBL system writing time could be several hours or several days,
thus the 2% throughput improvement could be attractive compared to a 22 second com-
putation time penalty. After all, E-BLOW and Kuang and Young [2014b] are comple-
mentary, that both of them provide good runtime-performance tradeoff with different
foci.

5.2. Effectiveness of the Proposed Techniques

In the second experiment, we demonstrate the effectiveness of two proposed tech-
niques, that is, the fast ILP convergence (Section 4.3) and the post-optimization

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:18 B. Yu et al.

Ta
bl

e
II.

C
om

pa
re

E
-B

LO
W

w
ith

P
re

vi
ou

s
W

or
ks

ca
n

d
C

P
G

re
ed

y
in

Y
u

an
et

al
.[

20
12

]
[Y

u
an

et
al

.2
01

2]
[K

u
an

g
an

d
Yo

u
n

g
20

14
a]

E
-B

L
O

W
#

#
T

ch
ar

#
C

P
U

(s
)

T
ch

ar
#

C
P

U
(s

)
T

ch
ar

#
C

P
U

(s
)

T
ch

ar
#

C
P

U
(s

)
1D

-1
1,

00
0

1
64

,8
91

91
2

0.
03

42
,5

24
94

3
11

.5
9

19
,0

95
94

0
0.

01
19

,6
02

93
9

1.
64

1D
-2

1,
00

0
1

99
,3

81
84

4
0.

03
82

,0
33

87
4

10
.3

2
35

,2
95

86
4

0.
01

34
,9

74
86

6
1.

37
1D

-3
1,

00
0

1
16

5,
48

0
74

8
0.

03
14

7,
35

3
77

4
7.

35
69

,3
01

75
7

0.
01

68
,5

53
76

3
2.

01
1D

-4
1,

00
0

1
19

3,
88

1
69

1
0.

04
17

9,
54

7
71

4
9.

74
92

,5
23

70
3

0.
01

92
,8

05
70

5
1.

54
1M

-1
1,

00
0

10
63

,8
11

91
2

0.
03

45
,5

21
94

3
12

.2
5

39
,0

26
93

8
0.

01
37

,0
57

94
5

3.
03

1M
-2

1,
00

0
10

10
4,

87
7

84
4

0.
03

87
,1

00
87

4
10

.4
6

77
,9

97
86

4
0.

01
74

,7
70

87
5

2.
31

1M
-3

1,
00

0
10

17
2,

83
4

74
8

0.
03

15
3,

93
2

77
4

6.
24

13
8,

25
6

75
8

0.
56

13
2,

87
9

77
4

2.
64

1M
-4

1,
00

0
10

20
0,

49
8

69
1

0.
03

18
7,

35
8

71
4

9.
36

17
6,

22
8

69
8

0.
36

16
9,

67
0

71
6

9.
36

1M
-5

4,
00

0
10

27
4,

99
2

3,
60

4
0.

43
22

5,
12

4
3,

68
3

53
0.

17
20

4,
11

4
3,

66
0

0.
03

20
2,

39
7

3,
68

0
20

.3
2

1M
-6

4,
00

0
10

43
7,

08
8

3,
34

1
0.

43
39

0,
07

9
3,

41
8

37
7.

30
35

7,
82

9
3,

38
2

0.
03

34
8,

85
5

3,
41

9
22

.0
8

1M
-7

4,
00

0
10

65
0,

41
9

3,
00

0
0.

42
60

4,
16

8
3,

07
1

30
5.

37
56

8,
33

9
3,

01
6

0.
59

55
5,

73
1

3,
07

1
17

.6
4

1M
-8

4,
00

0
10

82
0,

01
3

2,
75

6
0.

53
77

3,
38

7
2,

81
8

24
8.

50
73

1,
48

3
2,

76
0

0.
42

71
6,

44
0

2,
82

0
20

.0
7

A
vg

.
-

-
27

0,
68

0.
4

1,
59

0.
9

0.
17

24
3,

17
7.

2
1,

63
3.

3
12

8.
22

20
9,

12
3.

8
1,

61
1.

7
0.

17
20

4,
47

7.
8

1,
63

1.
1

8.
67

R
at

io
-

-
1.

32
0.

98
0.

02
1.

19
1.

00
14

.7
9

1.
02

0.
99

0.
02

1.
0

1.
0

1.
0

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:19

Fig. 9. Comparison of different E-BLOW versions on EBL system writing time.

Fig. 10. Comparison of different E-BLOW versions on computational runtime.

(Section 4.5). To facilitate the comparison, we implemented four different versions of
E-BLOW framework: E-BLOW-00 is the framework where no fast ILP convergence or
post-optimization is utilized; E-BLOW-01 is with post-optimization but no fast conver-
gence; E-BLOW-10 is with fast convergence but no post-optimization; E-BLOW-11 is
integrated with both fast ILP convergence and post-optimization.

Figure 9 compares these four E-BLOW versions in terms of the EBL system writing
time. As shown in Figure 9, through post-optimization, E-BLOW-01 outperforms E-
BLOW-00 with around 10% system writing time improvement. Similarly, E-BLOW-11
outperforms E-BLOW-10 with around 6% system writing time improvement. We can
see that post-optimization is effective in improving the E-BLOW performance.

Figure 10 compares these four E-BLOW versions in terms of computational run-
time. Through fast ILP convergence, E-BLOW-10 outperforms E-BLOW-00 with nearly

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:20 B. Yu et al.

Table III. ILP vs. E-BLOW

cand ILP E-BLOW
# binary# T char# CPU(s) T char# CPU(s)

1T-1 8 64 434 6 0.5 434 6 0.1
1T-2 10 100 1,034 6 26.1 1,034 6 0.2
1T-3 11 121 1,222 6 58.3 1,222 6 0.2
1T-4 12 144 1,862 6 1,510.4 1,862 6 0.2
1T-5 14 196 NA NA >3,600 2,758 6 0.1

two times speed-up. E-BLOW-11 can also achieve around two times speed-up against
E-BLOW-01. From Figure 10, we can see that fast ILP convergence can effectively
reduce E-BLOW framework CPU time.

5.3. E-BLOW vs. ILP

At last, we compare E-BLOW with the ILP formulations (4). Although the ILP formu-
lations can find optimal solutions theoretically, they may suffer from runtime overhead
and cannot get legal solutions for practical benchmarks. Therefore, we randomly gen-
erate five small benchmarks (“1T-x”). The sizes of all the character candidates are set
to 40μm × 40μm. The row number is set to 1 and the row length is set to 200. The
comparisons are listed in Table III, where column “cand #” is the number of character
candidates. “ILP” and “E-BLOW” represent the ILP formulation and our E-BLOW
framework, respectively. In ILP formulation, column “binary#” gives the binary vari-
able number. For each mode, we report “T,” “char#,” and “CPU(s),” where “T” is the EBL
system writing time, “char#” is the character number on the final stencil, and “CPU(s)”
is the runtime. Note that in Table III, the ILP solutions are optimal.

Let us compare E-BLOW with the ILP formulation for test cases 1T-1, . . . , 1T-5.
E-BLOW can achieve the same results with ILP formulations; meanwhile, it is so fast
that all cases can be finished in 0.2 seconds. Although ILP formulation can achieve
optimal results, it is so slow that a case with 14 character candidates (1T-5) can not be
finished in one hour.

Although the integral variable number for each case is not huge, we find that in the
ILP formulations, the solutions of corresponding LP relations are vague. Therefore,
expensive search methods may cause unacceptable runtimes. From these cases, ILP
formulations are impossible to be directly applied in an OSP problem, as in the MCC
system character number may be as large as 4,000.

6. CONCLUSION

In this article, we have proposed E-BLOW, a tool to effectively solve the OSP problem
and the MOSP problem. A successive relaxation algorithm, a dynamic programming-
based refinement, and a set of post-optimization techniques are proposed. Experimen-
tal results show that, compared with previous works, E-BLOW can achieve better
performance in terms of both shot number and runtime. Note that in an MCC sys-
tem, different regions tend to have specific stencils due to the consideration of system
throughput improvement. However, if a shared stencil is so well-designed and opti-
mized that such sharing can achieve very comparable throughput, we can even reduce
the stencil design cost. In that situation, sharing stencil design could be attractive,
especially for the companies that have a limited design budget. As EBL, including the
MCC system, is widely used for mask making and also gaining momentum for direct
wafer writing, we believe a lot more research can be done for not only stencil planning,
but also EBL-aware design.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:21

APPENDIX

PROOF OF THEOREM 1

LEMMA 5. BSS problem is in NP.

PROOF. It is easy to see that BSS problem is in NP. Given a subset of integer numbers
S′ ∈ S, we can add them up and verify that their sum is s in polynomial time.

LEMMA 6. 3SAT ≤p BSS.

PROOF. In 3SAT problem, we are given m clauses {C1, C2, . . . , Cm} over n variables
{y1, y2, . . . , yn}. Besides, there are three literals in each clause, which is the OR of some
number of literals. Equation (8) gives one example of 3SAT, where n = 4 and m = 2.

(y1 ∨ ȳ3 ∨ ȳ4) ∧ (ȳ1 ∨ y2 ∨ ȳ4) (8)

Without loss of generality, we can have the following assumptions:

(1) No clause contains both variable yi and ȳi. Otherwise, any such clause is always
true and we can just eliminate them from the formula.

(2) Each variable yi appears in at least one clause. Otherwise, we can just assign any
arbitrary value to the variable yi.

To convert a 3SAT instance to a BSS instance, we create two integer numbers in set S
for each variable yi, and three integer numbers in S for each clause Cj . All the numbers
in set S and s are in base 10. Besides, 10n+2m < yi < 2 · 10n+2m, so that the bounded
constraints are satisfied. All the details regarding S and s are defined as follows.

—In the set S, all integer numbers are with n + 2m + 1 digits, and the first digit is
always 1.

—In the set S, we construct two integer numbers ti and fi for the variable yi. For both of
the values, the n digits after the first ‘1’ serve to indicate the corresponding variable
in S. That is, the ith digit in these n digits is set to 1 and all others are 0. For the next
m digits, the jth digit is set to 1 if the clause Cj contains the respective literal. The
last m digits are always 0.

—In the set S, we also construct three integer numbers c j1, c j2, and c j3 for each clause
Cj . In c jk, where k = {1, 2, 3}, the first n digits after the first ‘1’ are 0, and in the next
m digits, all are 0 except the jth index setting to k. The last m digits are all 0, except
the jth index setting to 1.

—T = (n+ m) · 10n+2m + s0, where s0 is an integer number with n+ 2m digits. The first
n digits of s0 are 1; in the next, m digits all are 4; and in the last, m digits all are 1.

Based on the above rules, given the 3SAT instance in Equation (8), the constructed
set S and target s are shown in Figure 11. Note that the highest digit achievable is 9,
meaning that no digit will carry over and interfere with other digits.

CLAIM 1. The 3SAT instance has a satisfying truth assignment iff the constructed
BSS instance has a subset that adds up to s.

Proof of ⇒ part of Claim: If the 3SAT instance has a satisfying assignment, we
can pick a subset containing all ti, for which yi is set to true, and fi, for which yi is
set to false. We should then be able to achieve s by picking the necessary c jk to get 4’s
in the s. Due to the last m ‘1’ in s, for each j ∈ [m], only one would be selected from
{c j1, c j2, c j3}. Besides, we can see totally n + m numbers would be selected from S.

Proof of ⇐ part of Claim: If there is a subset S′ ∈ S that adds up to s, we will
show that it corresponds to a satisfying assignment in the 3SAT instance. S′ must
include exactly one of ti and fi; otherwise, the ith digit value of s0 cannot be satisfied.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



43:22 B. Yu et al.

Fig. 11. The constructed BSS instance for the given 3SAT instance in Equation (8).

If ti ∈ S′, in the 3SAT we set yi to true; otherwise, we set it to false. Similarly, S′
must include exactly one of c j1, c j2, and c j3; otherwise the last m digits of s cannot be
satisfied. Therefore, all clauses in the 3SAT are satisfied and 3SAT has a satisfying
assignment.

For instance, given a satisfying assignment of Equation (8): 〈y1 = 0, y2 = 1, y3 =
0, y4 = 0〉, the corresponding subset S′ is { f1 = 110000100, t2 = 101000100, f3 =
100101000, f4 = 100011100, c12 = 100002010, c21 = 100000101}. We set s = (m +
n) · 10n+2m + s0, where s0 = 11114411, and then s = 611114411. We can see that
f1 + t2 + f3 + f4 + s12 + s21 = s.

ACKNOWLEDGMENT

The authors would like to thank Zhao Song at University of Texas for helpful comments.

REFERENCES

Yukiyasu Arisawa, Hajime Aoyama, Taiga Uno, and Toshihiko Tanaka. 2010. EUV flare correction for the
half-pitch 22nm node. In Proceedings of SPIE, Vol. 7636.

Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern Approach. Cambridge University
Press.

Sergey Babin, Andrew B. Kahng, Ion I. Mandoiu, and Swamy Muddu. 2003. Resist Heating Dependence on
Subfield Scheduling in 50kV Electron Beam Maskmaking. In Proceedings of SPIE, Vol. 5130.

Tuck Boon Chan, Puneet Gupta, Kwangsoo Han, Abde Ali Kagalwalla, Andrew B. Kahng, and Emile Sa-
houria. 2014. Benchmarking of Mask Fracturing Heuristics. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 246–253.

Li-Wen Chang, Xinyu Bao, Bencher Chris, and H.-S. Philip Wong. 2010. Experimental demonstration of
aperiodic patterns of directed self-assembly by block copolymer lithography for random logic circuit
layout. In IEEE International Electron Devices Meeting (IEDM). 33.2.1–33.2.4.

Chris Chu and Wai-Kei Mak. 2014. Flexible packed stencil design with multiple shaping apertures for e-beam
lithography. In IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC). 137–142.

M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi. 2000. Approximation Algorithms for
the Multiple Knapsack Problem with Assignment Restrictions. Journal of Combinatorial Optimization
4 (2000), 171–186. Issue 2.

Yixiao Ding, Chris Chu, and Wai-Kei Mak. 2014. Throughput Optimization for SADP and E-beam based
Manufacturing of 1D Layout. In ACM/IEEE Design Automation Conference (DAC). 51:1–51:6.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.



EBL Overlapping Aware Stencil Planning for MCC System 43:23

Peng Du, Wenbo Zhao, Shih-Hung Weng, Chung-Kuan Cheng, and Ronald Graham. 2012b. Character Design
and Stamp Algorithms for Character Projection Electron-Beam Lithography. In IEEE/ACM Asia and
South Pacific Design Automation Conference (ASPDAC). 725–730.

Yuelin Du, Hongbo Zhang, Martin D. F. Wong, and Kai-Yuan Chao. 2012a. Hybrid lithography optimization
with e-beam and immersion processes for 16nm 1D gridded design. In IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC). 707–712.

S.-Y. Fang, W.-Y. Chen, and Y.-W. Chang. 2013a. Graph-based subfield scheduling for electron-beam pho-
tomask fabrication. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 32, 2 (2013), 189–201.

Shao-Yun Fang, Iou-Jen Liu, and Yao-Wen Chang. 2013b. Stitch-aware routing for multiple e-beam lithog-
raphy. In ACM/IEEE Design Automation Conference (DAC). 25:1–25:6.

Aki Fujimura. 2010. Design for E-Beam: Design insights for direct-write maskless lithography. In Proceedings
of SPIE, Vol. 7823.

Takeshi Fujino, Yoshihiko Kajiya, and Masaya Yoshikawa. 2005. Character-build standard-cell layout tech-
nique for high-throughput character-projection EB lithography. In Proceedings of SPIE, Vol. 5853.

Zvi Galil. 1986. Efficient algorithms for finding maximum matching in graphs. Comput. Surveys 18, 1 (Mar.
1986), 23–38.

Jhih-Rong Gao, Bei Yu, and David Z. Pan. 2014. Self-aligned double patterning layout decomposition with
complementary e-beam lithography. In IEEE/ACM Asia and South Pacific Design Automation Confer-
ence (ASPDAC). 143–148.

Daifeng Guo, Yuelin Du, and Martin D. F. Wong. 2015. Polynomial time optimal algorithm for stencil row
planning in E-Beam lithography. In IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC). 658–664.

Gurobi Optimization Inc. 2014. Gurobi Optimizer Reference Manual. http://www.gurobi.com. (2014).
Rimon Ikeno, Takashi Maruyama, Tetsuya Iizuka, Satoshi Komatsu, Makoto Ikeda, and Kunihiro Asada.

2013a. High-throughput electron beam direct writing of VIA layers by character projection using char-
acter sets based on one-dimensional VIA arrays with area-efficient stencil design. In IEEE/ACM Asia
and South Pacific Design Automation Conference (ASPDAC). 255–260.

Rimon Ikeno, Takashi Maruyama, Satoshi Komatsu, Tetsuya Iizuka, Makoto Ikeda, and Kunihiro Asada.
2013b. A structured routing architecture and its design methodology suitable for high-throughput elec-
tron beam direct writing with character projection. In ACM International Symposium on Physical Design
(ISPD). 69–76.

Ellis L. Johnson, George L. Nemhauser, and Martin W. P. Savelsbergh. 2000. Progress in linear programming-
based algorithms for integer programming: An exposition. INFORMS Journal on Computing 12, 1 (2000),
2–23.

Andrew B. Kahng, Chul-Hong Park, Xu Xu, and Hailong Yao. 2008. Layout decomposition for double pattern-
ing lithography. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 465–472.

Andrew B. Kahng, Xu Xu, and Alex Zelikovsky. 2006. Fast Yield-Driven Fracture for Variable Shaped-Beam
Mask Writing. In Proceedings of SPIE, Vol. 6283.

Jian Kuang and Evangeline F. Y. Young. 2014a. A Highly-Efficient Row-Structure Stencil Planning Approach
for E-Beam Lithography with Overlapped Characters. In ACM International Symposium on Physical
Design (ISPD). 109–116.

Jian Kuang and Evangeline F. Y. Young. 2014b. Overlapping-aware Throughput-driven Stencil Planning
for E-Beam Lithography. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
254–261.

Yibo Lin, Bei Yu, Yi Zou, Zhuo Li, Charles J. Alpert, and David Z. Pan. 2016. Stitch Aware Detailed Placement
for Multiple E-Beam Lithography. In IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC). 186–191.

Xu Ma, Shangliang Jiang, and Avideh Zakhor. 2011. A Cost-Driven Fracture Heuristics to Minimize Sliver
Length. In Proceedings of SPIE, Vol. 7973.

Wai-Kei Mak and Chris Chu. 2014. E-Beam Lithography Character and Stencil Co-Optimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 33, 5 (May 2014),
741–751.

S. Manakli, H. Komami, M. Takizawa, T. Mitsuhashi, and L. Pain. 2009. Cell projection use in mask-less
lithography for 45nm & 32nm logic nodes. In Proceedings of SPIE, Vol. 7271.

Silvano Martello and Paolo Toth. 1990. Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Inc.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.

http://www.gurobi.com


43:24 B. Yu et al.

Takashi Maruyama, Yasuhide Machida, Shinji Sugatani, Hiroshi Takita, Hiromi Hoshino, Toshio Hino,
Masaru Ito, Akio Yamada, Tetsuya Iizuka, Satoshi Komatsue, Makoto Ikeda, and Kunihiro Asada.
2012. CP element based design for 14nm node EBDW high volume manufacturing. In Proceedings of
SPIE, Vol. 8323.

T. Maruyama, M. Takakuwa, Y. Kojima, Y. Takahashi, K. Yamada, J. Kon, M. Miyajima, A. Shimizu, Y.
Machida, H. Hoshino, H. Takita, S. Sugatani, and H. Tsuchikawa. 2008. EBDW technology for EB
shuttle at 65nm node and beyond. In Proceedings of SPIE, Vol. 6921.

Hai Pham Dinh Minh, Tetsuya Iizuka, Makoto Ikeda, and Kunihiro Asada. 2006. Shot minimization for
throughput improvement of character projection electron beam direct writing. In Proceedings of SPIE,
Vol. 6921.

David Z. Pan, Bei Yu, and J.-R. Gao. 2013. Design for Manufacturing With Emerging Nanolithography.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 32, 10 (2013),
1453–1472.

Hans C. Pfeiffer. 2009. New prospects for electron beams as tools for semiconductor lithography. In Proceed-
ings of SPIE, Vol. 7378.

Masahiro Shoji, Tadao Inoue, and Masaki Yamabe. 2010. Extraction and utilization of the repeating patterns
for CP writing in mask making. In Proceedings of SPIE, Vol. 7748.

Makoto Sugihara, Taiga Takata, Kenta Nakamura, Ryoichi Inanami, Hiroaki Hayashi, Katsumi Kishimoto,
Tetsuya Hasebe, Yukihiro Kawano, Yusuke Matsunaga, Kazuaki Murakami, and Katsuya Okumura.
2006a. Cell Library Development Methodology for Throughput Enhancement of Character Projection
Equipment. IEICE Transactions on Electronics E89-C (2006), 377–383.

Makoto Sugihara, Taiga Takata, Kenta Nakamura, Ryoichi Inanami, Hiroaki Hayashi, Katsumi Kishimoto,
Tetsuya Hasebe, Yukihiro Kawano, Yusuke Matsunaga, Kazuaki Murakami, and Katsuya Okumurae.
2007. Technology mapping technique for throughput enhancement of character projection equipment.
In Proceedings of SPIE, Vol. 6151.

M. Sugihara, T. Takata, K. Nakamura, Rx. Inanami, R. Inanami, H. Hayashi, K. Kishimoto, T. Hasebe, Y.
Kawano, Y. Matsunaga, K. Murakami, and K. Okumura. 2006b. A character size optimization technique
for throughput enhancement of character projection lithography. In IEEE International Symposium on
Circuits and Systems (ISCAS). 2561–2564.

Yunfeng Yang, Wai-Shing Luk, Hai Zhou, Changhao Yan, Xuan Zeng, and Dian Zhou. 2015. Layout decompo-
sition co-optimization for hybrid e-beam and multiple patterning lithography. In IEEE/ACM Asia and
South Pacific Design Automation Conference (ASPDAC). 652–657.

Hiroshi Yasuda, Takeshi Haraguchi, and Akio Yamada. 2004. A proposal for an MCC (Multi-column cell with
lotus root lens) system to be used as a mask-making e-beam tool. In Proceedings of SPIE, Vol. 5567.

Bei Yu, Jhih-Rong Gao, and David Z. Pan. 2013a. L-Shape Based Layout Fracturing for E-Beam Lithography.
In IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC). 249–254.

Bei Yu and David Z. Pan. 2014. Layout Decomposition for Quadruple Patterning Lithography and Beyond.
In ACM/IEEE Design Automation Conference (DAC). 53:1–53:6.

Bei Yu, Kun Yuan, Jhih-Rong Gao, and David Z. Pan. 2013b. E-BLOW: E-Beam Lithography Overlapping
aware Stencil Planning for MCC System. In ACM/IEEE Design Automation Conference (DAC). 70:1–
70:7.

Bei Yu, Kun Yuan, Boyang Zhang, Duo Ding, and David Z. Pan. 2011. Layout Decomposition for Triple
Patterning Lithography. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
1–8.

Kun Yuan, Bei Yu, and David Z. Pan. 2012. E-Beam Lithography Stencil Planning and Optimization With
Overlapped Characters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD) 31, 2 (Feb. 2012), 167–179.

Hongbo Zhang, Yuelin Du, M. D. Wong, and Rasit Topaloglu. 2011. Self-Aligned Double Patterning Decompo-
sition for Overlay Minimization and Hot Spot Detection. In ACM/IEEE Design Automation Conference
(DAC). 71–76.

Hongbo Zhang, Yuelin Du, Martin D. F. Wong, Yunfei Deng, and Pawitter Mangat. 2012. Layout small-angle
rotation and shift for EUV defect mitigation. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 43–49.

Received July 2015; revised December 2015; accepted January 2016

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 3, Article 43, Pub. date: May 2016.


