
3184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

ChatEDA: A Large Language Model Powered
Autonomous Agent for EDA

Haoyuan Wu , Zhuolun He , Xinyun Zhang , Xufeng Yao, Su Zheng ,
Haisheng Zheng, and Bei Yu , Senior Member, IEEE

Abstract—The integration of a complex set of electronic
design automation (EDA) tools to enhance interoperability is a
critical concern for circuit designers. Recent advancements in
large language models (LLMs) have showcased their exceptional
capabilities in natural language processing and comprehension,
offering a novel approach to interfacing with EDA tools. This
research article introduces ChatEDA, an autonomous agent for
EDA empowered by an LLM, AutoMage, complemented by EDA
tools serving as executors. ChatEDA streamlines the design flow
from the register-transfer level (RTL) to the graphic data system
version II (GDSII) by effectively managing task decomposition,
script generation, and task execution. Through comprehensive
experimental evaluations, ChatEDA has demonstrated its pro-
ficiency in handling diverse requirements, and our fine-tuned
AutoMage model has exhibited superior performance compared
to GPT-4 and other similar LLMs.

Index Terms—Electronic design automation (EDA), large
language models (LLMs), machine learning algorithms.

I. INTRODUCTION

ELECTRONIC design automation (EDA) encompasses a
crucial set of software tools utilized for circuit design,

analysis, and verification. These tools are organized within
a complex design flow, featuring intricate programming
interfaces. Notably, advanced RTL-to-GDSII design platforms
like OpenROAD [1] and iEDA [2] consist of numerous
procedures and adjustable parameters. Commercial tools, with
their extensive functionalities and options, offer even more
comprehensive capabilities. Circuit design engineers employ
these tools iteratively to achieve their design objectives,
often resorting to custom scripts for specific operations.
Conventionally, scripting languages, such as TCL, have been
the de facto means of interacting with EDA tools [3], which
is tedious and prone to errors. Experienced design teams
often adopt tools from different vendors, greatly increasing the
difficulty in creating and maintaining such scripts.

Manuscript received 1 November 2023; revised 19 January 2024 and
14 March 2024; accepted 16 March 2024. Date of publication 29 March 2024;
date of current version 20 September 2024. This work was supported
in part by the Research Grants Council of Hong Kong, SAR, under
Project CUHK14210723. This article was recommended by Associate
Editor N. K. Jha. (Haoyuan Wu and Zhuolun He contributed equally to this
work.) (Corresponding author: Bei Yu.)

Haoyuan Wu and Haisheng Zheng are with the Basic Software Research
Department, Shanghai Artificial Intelligence Laboratory, Shanghai 200000,
China.

Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, and Bei Yu are with the
Department of Computer Science and Engineering, The Chinese University
of Hong Kong, Hong Kong, SAR (e-mail: byu@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TCAD.2024.3383347

Recently, the field of natural language processing (NLP) has
undergone a revolutionary transformation with the emergence
of large language models (LLMs), such as GPT-3 [4], GPT-
4 [5], Claude2 [6], and Llama [7], [8]. Extensive training
on large corpora enables LLMs to acquire emergent abil-
ities [9] by learning intricate patterns and relationships in
language. This allows these models to demonstrate remarkable
accuracy and fluency in a variety of NLP tasks, such as
natural language understanding and generation. To lever-
age their potential in specialized domains [10], [11], [12],
instruction tuning [13] fine-tunes LLMs with domain-specific
corpora, resulting in remarkable performance on these special-
ized domains. Specifically, Vicuna [14], Guanaco [15], and
Orca [16], have applied instruction tuning to train LLMs,
making use of the outputs produced by the GPT, and thereby
achieving significant outcomes

Furthermore, scholars have initiated exploration into the
incorporation of tools or models into LLMs. Toolformer [17],
a groundbreaking methodology, integrates external API tags
into text sequences, thus facilitating LLMs to connect with
external tools. This tool utilization, coupled with the capac-
ity for logical reasoning, broadens the LLM’s potential as
a robust general problem solver. Several proof-of-concept
demonstrations, including AutoGPT [18] and BabyAGI [19],
serve as motivational illustrations. The current implementation
of LLMs in toolchain automation predominantly relies on
generic LLMs without specific fine-tuning. However, such
LLMs, lacking bespoke fine-tuning, are unable to consis-
tently meet performance standards tailored to users’ specific
requirements [20]. Particularly in the EDA domain, LLMs
exhibit limited familiarity with EDA toolchains, leading to
frequent errors during the tool usage process. In this article, we
introduce the expert EDA LLMs, the AutoMage series, which
have been optimized for proficiency with EDA tools, thereby
enhancing the stability and reliability of the automation of
EDA workflows.

In this work, we propose ChatEDA, an expert LLM system
designed to generate code for manipulating EDA tools based
on natural language instructions. To be more specific, as
illustrated in Fig. 1, ChatEDA is an LLM-driven autonomous
agent system for EDA, functioning as the agent’s intellectual
hub, responding to human instructions and manipulating the
EDA tools via APIs to deliver autonomous register-transfer
level (RTL) to graphic data system version II (GDSII) capabil-
ities without necessitating any code writing. To guarantee the
performance, we utilize the AutoMage series (AutoMage and

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7090-0600
https://orcid.org/0009-0009-4909-6588
https://orcid.org/0000-0002-7763-7507
https://orcid.org/0000-0003-1159-1611
https://orcid.org/0000-0001-6406-4810

WU et al.: CHATEDA: A LLM POWERED AUTONOMOUS AGENT FOR EDA 3185

Fig. 1. Overview of AutoMage powered ChatEDA. With AutoMage as the
controller and EDA tools as the executors, the workflow consists of three
stages: 1) task decomposition; 2) script generation; and 3) task execution.

AutoMage2) as the control unit of the ChatEDA. AutoMage
is an expert LLM that specializes in the utilization of EDA
tools, which is barely learned in open-source LLMs. To further
enhance AutoMage’s abilities in real-world environments, we
propose the upgraded version of AutoMage, AutoMage2. Our
contributions are listed as follows: 1) ChatEDA, the first
LLM-powered EDA interfacing framework and methodol-
ogy; 2) AutoMage series (AutoMage and AutoMage2) are
fined-tuned-based LLMs and purpose-built to enhance the
capabilities of ChatEDA; and 3) comprehensive evaluations
using ChatEDA-Bench to show the superior performance of
AutoMage series, surpassing GPT-4 and other well-known
LLMs in various tasks.

The remainder of this article is organized as follows.
Section II discusses the preliminaries, including a brief illus-
tration of the generative pretrained language model (GPLM),
low-rank adaptation (LoRA) of LLMs, in-context learning
(ICL) ability of LLMs, and blockwise k-bit quantization
technique for efficient training. Our proposed LLM-powered
framework for EDA will be explained in Section III.
AutoMage and its upgraded version AutoMage2 will be elabo-
rated in Sections IV and V separately. Section VI demonstrates
our experiment setup, evaluation of our methods, quantitative
comparisons, and some case studies, followed by a discussion
about limitations and future work in Section VII and a
conclusion in Section VIII.

II. PRELIMINARIES

A. Generative Pretrained Language Model

GPLMs stand at the pinnacle of NLP advancements. Unlike
conventional models, such as BERT [21] and XLNet [22],
which utilize an encoder-decoder architecture, GPLMs [4],
[5], [6], [7], [8] employ a neural network structure exclu-
sively comprising decoder blocks based on the transformer
architecture. This exclusive decoder-only design offers several
advantages over traditional encoder-decoder architectures [23].
By eschewing the encoder’s compression of input into a
singular vector, GPLMs adeptly capture long-range language
dependencies, leading to the synthesis of more coherent prose.

The auto-regressive decoder forecasts each token considering
its entire antecedent context, ensuring fluid and logical text
generation.

GPLMs are trained through self-supervised learning on
expansive corpora, cultivating broad language representations.
In this phase, model parameters are refined to augment the
likelihood of predicting ensuing tokens in sequences [24].
Such a strategy equips these models with a deep compre-
hension of linguistic intricacies. As training data swells, the
proficiency of these models in text generation augments [4].

Significantly, while these models are not engineered for
distinct downstream tasks, their broad knowledge garnered
during pretraining paves the way for stellar performance across
diverse tasks. This is achieved with minimal fine-tuning on
scantily labeled datasets [4]. Their pretrained representations
coupled with the decoder-centric design empower them to craft
coherent, sensible, and fluid prose infused with reasoning. The
blend of generative prowess and preacquired knowledge paves
the path for imaginative text generation.

Prominent LLMs, including GPT-4 [5], PaLM [25], [26],
and LLaMA [7], [8], and epitomize GPLMs. They display
unparalleled generalization and few-shot learning prowess,
endorsing a plethora of text generation applications. In the
context of this article, AutoMage is fine-tuned based on
GPLMs (Llama2), underlining the adaptability and potency to
automate the RTL-GDSII flow in real-world scenarios.

B. Low-Rank Adaptation of LLMs

LLMs are characterized by their vast number of parameters,
making full fine-tuning of these parameters during training
impractical. An efficient alternative is LoRA [27], a technique
that involves preserving the pretrained model weights while
introducing trainable low-rank decomposition matrices into
each layer of the Transformer architecture. This method
substantially decreases the number of trainable parameters for
subsequent tasks.

The Transformer architecture comprises numerous fully
connected layers that conduct matrix multiplications with
full-rank weight matrices. Despite the complexity, pretrained
language models demonstrate a low-intrinsic dimension,
allowing them to learn efficiently even after random projection
into a smaller subspace [28]. Consequently, for a pretrained
weight matrix represented as W ∈ R

h×d, it can be updated
using a low-rank decomposition W +�W = W +L1L2, where
L1 ∈ R

h×r, L2 ∈ R
r×d, and the rank r � min(h, d).

During the training process, W remains fixed and does not
receive gradient updates, whereas the matrices L1 and L2 are
endowed with trainable parameters. For the equation y = Wx,
the modified forward pass is expressed as

y = Wx + �Wx = Wx + L1L2x. (1)

Initially, L2 is initialized with a random Gaussian distribution,
and L1 is set to zero, ensuring that �W = L1L2 is zero at the
outset.

During production deployment, W = W +L1L2 is explicitly
computed and stored for regular inference. Importantly, this
method incurs no additional latency when compared to a fully

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

3186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

fine-tuned model, making it an efficient choice for practical
applications.

In the context of this study, LoRA is applied to stream-
line the fine-tuning process for Llama2. By preserving the
pretrained weights and solely updating the low-rank matrices,
the number of trainable parameters is significantly reduced,
enhancing the model’s efficiency and applicability in real-
world scenarios.

C. In-Context Learning

The concept of ICL [29] exemplifies the remarkable abil-
ity of LLMs to execute downstream tasks effectively by
conditioning on the in-context prompt containing a limited
number of input-output examples, all without explicit fine-
tuning. For instance, when presented with a task like predicting
nationalities, a prompt featuring sample input names and their
respective nationalities, such as “Albert Einstein was German.
Mahatma Gandhi was Indian. Marie Curie was ____,” allows
LLMs to correctly fill in the blank with the appropriate
nationality.

The phenomenon of ICL arises from the presence of
long-range coherence in pretraining documents. During the
pretraining phase, LLMs are compelled to deduce the latent
concept denoted by θ across multiple sentences, ensuring
coherent continuations. When provided with the in-context
prompt, denoted as xic, ICL manifests when LLMs deduce
shared concepts within xic to make predictions denoted as xo.

Assuming that LLMs precisely capture the pretrain dis-
tribution p with adequate data and expressivity [30], ICL
involves characterizing the conditional distribution of comple-
tions given in-context prompt, denoted as p(xo|xic), under p.
This is the posterior predictive distribution, which marginalizes
out latent concepts as follows:

p(xo|xic) =
∫

θ

p(xo|θ, xic)p(θ |xic)d(θ). (2)

In scenarios where p(θ |xic) focuses on the concepts within
xic with more input-output examples, LLMs learn through
marginalization by effectively “selecting” the concept of input-
output examples from xic.

ICL [31] presents an efficient and adaptable method to
leverage the knowledge and capabilities embedded within
extensively pretrained language models. It stands as a promis-
ing paradigm enabling LLMs to learn from a minimal set of
examples during inference. In our research, we employ ICL
for self instruction and the collection of instruction datasets to
fine-tune Llama2.

D. Blockwise k-Bit Quantization

Quantization [32], a process of discretizing input from a
high-information representation to a lower-information one,
involves converting data types with more bits into those with
fewer bits, such as transitioning from 32-bit floats to 8-bit
integers. Blockwise k-bit quantization ensures optimal utiliza-
tion of the low-bit data type’s entire range. This approach
normalizes the input data type within the target data type’s
range using the absolute maximum of the input elements,

typically organized as a tensor. For instance, quantizing a
32-bit floating point (FP32) tensor into an Int8 tensor within
the range of [−127, 127] can be expressed as

XInt8 = round

(
127

absmax
(
XFP32

)XFP32

)

= round
(

cFP32 · XFP32
)

(3)

where c represents the quantization constant. The inverse
operation dequantization is defined as

dequant
(

cFP32, XInt8
)

= XInt8

cFP32
= XFP32. (4)

The input tensor X ∈ R
b×h is divided into n contiguous

blocks of size B by flattening the tensor and segmenting the
linear structure into n = (b × h)/B blocks. These blocks are
independently quantized using (3), creating a quantized tensor
and n quantization constants ci.

In the context of efficient fine-tuning of quantized LLMs,
a strategy involving blockwise k-bit quantization is applied.
To be more specific, the pretrained LLM is stored in a
4-bit datatype using (3), and then dequantized from 4-bit to
16-bit datatype for forward and backward pass computations
using (4).

III. CHATEDA—LLM-POWERED FRAMEWORK FOR EDA

ChatEDA, an LLM powered agent, is specifically designed
for RTL-to-GDSII flow automation. The main objective of
ChatEDA is to understand and respond to user requirements
in natural language. In order to achieve this, ChatEDA is
capable of breaking down complex user requirements into
smaller, more manageable subtasks and subsequently utilizing
appropriate EDA tools to address them.

As illustrated in Fig. 1, AutoMage, an LLM fine-tuned with
EDA expert knowledge, serves as the central processing unit
of ChatEDA. After receiving a natural language requirement
from the user, AutoMage first interprets the requirement
and decomposes it into a set of subtasks, known as task
decomposition. Then, based on the decomposed smaller tasks
and the specifications for the external tools, e.g., OpenROAD,
AutoMage generates Python scripts for accomplishing these
tasks. Ultimately, ChatEDA executes the generated script to
get the final output for the user requirement. We will detail
the workflow and the training process of AutoMage in the
following sections.

A. Task Decomposition

In the realm of automating the RTL-to-GDSII flow through
EDA tools, numerous user requests often entail intricate
intentions. A fundamental requirement lies in the agent’s
ability to comprehend these complex human natural language
requests. Thanks to the robust capabilities of AutoMage,
ChatEDA adeptly interprets these tasks based on human-
defined specifications.

Considering the intricate nature of automating the RTL-
to-GDSII flow, it becomes imperative to break down the
overarching task into a series of manageable subtasks to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: CHATEDA: A LLM POWERED AUTONOMOUS AGENT FOR EDA 3187

Fig. 2. Language functions as a conduit enabling ChatEDA to integrate EDA tools for resolving complex EDA tasks. Within the framework, ChatEDA acts
as the controller that harmonizes and orchestrates the collaboration among various tools. ChatEDA first formulates a task list derived from user requirements,
subsequently generating scripts corresponding to these decomposed tasks.

achieve the desired outcome. Therefore, we introduce task
decomposition as the primary stage of ChatEDA. In this
phase, AutoMage assesses user requirements and dissects
them into a sequence of structured tasks. Fig. 2 illustrates
the task decomposition process. For instance, when faced
with a convoluted and lengthy natural language request,
ChatEDA employs AutoMage to break it down into a series
of specific subtasks. These tasks, encompassing aspects like
logic synthesis, floorplan, placement, and others, can then be
efficiently handled through various EDA tools.

B. Script Generation

Upon the completion of the task decomposition phase,
manageable subtasks are defined, facilitating the streamlined
orchestration of the complex task. Each subtask is exe-
cutable through corresponding APIs within the EDA tools.
Consequently, the need arises to craft a script that invokes
these APIs for task execution. During the script generation
phase, depicted in Fig. 2, a structured text incorporating API
specifications, user requirements, and the decomposed sub-
tasks serves as input for AutoMage. Subsequently, AutoMage
generates a Python script, ready for direct execution. This
script enables the RTL-to-GDSII flow, promoting efficient
architectural exploration, design space evaluation, early quality
of results (QoR) estimation, and detailed physical design
implementation.

C. Task Execution

Following script generation, ChatEDA executes the script
using the Python interpreter, and the subtasks are then
performed utilizing EDA tools. According to the setup proce-
dures, ChatEDA sets environment variables accordingly. Then,
it launches a subprocess that runs the tool (i.e., OpenROAD
in our implementation) script executor. Internally, the Python
wrapper implements different functionalities by specifying
relevant Tcl scripts or commands and running them by the
tool script executor. With its proven efficacy in both script
generation and task execution, ChatEDA stands as a pivotal
system in ensuring reliable automation of the RTL-to-GDSII
flow.

IV. AUTOMAGE—LLM-BASED CONTROLLER

OF CHATEDA

A. Base Model Selection

The AutoMage model is a fine-tuned version of Llama2 [8],
which is designed based on the standard Transformer model
architecture in a decoder-only setup, meaning each timestep
can only attend to itself and past timesteps. It is worth noting
that CodeLlama [33] models achieve strong performance in
coding ability, which are incrementally pretrained on code
resources based on Llama2 models. However, during the
process of incremental pretraining on code resources, it will
lose a lot of general knowledge including EDA knowledge. To

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

3188 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

Fig. 3. Overview of instruction tuning. During the instruction tuning process,
we use the self instruction paradigm to construct our instruction pool via
GPT models. Then we apply the QLoRA technique for efficient instruction
fine-tuning.

understand user requirements on EDA tool usage, ChatEDA
needs to have basic EDA knowledge. As a result, we utilize
Llama2 models for this research.

B. Instruction Tuning for AutoMage

To guarantee the reliability of ChatEDA, knowing when
and how to use the tools, which is determined by the LLM’s
capability, is of vital importance. AutoMage is an expert LLM
specializing in utilizing EDA tools, which are barely learned in
open-source LLMs. To integrate expert knowledge into LLMs,
instruction tuning is an effective approach that enables LLMs
to benefit from the pairing of domain-specific natural language
descriptions and their corresponding responses. Therefore, we
incorporate instruction tuning to train AutoMage, the core
controller of ChatEDA, based on the open-source LLMs
(Llama2 [8]). As shown in Fig. 3, the process of instruction
tuning mainly includes three parts, self instruction, instruction
collection, and instruction fine-tuning, which are detailed as
follows.

Self Instruction: To enhance instruction tuning, it is imper-
ative to gather high-quality instructions that can effectively
educate LLMs on the utilization of EDA tools through APIs.
Given the costliness of obtaining high-quality instructions,
the self-instruction paradigm has gained significant traction
in recent research endeavors [34]. This paradigm revolves
around the utilization of diverse in-context prompts, tailored
to specific instances, to query GPT-3.5/4 and automatically
generate additional instances from them.

The self-instruction paradigm is meticulously crafted, draw-
ing inspiration from the ICL [31] capability of GPT-3.5/4. In
this methodology, we provide explicit guidance to the model
through APIs, incorporating necessary restrictions within the
self-instruction prompts. Subsequently, we employ instances
structured in the format <requirement, decomposition, script>
as in-context prompts, enabling precise alignment with
GPT-3.5/4. According to the formulation outlined in (2), GPT-
3.5/4 generates instances that directly reference the instances
provided within the in-context prompts. This approach not
only refines the understanding of the given instructions but also
enhances the model’s ability to generate contextually relevant
responses.

Herein lies the template for the self-instruction prompt,
meticulously designed to maximize the efficiency of instruct-
ing LLMs in utilizing EDA tools via APIs. The template,
marked by careful structuring and explicit directives, plays a
pivotal role in shaping the ICL process of GPT-3.5/4, ensuring
the acquisition of high-quality instructions and fostering the
model’s adeptness in the EDA domain.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: CHATEDA: A LLM POWERED AUTONOMOUS AGENT FOR EDA 3189

Fig. 4. Examples of generated EDA tools instructions. Moreover, we also provide more examples in the repo https://github.com/wuhy68/ChatEDAv1 for a
better understanding of the generated dataset.

Instruction Collection: In adherence to the self-instruction
paradigm, a meticulously crafted dataset of approximately
1500 instances was formulated for the explicit purpose of
instruction tuning. It is crucial to note that both GPT-3.5
and GPT-4, while powerful, are not infallible, occasionally
producing erroneous data. To counter this, a portion of the
dataset was manually curated or refined to ensure accuracy and
reliability. Specifically, we first automatically verified whether
our designed OpenROAD API interface, an automated process,
could correctly execute the generated code. In cases where the
code was inexecutable, we modified it to ensure functionality.
Subsequently, we manually evaluated whether the generated
code satisfied the task requirements specified in the prompt. If
the generated code failed to meet the requirements or exhibited
an incorrect thought process, we manually edited it. For the
entire dataset, we dedicated approximately two person-days
to meticulously validate and refine the requirement-response
pairs, ensuring quality and accuracy, resulting in a refined
dataset of approximately 1500 training samples.

We provide some examples of the generated instruction
dataset in Fig. 4.

Instruction Fine-Tuning: In the process of fine-tuning,
each instance consists of a requirement and a corresponding
response. The response involves a detailed decomposition
process and script. In this context, we view the prompt
and requirement as crucial instructions that direct LLMs to
generate accurate corresponding responses. During instruction
fine-tuning, we utilize a commonly used prompt in the style of
Alpaca [35], and AutoMage is trained on approximately 1500
instances to learn how to utilize EDA tools.

To ensure an appropriate length for the model sequences,
requirements and responses extracted from the entire training
set are concatenated. This concatenation is performed while

employing a unique token to demarcate these segments
effectively. Consequently, an auto-regressive objective is imple-
mented, effectively nullifying the loss of tokens originating
from the user requirement. This strategic approach confines
the backpropagation process solely to the response tokens,
enhancing the precision and efficiency of the fine-tuning process.

C. Efficient Fine-Tuning of Quantized LLMs

In addressing the critical necessity for swift training pro-
cedures, our study incorporates the QLoRA technique [15],
aiming to expedite the fine-tuning process efficiently. QLoRA
employs 4-bit NormalFloat (NF4) quantization and dou-
ble quantization methodologies, ensuring the attainment of
high-quality 4-bit fine-tuning. This innovative approach is
intricately coupled with paged optimizers, which serve the
crucial purpose of mitigating memory spikes during gradient
checkpointing, thus averting potential out-of-memory errors.
The notable efficacy of QLoRA is pivotal in enabling us to
ensure the seamless performance of instruction fine-tuning
utilizing LLMs on a substantial scale, specifically 34B/70B
models, a milestone traditionally hindered by memory over-
head constraints.

To delve deeper into the components of QLoRA, it is imper-
ative to elucidate the essence of the following fundamental
components: NF4 quantization and double quantization.

NF4 Quantization: The NormalFloat (NF) data type, an
extension of quantile quantization [36], emerges as an
information-theoretically optimal method, ensuring equal dis-
tribution of values within each quantization bin of the input
tensor. Quantile quantization achieves this uniformity by
estimating the quantile of the input tensor through the empir-
ical cumulative distribution function.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

3190 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

Double Quantization: This sophisticated process involves
quantizing the quantization constants to achieve additional
memory savings. While precise 4-bit quantization [37] neces-
sitates a small block size, it inevitably results in significant
memory overhead. Double quantization [15], a pivotal inno-
vation, involves employing the quantization constants cFP32

2
from the first quantization as inputs for a second quantization
step. This process yields quantized quantization constants cFP8

2
and a secondary set of quantization constants cFP32

1 . For the
second quantization, we utilize 8-bit Floats with a block size
of 256, ensuring optimal memory usage without compromising
performance. Notably, to facilitate symmetric quantization, we
center the positive cFP32

2 values around zero after subtracting
the mean before quantization.

QLoRA: Combining these aforementioned components,
QLoRA enhances a linear projection within a transformer layer
of LLMs through an additional factorized projection, thus
contributing to the efficiency and effectiveness of fine-tuning
processes in the realm of LLMs. As shown in the dash box
of Fig. 3, given a linear projection, y = Wx, the computation,
based on (1), is as follows:

yBF16 = doubleDequant
(

cFP32
1 xBF16, ck-bit

2 , WNF4
)

+ LBF16
1 LBF16

2 xBF16 (5)

where W is original weights and L1 and L2 are
additional QLoRA weights. The final weights can be com-
bined without extra inference costs. Here, the function
doubleDequant(cFP32

1 , ck-bit
2 , Wk-bit) can be obtained by

dequant
(

dequant
(

cFP32
1 , ck-bit

2

)
, W4bit

)
= WBF16. (6)

The matrix W is of size NF4 and is quantized to 4-bit
precision. The constant c2 is of size FP8. We choose a
blocksize of 64 for W to achieve higher-quantization precision,
and a blocksize of 256 for c2 to conserve memory. This choice
is based on recent results showing that 8-bit quantization
does not significantly degrade performance compared to 16-bit
quantization.

In summary, QLoRA employs a singular storage data type,
typically NF4, alongside a computational data type represented
by 16-bit BrainFloat (BF16). The forward and backward
passes entail dequantizing the storage data type to the com-
putational data type. Notably, during these processes, weight
gradients are exclusively computed for the LoRA parameters
utilizing the BF16 representation.

D. Auto-Regressive Decoding

Beam search constitutes a fundamental algorithm employed
across numerous NLP models, serving as the pivotal decision-
making layer responsible for selecting the optimal output
concerning predetermined target variables, such as maximum
probability or the subsequent output character. This method
facilitates the simultaneous consideration of multiple tokens
for a specific position within a given sequence, relying on
conditional probability assessments. The selection process is
governed by a key hyperparameter, denoted as beam width,
which determines the number of N-best alternatives to be con-
sidered. In our auto-regressive decoding process of AutoMage,

we implement beam search with the beam width set to 4. This
strategic choice significantly elevates the precision and quality
of text generation by enabling the model to explore a wider
range of possibilities and select the most suitable output.

V. AUTOMAGE2—AN UPGRADED VERSION

OF AUTOMAGE

AutoMage, fine-tuned with datasets comprising approxi-
mately 1500 EDA tool instructions, may exhibit overfitting
to these limited datasets. Furthermore, Llama2 exhibits defi-
ciencies in coding and logical reasoning capabilities [38].
Consequently, AutoMage inherits these limitations undoubt-
edly. Considering that real-world environments present greater
challenges, there are still opportunities to further enhance
AutoMage’s abilities. AutoMage2 is an upgraded version
of AutoMage that aims to be a more stable and capa-
ble controller of ChatEDA. Our objective is to augment
AutoMage’s capabilities, particularly in logical reasoning
for task decomposition and script generation coding, to
enhance the system’s overall performance. We adopt the
model architecture (Section IV-A), efficient fine-tuning process
(Section IV-C), and auto-regressive decoding (Section IV-D)
from AutoMage, and employ three key techniques to improve
its capabilities: enriched training corpus, instruction tun-
ing with explanation [16], and chain of thoughts (CoTs)
prompting [39].

A. Enriched Training Corpus

AutoMage’s capabilities stem largely from the pretraining
of the underlying LLMs. To enhance performance, we must
also enhance the base LLMs.

First, a high-quality corpus is critical for instruction tun-
ing. With only around 1500 instances generated by the self
instruction paradigm (Section IV-B), AutoMage achieved high
performance. To augment the data, we not only added more
EDA tool usage instances but also filtered to ensure quality
and semantic diversity. Specifically, we had an instructor [40]
for encoding the generated instructions, calculated cosine
similarity, and removed those with a similarity score above
0.95. After deduplication, we obtained around 1500 instances.

Moreover, code corpus represents a highly abstract language
containing complex logical constructs. Exposure to such cor-
pus can strengthen LLMs’ coding skills and logical reasoning.
To strategically bolster the coding and reasoning proficien-
cies of the LLMs, we amalgamated approximately 110k
instances of code instructions [38] sourced from open-access
repositories with our own generated instances of EDA tools
instructions after deduplication. This amalgamation resulted
in the creation of hybrid instruction datasets. These hybrid
datasets, rich in diversity and complexity, were instrumental in
fine-tuning the instructions provided to AutoMage2, thereby
augmenting their overall comprehension and proficiency in
utilizing EDA tools effectively. This amalgamation not only
broadened the scope of the instructions but also fostered a
comprehensive understanding of the intricate nuances associ-
ated with coding and EDA, ensuring a robust and well-rounded
training process.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: CHATEDA: A LLM POWERED AUTONOMOUS AGENT FOR EDA 3191

B. Instruction Tuning With Explanation

The training corpus contains teacher (GPT-3.5/4) responses
that explain the reasoning process, providing additional learning
signals beyond the prompt-response pairs used in vanilla
instruction tuning (Section IV-B) for AutoMage. To elicit such
explanations, we employ system instructions for instruction
tuning with the explanation of AutoMage2 following Orca [16]
style (e.g., “think step-by-step” and “justify your steps”), which
better imitates the teacher’s thought process. The intricately
designed prompt is presented below for reference.

C. Chain of Thoughts

CoT prompting [39] enables complex reasoning through
intermediate reasoning steps. Zero-shot CoT prompting [41]
builds on this by introducing a simple zero-shot prompt:
appending “Let’s think step by step.” This prompts LLMs to
generate a CoT that answers the question. From this, more
accurate answers can be extracted. Consequently, we apply
zero-shot CoT during inference of AutoMage models and other
notable LLMs to obtain more precise responses. The intricately
designed zero-shot CoT prompt is presented below for reference.

VI. EXPERIMENTS

A. Setup

For efficient fine-tuning of AutoMage2, we implement a
constant learning rate schedule with a 0.03 warm-up ratio
using paged AdamW 8-bit optimizer [36], initiating with a
learning rate of 1×10−4, no weight decay, a batch size of 128,
and a sequence length of 4096 tokens. Ultimately, the model is
fine-tuned for 1 epoch on 16×A100 with 80G memory each.

During the inference phase, the users requirement prompts
in natural language. These can be designed for a simple
task (e.g., “Perform routing for the processor design on the
asap7 platform.”) or delineate a broader, more general goal
(e.g., “Please show me how to complete the design flow in the
script.”). The output of AutoMage2 is the executable script.

As for evaluation, we consider notable LLMs, including
Claude2 [6], GPT-3.5 [4], and GPT-4 [5], as our baselines for
performance assessment. To ensure a comprehensive compar-
ison, we utilize different LLMs as the core controllers for our
autonomous agent, ChatEDA. The target API is a simplified
Python wrapper of OpenROAD [1].

For better understanding and easy reproduction of our
work, we provide ChatEDA-bench (Section VI-B), examples
of EDA tool instructions dataset, and API document with its
corresponding OpenROAD implementation in the open-source
repo https://github.com/wuhy68/ChatEDAv1.

B. ChatEDA-Bench

To assess the effectiveness of AutoMage2, we have
developed ChatEDA-Bench, a comprehensive evaluation
benchmark comprising 50 distinct tasks spanning three distinct
categories: 1) simple flow calls (30%); 2) complex flow calls
(30%); and 3) parameter flow calls (40%). The diversity of
these tasks ensures a rigorous evaluation of AutoMage2’s
capabilities across various scenarios. In the subsequent sec-
tions, we will elucidate two examples from each task category,
shedding light on the intricate nature of the evaluation scenar-
ios and the challenges posed by each case.

Simple Flow Calls: The first task requires the successful
execution of the whole process, including evaluation. These
cases test the fundamental application of LLMs and their
sequence of usage with the API interfaces.

Complex Flow Calls: These cases heavily rely on logic,
including traversing parameters, further examining the LLM’s
logical reasoning and understanding of each API argument.

Parameter Tuner Calls: These cases require the LLM to
provide a parameter-tuning solution, thoroughly testing the
LLM’s logic and use of EDA tools.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

3192 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

C. Evaluation of LLMs

An objective evaluation system was developed to assess
the task decomposition and script generation capabilities of
LLMs designed for automated script generation. An evaluation
system was developed to assess the task decomposition and
script generation capabilities of LLMs designed for auto-
mated script generation. This evaluation system comprises two
integral components. Initially, the Python scripts generated
are subjected to testing through the EDA tool interface to
determine their executability. Subsequently, a manual assess-
ment is conducted to ascertain whether the responses from
the LLMs meet the users’ requirements. To maintain fairness
and accuracy in the evaluation process, multiple judges’
perspectives are taken into account, and these judges are kept
unaware of which LLM generated the response during scoring.
The system uses a three-tiered grading scheme, with Grade
A representing the highest achievement. Grade A is awarded
to LLMs that demonstrate coherent task decomposition and
generate accurate scripts. Grade B indicates respectable but
imperfect performance, assigned to LLMs that plan logically
but falter in script generation. Grade C denotes failure in both
task decomposition and code generation.

During the evaluation process, we use ChatEDA-Bench
for a comprehensive inspection. As summarized in Fig. 5,
AutoMage models outperform all notable LLMs, and our
proposed AutoMage2 achieved the best performance, correctly
earning Grade A for 82% of test cases. This significantly
exceeds the 62% Grade A attained by the next highest
performer of notable LLMs, GPT-4. While GPT-4 exhibited
reasonably strong capabilities, it struggled to differentiate
between lower-quality responses, assigning Grade B and
C more evenly at 16% and 22%, respectively. In con-
trast, AutoMage2 reliably identified the highest-grade-worthy

Fig. 5. Evaluation results for AutoMage [42] and AutoMage2 compared
to other LLMs. AutoMage models outperform other notable LLMs by a
significant margin in task planning and script generation and AutoMage2
performs the best.

responses. The other LLMs, Claude2 and GPT-3.5, performed
noticeably worse than AutoMage2, with Claude2 achieving
46% Grade A and GPT-3.5 only 28% Grade A. This highlights
their comparative deficiencies. In summary, AutoMage2 sub-
stantially outperformed GPT-4 and other LLMs by consistently
assigning appropriate high grades. The considerable margin
between AutoMage2 and second-place GPT-4 demonstrates
the advances of our method in grading performance. Our
experiment affirms AutoMage2 as the current state-of-the-art
LLM for this evaluation task, which will be the most reliable
controller of ChatEDA.

D. Case Studies

In this section, we analyze five tasks involving user interac-
tions with EDA tools through a conversational interface. It is
important to note that this exploration is not exhaustive due to
the limitations inherent in this qualitative study. For instance,
controlling all possible variables, such as the vast array of
responses the LLM can generate for a given prompt, is beyond
our reach. As a result, our conclusions are based on a selected
group of samples deemed representative. Nonetheless, we con-
tend that the description of these exemplars will enhance our
understanding of the robust performance of AutoMage2, which
enhances the reliability of AutoMage2 powered ChatEDA.
For each task, we first outline the user’s requirements and
subsequently present the task decomposition process and the
scripts generated by AutoMage2. Moreover, given that GPT-4
is the best LLM in baselines during the script evaluation, we
also provide the scripts generated by GPT-4 for comparison.

Parameter Grid Search: The first task requires LLMs
to execute a grid search, heavily relying on logic like
traversing parameters. This further examines the LLM’s grasp
of each API argument. AutoMage2 performed excellently,
demonstrating its logical prowess and exemplary API argu-
ment comprehension. In contrast, GPT-4 showed a deficient
understanding of parameter combination optimization. This
highlights AutoMage2’s more sophisticated grasp of the EDA
tools’ interface and parameter tuning logic compared to
GPT-4.

USER: I want to perform a grid search on the design “how”
on “gf180” platform for floorplan parameters, CTS parameters
and placement parameters to find the best balance of chip area,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: CHATEDA: A LLM POWERED AUTONOMOUS AGENT FOR EDA 3193

power consumption and performance. Can you help me to do
that?

AUTOMAGE2:

GPT-4:
Parameter Tuning Process: The next task requires the model

to provide a parameter-tuning solution. Examining the LLM’s
use of the tune function also evaluates its ability to suggest an
appropriate parameter space. Without sufficient priors, LLMs
cannot determine an exact parameter range. However, we
can see that both AutoMage2 and GPT-4 can generate a
complex search space, endowing the parameter tuning strategy

with greater potential. However, GPT-4 misses an important
intermediate “synthesis” step in task decomposition, demon-
strating weaker comprehension of the task decomposition. In
this aspect, AutoMage2 excels.

USER: What are the tunable parameters in floorplan? Give
me an example of tuning them for “router” design on the
platform sky130 to get the ppa results. Try to provide a larger
search space for parameter tuning.

AUTOMAGE2:

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

3194 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

GPT-4:

Customized Optimization: Customized Optimization
requires tuning parameters in the model per the search space
specified by the user. This process thoroughly evaluates the
model’s understanding of the tune function and the significance
of each API interface parameter. It is clear that AutoMage2
appropriately grasps the need for user-customized parameter
tuning, while GPT-4 exhibits a deficient understanding of key
EDA tool arguments. This demonstrates AutoMage2’s more
sophisticated comprehension of the EDA tools’ interface and
the logic of parameter tuning compared to GPT-4.

USER: We are going to develop the new ASIC project
“datacenter_chip” for server applications on the “nangate4”
platform, I want to create an automated script that will tune
the EDA process, while optimizing for minimal power usage
and maintaining acceptable performance and area. Here, is my
plan: 1) density level ranges from 0.1 to 0.9 with increments
of 0.005; 2) the search space of core utilization percentages is
between 60% and 85%; 3) clock periods are ranging from 5 to
10 in steps of 1; 4) resolve 50% to 80% of timing violations,
increasing in steps of 3%; 6) setting the core aspect ratio play
around between 1 and 2 with a step of 0.2; 7) setting the core
margins, macro place halo, and macro place channel to be 7,
8, and 9 separately; and 8) keeping the rest of the parameters
at their default values.

AUTOMAGE2:
GPT-4:
Clock Period Minimization: During instruction tuning, we

guided AutoMage2 on using the API interface according to
our specific needs. However, we did not teach it to modify
the parameters using self-feedback from the evaluation results.
In this test case, we examined how the LLM adjusts the
API arguments through self-feedback to achieve the user-
requested evaluation outcomes. Intriguingly, both AutoMage2
and GPT-4 successfully completed the provided test
case.

USER: Try to find out the smallest valid clock period for the
design “leon” on “asap7” platform. Note that a clock period is

valid only if the “wns” metric at the final stage is non negative.
AUTOMAGE2:

GPT-4:
Self Correct: This task evaluates the model’s ability to

self-correct mistakes, while also testing its capacity to com-
prehend EDA tools from the opposite perspective. Both
AutoMage2 and GPT-4 can accurately identify and fix errors,
demonstrating AutoMage2’s self-correction skills and pro-
found understanding of utilizing EDA tools.

USER: Can you help me check whether the provided script
can complete the task and provide the reason?

Here, is the task: I want to optimize performance at the
routing stage for my design asjdk on nangate45.

Here, is the script: If the script cannot complete the task,
please provide a script that can complete the task.

AUTOMAGE2:
GPT-4:

VII. DISCUSSION

Our proposed ChatEDA and its controllers, AutoMage
models, achieve significant performance in the automation of
the EDA flow. Despite the advancements, they face several

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: CHATEDA: A LLM POWERED AUTONOMOUS AGENT FOR EDA 3195

limitations. First, ChatEDA’s design lacks universal applica-
bility to diverse API documents. This constraint necessitates
the creation of specialized API documentation for different
EDA tools, thereby limiting ChatEDA’s scalability and broader
application in the EDA industry. Moreover, the unique API
structure of each EDA tool requires a bespoke approach,

impeding the seamless integration of ChatEDA across various
platforms and tools. Second, although AutoMage models
demonstrate enhanced capability in EDA flow automation,
they encompass a substantial number of model parameters.
This complexity results in a significant slowdown during a
single decoding step in these larger models. Third, we haven’t
provided some basic evaluation flow or (semi-)automated

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

3196 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 10, OCTOBER 2024

scoring tools to support comparisons using the ChatEDA-
Bench, which cannot enable a straightforward evaluation of
different solutions from others. Nevertheless, the assessment of
LLM outputs presents challenges due to the vast output space,
the subjective nature of relevance and coherence judgments,
and considerations regarding human readability. Therefore,
we have chosen to leverage human-centric evaluation with
the input and insights of multiple expert judges, aiming
to comprehensively evaluate not only the efficacy of task
decomposition but also the quality of script generation within
the context of LLM outputs. We hope the novel task-specific
benchmark will be highly beneficial for model debugging and
comparative analysis of methodologies.

These limitations highlight the imperative for ongoing
efforts to augment the versatility and efficiency of ChatEDA.
First, optimizing the decoding strategy of LLMs to improve
their decoding speed would significantly enhance the usability
and effectiveness of ChatEDA. Moreover, a critical goal
is to substantially enhance the generalization capacity of
LLMs, enabling them to adeptly manage unfamiliar EDA
tool documentation in zero-shot or few-shot scenarios. Such a
breakthrough would significantly broaden the scope of LLMs
in various EDA contexts, representing a major stride in AI-
powered EDA tool integration and leading to more adaptable
and versatile design automation solutions. Additionally, we
plan to advance the multiturn dialogue capabilities of our
system. This enhancement will facilitate dynamic interactions
based on user feedback, allowing the system to amend and
rectify potential errors in responses.

VIII. CONCLUSION

Interfacing EDA tools is essential for unleashing cir-
cuit design productivity. In this work, we propose an
LLM-powered autonomous agent for EDA, which enables
a conversational interface for designers to interact with
the design flow. Technically, ChatEDA integrates a fine-
tuned AutoMage, which orchestrates the design flow through
task decomposition, script generation, and task execution.
ChatEDA handles various user requirements well, outperform-
ing other LLM models like GPT-4 and so on. We hope this
work could inspire next-generation EDA tool evolution.

REFERENCES

[1] T. Ajayi et al., “OpenROAD: Toward a self-driving, open-source digital
layout implementation tool chain,” in Proc. Gov. Microcircuit Appl. Crit.
Technol. Conf., 2019, pp. 1–6.

[2] X. Li et al., “iEDA: An open-source intelligent physical implementation
toolkit and library,” in Proc. Int. Symp. Electron. Design Autom.
(ISEDA), 2023, pp. 1–3.

[3] P. Chen, D. A. Kirkpatrick, and K. Keutzer, “Scripting for EDA tools:
A case study,” in Proc. IEEE 2nd Int. Symp. Qual. Electron. Des., 2001,
pp. 87–93.

[4] T. Brown et al., “Language models are few-shot learners,” in Proc. NIPS,
2020, pp. 1–25.

[5] “Gpt-4 technical report.” OpenAI. 2023. [Online]. Available: https://cdn.
openai.com/papers/gpt-4.pdf

[6] “Claude.” Anthropic. 2023. [Online]. Available: https://www.anthropic.
com/

[7] H. Touvron et al., “LLaMA: Open and efficient foundation language
models,” 2023, arXiv:2302.13971.

[8] H. Touvron et al., “LLaMA 2: Open foundation and fine-tuned chat
models,” 2023, arXiv:2307.09288.

[9] J. Wei et al., “Emergent abilities of large language models,” J. Mach.
Learn. Res., 2022, to be published.

[10] Y. Wang et al., “Self-instruct: Aligning language model with self
generated instructions,” 2022, arXiv:2212.10560.

[11] J. Cui, Z. Li, Y. Yan, B. Chen, and L. Yuan, “ChatLaw: Open-source
legal large language model with integrated external knowledge bases,”
2023, arXiv:2306.16092.

[12] Y. Li, Z. Li, K. Zhang, R. Dan, S. Jiang, and Y. Zhang, “Chatdoctor:
A medical chat model fine-tuned on a large language model meta-ai
(LLaMA) using medical domain knowledge,” Cureus, vol. 15, no. 6,
2023, Art. no. e40895.

[13] J. Wei et al., “Finetuned language models are zero-shot learners,” in
Proc. ICLR, 2022, pp. 1–46.

[14] L. Zheng et al., “Judging LLM-as-a-judge with MT-bench and Chatbot
Arena,” 2023, arXiv:2306.05685.

[15] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA:
Efficient finetuning of quantized LLMs,” 2023, arXiv:2305.14314.

[16] S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and
A. Awadallah, “Orca: Progressive learning from complex explanation
traces of GPT-4,” 2023, arXiv:2306.02707.

[17] T. Schick et al., “Toolformer: Language models can teach themselves
to use tools,” 2023, arXiv:2302.04761.

[18] “Auto-gpt: An autonomous gpt-4 experiment.” 2023. [Online]. Available:
https://github.com/Significant-Gravitas/Auto-GPT

[19] “Babyagi.” 2023. [Online]. Available: https://github.com/yoheinakajima/
babyagi

[20] S. G. Patil, T. Zhang, X. Wang, and J. E. Gonzalez, “Gorilla: Large
language model connected with massive APIs,” 2023, arXiv:2305.15334.

[21] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proc.
NAACL, 2019, pp. 1–16.

[22] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized autoregressive pretraining for language
understanding,” in Proc. NIPS, 2019, pp. 1–11.

[23] Y. Tay et al., “Ul2: Unifying language learning paradigms,” in Proc.
ICLR, 2022, pp. 1–39.

[24] A. Radford et al., “Improving language understanding by generative pre-
training,” 2018, Preprint.

[25] A. Chowdhery et al., “PaLM: Scaling language modeling with path-
ways,” 2022, arXiv:2204.02311.

[26] R. Anil et al., “PaLM 2 technical report,” 2023, arXiv:2305.10403.
[27] E. J. Hu et al., “LoRA: Low-rank adaptation of large language models,”

in Proc. ICLR, 2021, pp. 1–26.
[28] A. Aghajanyan, S. Gupta, and L. Zettlemoyer, “Intrinsic dimensionality

explains the effectiveness of language model fine-tuning,” in Proc. ACL,
2021, pp. 1–11.

[29] S. Min, M. Lewis, L. Zettlemoyer, and H. Hajishirzi, “MetaICL:
Learning to learn in context,” in Proc. ACL, 2022, pp. 1–19.

[30] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, “An explanation of
in-context learning as implicit Bayesian inference,” in Proc. ICLR, 2021,
pp. 1–25.

[31] Q. Dong et al., “A survey for in-context learning,” 2022,
arXiv:2301.00234.

[32] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate
post-training quantization for generative pre-trained transformers,” 2022,
arXiv:2210.17323.

[33] B. Roziere et al., “Code Llama: Open foundation models for code,”
2023, arXiv:2308.12950.

[34] L. Ouyang et al., “Training language models to follow instructions with
human feedback,” in Proc. NIPS, 2022, pp. 1–15.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: CHATEDA: A LLM POWERED AUTONOMOUS AGENT FOR EDA 3197

[35] R. Taori et al., “Stanford alpaca: An instruction-following llama model.”
2023. [Online]. Available: https://github.com/tatsu-lab/stanford_alpaca

[36] T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer, “8-bit optimizers
via block-wise quantization,” in Proc. ICLR, 2021, pp. 1–20.

[37] T. Dettmers and L. Zettlemoyer, “The case for 4-bit precision: k-bit
inference scaling laws,” in Proc. ICML, 2023, pp. 1–25.

[38] Z. Luo et al., “WizardCoder: Empowering code large language models
with evol-instruct,” 2023, arXiv:2306.08568.

[39] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large
language models,” in Proc. NIPS, 2022, pp. 1–14.

[40] H. Su et al., “One embedder, any task: Instruction-finetuned text
embeddings,” in Proc. ACL, 2023, pp. 1–18.

[41] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large lan-
guage models are zero-shot reasoners,” in Proc. NIPS, 2022, pp. 1–15.

[42] Z. He et al., “ChatEDA: A large language model powered autonomous
agent for EDA,” in Proc. MLCAD, 2023, pp. 1–6.

Haoyuan Wu received the B.Eng. degree in soft-
ware engineering from Sun Yat-sen University,
Guangzhou, China, in 2022, and the M.Sc. degree
in computer science from The Chinese University of
Hong Kong (CUHK), Hong Kong, in 2023.

He is currently a Researcher with Shanghai
Artificial Intelligence Laboratory, Shanghai, China.
His research interests include large language models,
machine learning, and electronic design automation.

Zhuolun He received the B.S. degree in computer
science and engineering from Peking University,
Beijing, China, in 2017, and the Ph.D. degree from
The Chinese University of Hong Kong (CUHK),
Hong Kong, in 2023.

He is currently a Postdoctoral Fellow with the
Department of Computer Science and Engineering,
CUHK.

Xinyun Zhang received the B.Eng. degree from
the School of Electrical Engineering, Xi’an Jiaotong
University, Xi’an, China, in 2018, and the
M.S. degree from the School of Engineering, The
Hong Kong University of Science and Technology,
Hong Kong, in 2020. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong.

His current research interests include computer
vision and machine learning.

Xufeng Yao received the B.Eng. degree in
information system and information management
from Fudan University, Shanghai, China, in 2016,
and the M.Sc. degree in computer science from The
Chinese University of Hong Kong, Hong Kong, in
2020. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong,
Hong Kong.

His research interests include computer vision and
machine learning.

Su Zheng received the B.Eng. and M.S. degrees
from Fudan University, Shanghai, China, in 2019
and 2022, respectively. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, under the supervision of
Prof. Bei Yu and Prof. Martin D.F. Wong.

His research interest is to solve critical prob-
lems in electronic design automation with advanced
artificial intelligence methods.

Haisheng Zheng received the B.Eng. degree
in internet of things engineering from Tiangong
University, Tianjin, China, in 2020.

He is currently a Researcher with Shanghai AI
Laboratory, Shanghai, China, since 2022. From 2020
to 2022, he was a Research and Development
Engineer with SmartMore, Hong Kong. His research
interests include artificial intelligence, embedded
systems, high-performance compute, and IC design.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received ten Best Paper Awards from
IEEE TSM 2022, DATE 2022, ICCAD 2021 and
2013, ASPDAC 2021 and 2012, ICTAI 2019,
Integration, the VLSI Journal in 2018, ISPD 2017,
SPIE Advanced Lithography Conference 2016, and

six ICCAD/ISPD Contest Awards. He has served as a TPC Chair for
ACM/IEEE Workshop on Machine Learning for CAD, and in many journal
editorial boards and conference committees. He is the Editor of IEEE TCCPS
Newsletter.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2024 at 03:07:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

