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High-quality passive devices are becoming increasingly important for the development of mobile devices

and telecommunications, but obtaining such devices through simulation and analysis of electromagnetic

(EM) behavior is time-consuming. To address this challenge, artificial neural network (ANN) models have

emerged as an effective tool for modeling EM behavior, with NeuroTF being a representative example. How-

ever, these models are limited by the specific form of the transfer function, leading to discontinuity issues

and high sensitivities. Moreover, previous methods have overlooked the physical relationship between dis-

tributed parameters, resulting in unacceptable numeric errors in the conversion results. To overcome these

limitations, we propose two different neural network architectures: DeepOTF and ComplexTF. DeepOTF is a

data-driven deep operator network for automatically learning feasible transfer functions for different geomet-

ric parameters. ComplexTF utilizes complex-valued neural networks to fit feasible transfer functions for dif-

ferent geometric parameters in the complex domain while maintaining causality and passivity. Our approach

also employs an Equations-constraint Learning scheme to ensure the strict consistency of predictions and a

dynamic weighting strategy to balance optimization objectives. The experimental results demonstrate that

our framework shows superior performance than baseline methods, achieving up to 1, 700× higher accuracy.

CCS Concepts: • Hardware→Modeling and parameter extraction;

Additional Key Words and Phrases: Passive Devices, Electromagnetic Behavior, Deep operator network

ACM Reference Format:

Peng Xu, Siyuan XU, Tinghuan Chen, Guojin Chen, Tsungyi Ho, and Bei Yu. 2024. DeepOTF: Learning

Equations-constrained Prediction for Electromagnetic Behavior. ACM Trans. Des. Autom. Electron. Syst. 29,

5, Article 80 (September 2024), 22 pages. https://doi.org/10.1145/3663476

Authors’ Contact Information: Peng Xu, Department of Computer Science and Engineering, The Chinese University of

Hong Kong, Hong Kong, China; e-mail: 1155187705@link.cuhk.edu.hk; Siyuan XU, Huawei Technologies Noah’s Ark Lab

Hong Kong, Hong Kong, Hong Kong; e-mail: xusiyuan520@huawei.com; Tinghuan Chen, The Chinese University of Hong

Kong - Shenzhen, Shenzhen, Guangdong, China; e-mail: thchen@cse.cuhk.edu.hk; Guojin Chen, The Chinese University

of Hong Kong, Hong Kong, Hong Kong; e-mail: gjchen21@cse.cuhk.edu.hk; Tsungyi Ho, The Chinese University of Hong

Kong, Hong Kong, Hong Kong; e-mail: tyho@cse.cuhk.edu.hk; Bei Yu (Corresponding author), The Chinese University of

Hong Kong, Hong Kong, Hong Kong; e-mail: byu@cse.cuhk.edu.hk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 1084-4309/2024/09-ART80

https://doi.org/10.1145/3663476

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 80. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0001-5756-3494
HTTPS://ORCID.ORG/0000-0001-6239-6774
HTTPS://ORCID.ORG/0000-0002-9195-6619
HTTPS://ORCID.ORG/0000-0001-9457-9583
HTTPS://ORCID.ORG/0000-0001-7348-5625
HTTPS://ORCID.ORG/0000-0001-6406-4810
https://doi.org/10.1145/3663476
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3663476
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663476&domain=pdf&date_stamp=2024-09-04


80:2 P. Xu et al.

1 Introduction

High-quality passive devices are becoming increasingly important for the development of mobile

devices and telecommunications [1, 2]. Typically, passive devices include various antennas, circula-

tors, isolators, and inductors (Figure 1) [3–6]. These devices offer functions such as electromagnetic

radiation, directional wave propagation, and radio frequency (RF) signal processing. Thus, the

fundamental functions of RF devices arise from the strong coupling of magnetization dynamics

to electromagnetic fields. Therefore, understanding the role of electromagnetic behavior in these

passive devices is crucial for enhancing device design and improving performance.

Simulation and analysis of electromagnetic (EM) behavior are crucial for obtaining high-

quality passive devices, but those processes are also very time-consuming [7, 8]. In traditional

design flow, a passive device is designed with its physical, geometrical, and electrical parameters.

Then, simulation and analysis are used to obtain its distributed parameters (scattering parameter

S, impedance parameter Z, and admittance parameter Y), impacting transmission and reflection of

the electromagnetic waves. If the design specification of its distributed parameters is not satisfied,

then the designer will return to the previous step to tune its geometrical and electrical parameters.

The passive component design heavily relies on the engineer’s experience and theoretical analysis.

However, analyzing circuit behavior with distributed parameters is very sophisticated due to many

mutual couplings, enclosures, and effects from other adjacent components on the same substrate.

Such circuits are simulated and analyzed using specialized software packages and analyzers, i.e.,

EM simulation and analysis [9, 10]. However, both EM simulation and EM analysis are very ex-

pensive and time-consuming. Moreover, many design iterations are required to guarantee quality

and performance, which seriously affects product development efficiency and the time to market.

An effective tool for parametric modeling of EM behaviors in the microwave area has been rec-

ognized as the artificial neural network (ANN) [11–13]. EM design optimization can be costly,

because it usually requires repeated EM simulations due to changes in the geometrical parame-

ter values. As it can learn the relationship between EM behaviors and geometrical parameters,

the ANNs can quickly and accurately anticipate the EM behavior of microwave components after

training. The developed parametric model can then be integrated into the high-level circuit and

system design.

To improve the ANNs’ capacity for learning and generalization, the Neuro-Transfer function

(Neuro-TF) approaches [14–16] combine neural networks and transfer functions. In this method,

transfer functions describe the passive devices’ EM responses as a function of frequency. However,

limited by the specific forms of the transfer functions, those methods are faced with dramatic degra-

dation of performance caused by the discontinuity issues [14] and the high sensitivities problems

[15, 16] when geometrical parameters vary.

A more serious issue of existing methods is that the predicted results are inconsistent with the

known conversion equations between distributed parameters. ANN models are developed in these

works to predict one of the distributed parameters. In practice, the simulation results of distributed

parameters must be verified whether they satisfy the design specifications. However, a significant

error in conversion results is usually brought when the predicted parameter locates in a sensitive

region to the calculated parameter. Although the predictor can achieve reasonably good accuracy

for the EM behavior, the transferred prediction has significant errors, which is unacceptable. This

is because the conversion equations among distributed parameters are not considered. DeepOTF

further extends these physical relationships between predictions, allowing consistent predictions

of different distributed parameters.

This work proposes a novel EM behavior learning framework, a deep operator network for learn-

ing the transfer function with equation constraints, to achieve accurate and consistent modeling
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Fig. 1. The structures of different types of inductors with definitions of their geometric parameters: (a) single-

ended inductors; (b) differential inductors.

of EM behavior. Specifically, we first design a customized deep operator network for EM predic-

tion, which can identify the suitable transfer function for different data. Then, a novel equations-

constraint learning scheme is developed to enforce a strict restriction on distributed parameter

predictions. Finally, we introduce a dynamical weighting strategy via uncertainty to tackle the

potential tradeoffs.

Our major contributions are summarized as follows:

— To overcome these limitations of existing NeuroTF methods, we propose two different neural

network architectures: DeepOTF and ComplexTF. DeepOTF is a customized deep operator

network for automatically learning feasible transfer functions from data. ComplexTF utilizes

complex-valued neural networks to fit feasible transfer functions for different geometric

parameters in the complex domain while maintaining causality and passivity.

— We have developed an equations-constraint learning scheme for learning predictions for EM

behavior. The proposed scheme can guarantee consistency between predictions of different

distribution parameters by incorporating the conversion equations among them into the

learning process.

— We further propose a dynamic weighting method to solve the potential conflict problem of

different objectives in the equations-constraint learning process.

— Experimental results show our framework’s effectiveness compared with baseline

methods.

2 Preliminaries

This section provides the formulation of the equations-constrained prediction for EM behavior

problem (Section 2.1), followed by an overview of NeuroTF methods for modeling EM behavior

(Section 2.2) and deep operators learning (Section 2.3).

2.1 Problem Formulation

The objective is to accurately estimate distributed parameters by satisfying the physics laws

among them. In electromagnetics, typically distributed parameters contain scattering parameter

S, impedance parameter Z, and admittance parameter Y. They impact the transmission and reflec-

tion of EM waves in the RFIC. Without loss of generality, we use the typical RF circuit component,

inductors, in the experiments of this article.
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Table 1. Comparison between Different NeuroTF Methods

NeuralTF Methods Function Format Characteristics

Rational-based [14]
∑N

i=1
ri (x ,wr )

s−pi (x ,wp)
High sensitivities of the coefficients due to its high-order format.

Pole-residue-based [15]
∑N

i=1 ai (x ,wa )s
i−1

1+
∑N

i=1 bi (x ,wb )s i
Discontinuity and non-smoothness issues due to its pole-residue format.

Hybrid-based [16]
∑N1

i=1
ri (x ,wr )

s−pi (x ,wp)
+

∑N2
i=1 ai (x ,wa )s

i−1

1+
∑N2

i=1 bi (x ,wb )s i
Restriction of the specific function format

Formally, the three distributed parameters are defined as follows:

Definition 1 (Scattering Parameter (S-parameter)). The response of a network to signal(s) incident

to any or all of the ports.

Definition 2 (Admittance Parameter (Y-parameter)). The incoming and outgoing voltages and

currents of a network.

Definition 3 (Impedance Parameter (Z-parameter)). The linear characteristics of RF electronic

circuits and components.

The S-parameters depict the characteristics of incidence and reflection, which are typically the

primary focus. In the case of inductor devices, we are also interested in the Z-parameters.

Problem 1 (Eqations-constrained Prediction for EM Behavior). Given a passive com-

ponent’s physical, geometrical, and electrical parameters, predict its S-parameter, Y-parameter, and

Z-parameter with satisfying explicit equations.

Specifically, we can consider using an ANN fθ to predict the corresponding distributed param-

eters S-parameter, Y-parameter, and Z-parameter:

ŷS , ŷY , ŷZ = fθ (x), (1)

where θ is the parameters of the ANN.

Based on the predicted parameters (ŷS , ŷY , ŷZ ) and equations between the distributed parame-

ters, we can calculate the corresponding equation conversion values using the conversion formulas

between them for each predicted item. While the predictor can achieve reasonable accuracy for

each distributed parameter, the conversion results derived by the formulations conversion function

have significant numerical errors. We refer to this issue as consistency error.

Definition 4 (Consistency Error). The error is derived from the conversion results of the predicted

distributed parameters to each other.

2.2 NeuroTF Methods for Modeling Electromagnetic Behavior

To improve the ANNs’ capacity for learning and generalization, the NeuroTF approaches (Table 1)

[14–16] combine neural networks and transfer functions, as shown in Figure 2. In this method,

transfer functions describe the passive components’ EM responses as a function of frequency. How-

ever, the coefficients of transfer functions experience discontinuity issues when faced with large

geometric variations.

The rational-based NeuroTF [14] develops a training method for the rational transfer function to

create NeuroTF models in the frequency domain. The training method in Reference [14] provides a

solution to the discontinuity of coefficients in transfer functions over geometrical variables for the

rational transfer function. However, the model’s precision and robustness are constrained by the

high sensitivities of the coefficients of the rational transfer function w.r.t. geometrical parameters

due to its high-order format.
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Fig. 2. The overview of previous NeuroTF methods.

With the help of the order-changing technique, the pole-residue-based NeuroTF [15] develops

a combined neural network and pole-residue-based transfer function model. An alternative pole-

residue method to the rational transfer function was provided in Reference [17]. Nevertheless, the

training method to address the discontinuity issues in Reference [14] cannot directly apply to the

pole-residue-based transfer functions. Thus, to address this issue, the pole-residue-based NeuroTF

[15] proposes an order-changing technique, which allows the pole-residue-based method to take

different orders in regions with different variations of geometric parameters.

To combine the advantages of the rational-based transfer function and pole-residue-based trans-

fer function, Reference [16] proposes a hybrid-based NeuroTF with a hybrid-based transfer func-

tion. It starts with the pole-residue-based transfer function and automatically separates the smooth

and continuous poles/residues from the poles/residues with discontinuity and non-smoothness is-

sues. Then, the poles/residues that have those issues are converted into the coefficients of the

rational-based transfer function to resolve the discontinuity and non-smoothness issues.

Even though hybrid-based NeuroTF combines rational-based and pole-residue-based methods, it

is not exceptionally limited by the specific forms of transfer functions. In addition, the computation

of transfer functions is time-consuming, which is also the bottleneck when training the NeuroTF

models. Therefore, to address the existing issues of NeuroTF, we propose a novel operator network

that allows us to learn transfer functions for different geometrical parameters implicitly.

2.3 Deep Operators Learning

Neural operator learning has emerged as a powerful tool for learning maps between inputs of a

dynamic system and its state. This line of work extends the use of Neural Networks as surrogate

models for a solution operator for various dynamic systems. Representative research works in this

direction include the DeepONet architecture [18] and the integral neural operator architectures

[19–21].

The generalizability to different input instances is one of the most notable advantages of neural

operators. Once the neural operator is trained, solving for a new instance of the input parame-

ter requires only a forward pass, thus different from traditional ANNs that only approximate the

solution for a single instance.

An earlier effort in this field is DeepONet [18]. The main idea is to create a two-branches neural

network, one for learning the underlying function mapping through the sampled point from given

functions and the other for taking various instances as input and returning the weight scalar

vector of basis functions. Although DeepONet was originally proposed for modeling dynamic

systems described by partial differential equations in the time domain, the introduced neural
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Fig. 3. The overview of our proposed DeepOTF framework.

operator structure has demonstrated advantages and potential applications in linear dynamic

systems modeling [22].

Neural operators provide an alternative framework for operator learning [19–21]. Typical neural

operators compose multiple hidden layers, with each hidden layer composing an affine operator

with a scalar nonlinear activation operator [20, 21]. More recently, Reference [19] proposed to use

convolution-based integral kernels in Fourier space to address the drawback of existing operators

that require using integral kernels within the neural operators. This approach results in significant

performance accelerations when solving the unknown partial differential equation system.

Motivation. When designing a predictor for EM simulation, it is crucial to consider the unique

properties of EM behavior prediction. Specifically, there are two important aspects to take into

account: (1) The distributed parameters corresponding to different frequencies, for the same geo-

metric parameters, should originate from the same mapping function. (2) Different geometric pa-

rameters should correspond to distinct mapping functions. Unfortunately, simple ANN predictors

often overlook these properties, leading to subpar generalization performance. However, Deep-

ONET offers significant advantages in this regard. DeepONET naturally aligns the frequency in

the frequency domain with the location part of the input. Moreover, the use of a branch net enables

the generation of different transfer functions for different size parameters, ensuring that the same

geometric parameters map to the same mapping function.

3 Algorithms

This section presents the proposed DeepOTF framework flow and details the algorithms. Figure 3

and Figure 5(a) show the overall flow of our modeling framework. Our modeling differs from

the existing NeuroTF methods that rely on the fixed format of transfer functions. Instead, we

design a customized deep operator network for EM prediction and enforce constraints among the

predictions.

The whole framework can be summarized with three major components:

— DeepOTF and ComplexTF models for learning transfer functions: The existing Neu-

roTF methods are limited by the specific form of the transfer function with discontinu-

ity issues or high sensitivities issues. In DeepOTF, we propose to learn a neuro operator

that produces the desired transfer functions for different data. In ComplexTF, we utilize

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 80. Publication date: September 2024.
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Fig. 4. The network structure of our proposed DeepOTF predictor.

complex-valued neural networks to fit feasible transfer functions for different geometric pa-

rameters in the complex domain while maintaining causality and passivity.

— Equations Constrained Learning Scheme (ECL): The existing prediction methods pur-

sue each distributed parameter’s accuracy and bring about large consistency errors. In

DeepOTF, we further develop an equations-constrained learning scheme to address the issue.

— Dynamic Weighting Strategy: To balance the potential tradeoff in ECL scheme, we adopt

a dynamic weighting strategy considering the uncertainty during optimization.

In the remainder of this section, we first introduce the design of our DeepOTF predictor in

Section 3.1, our ComplexTF predictor in Section 3.2, and then establish the ECL learning scheme

in Section 3.3 and provide a dynamic weight strategy in Section 3.3.2.

3.1 DeepOTF: Data-driven Operator Learning for Identifying Neuro-transfer

Functions

Existing NeuroTF methods are limited by the specific form of the transfer function, resulting in

discontinuity issues or high sensitivities [14, 15]. Thus, we need to identify the appropriate transfer

function for specific data, which is often task-independent. A different approach is to learn an

operator that produces the desired transfer functions for different data.

Regarding the unique properties of prediction for EM behavior, designing a predictor for EM

simulation should take two aspects into account: (1) For the same geometric parameters, the dis-

tributed parameters corresponding to different frequencies come from the same mapping function;

(2) for different geometric parameters, they correspond to a different mapping function. Simple

ANNs predictors ignore these two properties, leading to poor generalization performance. Al-

though the NeuroTF method satisfies these two properties by introducing transfer functions, it

is limited by the specific form of the transfer function.

Inspired by DeepONet [18], we propose a customized deep operator network architecture that

targets implicitly learning the transfer functions for different geometric parameters, namely, func-

tional deep operator neuro-transfer functions (DeepOTF). Our proposed DeepOTF follows

an asymmetrical network architecture with a branch and trunk network, as shown in the Figure 4.

In a general setting, the inputs, i.e., x , of our proposed network consist of two separate com-

ponents: [xд ,xe ] and τ , where xд and xe are geometric features of the input vector x , and

τ is the input frequency vector. The branch network takes [xд ,xe ] as the input and outputs

b = [b1,b2, . . . ,bk ] ∈ R
p , where p is the dimension of prediction. The trunk network takes fre-

quency vector τ as the input and outputs a vector t = [t1, t2, . . . , tk ] ∈ R
p . In the last stage, we

may add a bias b0 ∈ R.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 80. Publication date: September 2024.
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In the DeepOTF framework, we utilize the first layer of the branch network as the function

encoding layer. Our objective is to learn the operator from the input function using the optimal

transfer function. This approach can be seen as a specific instance of operator learning. We have the

first layer of the branch and a default function encoding layer denoted asuθ 1 . The input function in

this case is uθ 1(xд ,xe ). However, since the optimal transfer function is unknown, we aim to solve

this problem using an end-to-end approach. Through experimental analysis, we have validated the

performance advantage of this architecture in EM parameter learning.

We merge them to approximate the desired mapping functions for different geometric

parameters:

G(u(xд,xe ))(τ ) ≈ b · t + b0, (2)

where G is an operator taking the output of the inner function u that take geometric features

[xд ,xe ] as input, and then outputs G(u(xд,xe )), w.r.t. τ , as the corresponding implicit transfer

functions. For any specific frequency τ in the domain ofG(u(xд,xe ))(τ ), the outputG(u(xд,xe ))(τ )
will give prediction of the corresponding distributed parameter. Due to the multiplication of

outputs from two differentiable network modules, the continuity of the transfer functions can

naturally be ensured.

The Universal Approximation Theorem for Operator from Reference [18] shows that the

DeepOTF structure can effectively identify the appropriate transfer function from data by fitting

the appropriate transfer function from data. This approximation theorem indicates the potential

application of neural networks to learn nonlinear operators from data. We can learn a functions

producer here, similar to learning functions from data.

The next step is to demonstrate that both the set of rational-based and pole-residue-based trans-

fer functions are proper subsets of the function space that our proposed DeepOTF can express. By

establishing this, we can confidently assert that DeepOTF surpasses traditional methods that rely

on predetermined transfer function forms. This is because DeepOTF can automatically learn the

most suitable transfer function format from its function space.

To prove that DeepOTF possesses greater expressive power than the fixed-form NeuroTF

method, it suffices to demonstrate that DeepOTF can represent both the rational-based and pole-

residue-based formats of transfer functions are the proper subsets of the DeepOTF function set

G(u). We present the following proposition to clarify the expressive power of DeepOTF in com-

parison to the fixed-form NeuroTF method:

Proposition 1. Let σ be a continuous non-polynomial function, x be a Banach Space, K1 ⊂ X ,

K2 ⊂ R
d , V be a compact set in C(K1), and G be a nonlinear continuous operator mapping V into

C(K2). Note that the function set of DeepOTF G(u) is defined on C(K2). Both the set of continuous

functions with rational-based transfer functions, denoted as FR , and the set of continuous functions

with pole-residue-based transfer functions, denoted as FP , are proper subsets of C(K2).

Proof. To begin, it should be noted that both continuous functions derived from rational-based

transfer functions, denoted as fr ∈ FR , and continuous functions derived from pole-residue-based

transfer functions, denoted as fp ∈ FP , belong to the set C(K2).

Formally,

fr ∈ FR , fp ∈ FP =⇒ fr , fp ∈ C(K2). (3)

Next, we aim to demonstrate the existence of functions fo ∈ C(K2) that do not belong to either

FR or FP . Consider the function fo(x) = e1/(x−c), where c is a constant parameter. This function is

not in FP , since it is not a ratio of two polynomial functions, and it is not in FR , since it is not the

summation of ratios of poles and residues.

Consequently, we have established the existence of functions that lie outside the sets FR and

FP , thus completing the proof. �
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With the help of neural operators, our proposed DeepOTF implements implicit transfer func-

tion learning and automatically approximates different transfer functions for different geometric

parameters. Thus, our proposed method omits the discontinuity issues and high sensitivities prob-

lems. In addition, due to the elimination of the complex computation of transfer function, our

proposed DeepOTF also has further improved running speed than NeuroTF.

3.2 ComplexTF: Complex-valued Neuro-transfer Method with Causality and Passivity

When predicting the EM parameters of the device’s electromagnetic behavior, two key issues need

to be considered. First, the EM parameters are represented in complex form. However, most of

the previous methods and architectures were based on real-valued operations and representations.

Therefore, we have designed a series of elementary complex activation functions and layers to

assemble a Complex Feedforward Neural Network (CFNN) in Section 3.2.1. Second, previous

NN-based techniques have primarily focused on numerically matching S-parameters, neglecting

the underlying physical phenomena and lacking physical consistency (causality and passivity).

Consequently, these techniques are unsuitable for broader applicability. Therefore, in this article,

we utilize the passivity enforcement layer (PEL) in Section 3.2.3 to learn a physically meaning-

ful representation between input parameters and S-parameters.

3.2.1 Complex Feedforward Neural Networks. The CFNNs involve complex numbers, where a

complex number z = a + ib consists of a real component denoted as �(z) = a and an imaginary

component denoted as �(z) = b.

To perform the equivalent of a traditional real-valued linear layer in the complex domain, we

multiply a complex matrix W = A + iB by a complex vector h = x + iy where A and B are real

matrices andx andy are real vectors, since we are simulating complex arithmetic using real-valued

entities.

CLinear (h) =Wh = (Ax − By) + i(Bx +Ay).

If we utilize matrix notation to represent the real and imaginary components of the complex-valued

linear operation, then we can express it as follows:

CLinear (h) =

[
�(Wh)
�(Wh)

]
=

[
A −B
B A

] [
x
y

]
.

The activation function used is the complex rectified linear unit (CReLU) defined as follows:

CReLU (z) = ReLU(�(z)) + i ReLU(�(z)). (4)

As depicted in Figure 5(b), we construct the CFNN sequentially as:

CFNN : CLinear ◦ CReLU ◦ (CLinear ◦ CReLU ) × N . . . ◦ CLinear ,

where ×N indicates that there are N hidden blocks consisting of a complex linear layer followed

by a CReLU.

3.2.2 Complex Neuro-transfer Method. With the assistance of CFNN, we can naturally derive

the Neuro-transfer Function method in the complex domain. In this method, let y represent the

model’s output. x represents the inputs of the model, i.e., the geometrical parameters. P denotes

a mapping function between inputs and the output vector containing all the transfer function

parameters (e.g., poles/residues).

We use the complex feedforward neural networks (CFNN with weights Θ) as the mapping func-

tion between inputs x and transfer function parameters P:

y(x ,w, s) = H (p, s) = H (CFNN (x ,Θ), s), (5)
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Fig. 5. (a) The overview of our proposed ComplexTF framework; (b)The network structure of our proposed

ComplexTF predictor.

where H (p, s) represents the transfer function and s represents the frequency in the Laplace

domain.

In traditional NeuroTF methods, the complex-valued nature of the output’s EM parameters is

often not taken into account [15]. Instead, a simple approach of separating the real and imaginary

parts is used to fit and learn with a real-valued neural network as in References [14–16]. However,

neglecting the complex nature of the EM parameters in this fitting process may lead to two issues:

First, the optimal mapping function may exist in the complex domain, and second, accuracy errors

caused by disregarding geometric properties are overlooked.

By introducing complex-valued neural networks, the first issue can be naturally addressed, al-

lowing us to identify an appropriate mapping function in the complex-valued functions space. As

for the consideration of the second geometric information, we will introduce a complex-specific

geometric loss function in Section 3.2.4 to tackle this problem.

3.2.3 Causality and Passivity Enforcement. For causality enforcement, if complex poles appear

in the form of complex conjugate pairs in the left half-plane of the complex plane, then the model

naturally satisfies causality and stability. For example, we can fix the real part of these poles to be

negative. Since complex conjugate pairs have the same real part, it ensures that the pole pairs are

located in the left half of the complex plane.

Specifically, here, we choose to model the transfer function using the Pole-Residue form, assum-

ing S-parameters without loss of generality. Therefore, we have the following equation:

SCEL(f ,Θ) =
∑

k

Rk (Θ)

jω − pk (Θ)
+ D(Θ). (6)

In modeling the real part of the poles, we employ the following treatment at the output of the

neural network:

�(pk ) = −e
ax , (7)

where a = 0.01. This treatment ensures that the poles are located in the left half-plane of the

complex plane while effectively mitigating the issue of the excessively large dynamic range of the

pole’s real part.

For passivity enforcement, the S-parameters output at frequency point f are denoted as S(f ) in

Neuro-TF methods. The passivity condition for S-parameters is that the maximum singular value

of S(f ) should not exceed 1. Therefore, we can satisfy this condition by introducing a passivity

correction module, which is a frequency-dependent filter that ensures the maximum singular value

of the output S-parameters does not exceed 1.

We utilize the frequency-dependent passivity enforcement operation in Reference [23] as filter-

ing in the frequency domain, which is written as:

SPEL(f ) = SCEL(f ,Θ) 
 F (f ), (8)
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where the complex-valued passivity enforcement filter, denoted as F (f ), is applied to each data

point along the frequency. To inflict minimal changes to SCEL(f ), the desired magnitude spectrum

of Σ(f ) at each data point is expressed as:

|Σ(f )| =

{
1

σ̂max (f )
, for σ̂max (f ) > 1

1, for σ̂max (f ) ≤ 1.
(9)

There are two approaches to calculating the maximum singular value of the S matrix σ̂max (f ).
One approach is to directly compute the singular values using the SVD function. However, the

drawback is that it has low computational efficiency. Another approach is to estimate the maximum

singular value of the S matrix using its trace, as referenced in Reference [24]:

∂ =

√√√
c

n
+

√
n − 1

n

(
d −

c2

n

)
, (10)

where n is the number of ports, c and d are the trace estimation:

c = tr
(
SHS

)
= σ 2

1 + . . . + σ
2
n ,

d = tr

((
SHS

)H (
SHS

))
= σ 4

1 + . . . + σ
4
n .

(11)

Previous studies have demonstrated that it is possible to construct a minimum-phase passiv-

ity enforcement filter based solely on the magnitude spectrum of a minimum-phase frequency re-

sponse [23, 25], which can be interpreted as the frequency response of a causal system. A minimum-

phase passivity enforcement filter is formulated using the desired magnitude spectrum as:

Σ(f ) = |Σ(f )|e jθ (f ),

θ (f ) =H {log |Σ(f )|},
(12)

where log(·) is the natural logarithm operator and the Hilbert transform H {·} is taken using the

FFT-based approach.

3.2.4 Geometrical Loss Function for Complex Numbers. In traditional Neuro-TF methods, the

output S-parameters are often represented using a separated matrix representation due to the

absence of neural networks that can handle complex numbers. When designing the loss function,

fitting is typically performed separately for the real and imaginary parts, neglecting the geometric

properties of complex numbers.

Therefore, we propose a loss function that leverages the properties of complex numbers, specif-

ically combining the squared error functions of both the magnitude and the angle of the complex

numbers. Specifically, In complex analysis, the complex numbers are customarily represented by

the symbol z, which can be separated into its real (x) and imaginary (y) parts:

z = x + iy.

In this customary notation, the complex number z corresponds to the point (x ,y) in the Cartesian

plane. In the Cartesian plane the point (x ,y) can also be represented in polar coordinates as:

(x ,y) = (r cosθ , r sinθ ) → (r ,θ ) =
(√

x2 + y2, arctan
y

x

)
. (13)
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Fig. 6. A comparison of different loss functions for complex numbers: (a) Loss function for separate repre-

sentation; (b) Loss function for geometric representation.

Based on the definitions of angle and magnitude, we have a geometric loss function for EM

Parameters as follows:

Lдeo(y, ŷ) =
1

N

N∑
i=1

‖ |yi | − |ŷi |‖2 + ‖arg(yi ) − arg(ŷi )‖2 , (14)

where N is number of Port for EM parameters, | · | is the mod function, and arg(·) is the angle for

complex numbers. By minimizing this loss function, we can effectively fit complex-valued predic-

tions and targets while maintaining its geometrical meanings and obtain more accurate results. We

visualize the loss functions for separate representation and geometrical representation, as shown

in Figure 6. The loss function for geometrical representation aims to preserve the phase and mag-

nitude of the predicted EM parameters as much as possible, resulting in lower errors during the

testing phase in practice.

3.3 ECL: Equations-constrained Learning Scheme with Dynamic Weighting Strategy

In this work, we attempt to address the consistency error problem in the EM simulation from a new

perspective. It is easy to see that the ultimate goal of EM prediction is to make accurate and consis-

tent predictions to estimate the simulation behavior—however, blindly pursuing the accuracy of

a single prediction of each distributed parameter is not feasible if thinking about the consistency

error. Towards this, learning the optimal predictor while maintaining consistency is vital to the pre-

diction of EM behavior. While reducing the consistency error does increase training time, it also

enhances the consistency of the output results, making them follow the physical characteristics.

However, the existing soft-constraint approaches are not a cure, so we propose an equations-

constrained learning scheme to solve this issue. While regularization and other soft-constrained

methods, such as shared representation like multi-task learning [26], could alleviate consistency

errors, those methods fall short of maintaining consistency among predictions.

As for solving consistency issues, our proposed equations-constrained scheme enforces hard

constraints among the predictions of distributed parameters, as shown in the Figure 8. The core

idea is that we incorporate prior transformation equations among distributed parameters into the

model’s output. We derive the prediction of Y-parameter and Z-parameter from the basic predic-

tion, i.e., S-Parameter. Therefore, we eliminate the inconsistency between different prediction dis-

tributed parameters. The error between target distributed parameters will be reduced to the error

of basic prediction. Moreover, the most important advantage of our ECL scheme is that our predic-

tions are fully consistent for the equations conversion. Since it secures the full consistency among

predictions, it is more meaningful for modeling EM behavior compared with previous methods.
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We implement equation-conversion modules in our approach, denoted as Heq . We exploit

the pre-existing conversion formulas between distributed parameters. These equation-conversion

modules contain forward and backward functions, enabling them to be easily inserted into exist-

ing neural network predictors. The equation-conversion modules allow us to build predictions for

other distributed parameters using the S parameters as the base prediction. It is also possible to

use Y-parameter or Z-parameter as the base prediction, but we found in our empirical experiments

that the S parameter performs better than others.

Concretely, we can consider using an parametric model fθ with network parametersθ to predict

the base distributed parameter S-parameter:

ŷS = fθ (x), (15)

where x is the input feature vector, which consists of τ as input frequency vector, and [xд ,xe ] as

the geometric features.

Subsequently, we obtain the Y-parameter and Z-parameter conversion results through the

equation-conversion modules and define them as the predicted values of the Y-parameter and

Z-parameter.

ŷY � ŷY←S , ŷY←S = HS→Y (ŷS ),

ŷZ � ŷZ←S , ŷZ←S = HS→Z (ŷS ),
(16)

where HS→Y is the equation-conversion module transforming S-parameter to Y-parameter, and

HS→Z is the equation-conversion module transforming S-parameter to Z-parameter. The trans-

former module HS→Y , which converts from S-Parameter to Y-Parameter, can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y11 = Y0
(1−S11)(1+S22)+S12S21

(1+S11)(1+S22)−S12S21
,

Y12 = Y0
−2S12

(1+S11)(1+S22)−S12S21
,

Y21 = Y0
−2S21

(1+S11)(1+S22)−S12S21
,

Y22 = Y0
(1+S11)(1−S22)+S12S21

(1+S11)(1+S22)−S12S21
,

where Y0 =
1

Z0
and Z0 = 50. Similarly, the transformer module HS→Z , which converts the S-

Parameter to Z-Parameter, can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z11 = Z0
(1+S11)(1−S22)+S12S21

(1−S11)(1−S22)−S12S21
,

Z12 = Z0
2S12

(1−S11)(1−S22)−S12S21
,

Z21 = Z0
2S21

(1−S11)(1−S22)−S12S21
,

Z22 = Z0
(1−S11)(1+S22)+S12S21

(1−S11)(1−S22)−S12S21
,

where Z0 = 50.

Our goal is to obtain the network fθ that predicts the base distributed parameter, i.e., S-

parameter, with high accuracy while minimizing the error of other distributed parameters derived

from the predicted parameters by the equations beforehand, which can be described as follows:

min
θ

L = | |yS − ŷS | |2 + | |yY − ŷY←S | |2 + | |yZ − ŷZ←S | |2, (17)

where yS , yY , yZ are target values of S-Parameter, Y-Parameter, Z-parameter, respectively.

Optimizing the equations-constraint loss can result in an equations-constrained learning pro-

cess. With the aid of equation-conversion modules, this learning approach enforces the constraint

among distributed parameters and thus obtains accurate and consistent predictions, as shown in

Figure 7.
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Fig. 7. A comparison illustration of predicted magnitude for different methods: (a) ANN/NeuroTF methods;

(b) MTL methods; (c) Our method.

Fig. 8. The overview of our proposed ECL scheme.

3.3.1 Gradients Extraction Process. To perform gradient-based optimization, we need to calcu-

late the gradients of the Equation-contrained Loss function L, as defined in Equation (17), w.r.t.

predicted parameters. We use the chain rule to compute the gradients, which have three consecu-

tive parts as follows:
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(1) Compute gradient w.r.t. the derived parameter ŷY and ŷZ : ∇ŷY
L and ∇ŷZ

L;

(2) Extract gradients ∇ŷY
L and ∇ŷZ

L through the equation transformation module HS→Y (ŷS )

and HS→Z (ŷZ ) to obtain the gradient w.r.t. the basis prediction ∇ŷS
L;

(3) Back-propagate ∇ŷS
L through the DeepOTF/ComplexTF modelGθ (·) to obtain the gradient

w.r.t. weights Θ: ∇ΘL.

3.3.2 Dynamic Weighting Strategy. In ECL, we have introduced auxiliary tasks to decrease

consistency errors among predictions. However, as informed by the multi-task learning research

[27, 28], improving a model’s performance may negatively affect performance on a different task

with different requirements without adjustment. A suitable loss function must be established to

balance the preference between tasks in Equation (17).

The basic method of balancing the multi-objective losses is a weighted linear sum of the losses

for each separate task:

Ltotal =
∑

i

ωiLtotal. (18)

However, we adopt the dynamic weighting technique in Reference [26] by considering the un-

certainty of each task. Specifically, our objective function has the following form:

min
θ

L = L1 + L2 + L3, where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L1 = | |yS − ŷS | |2

L2 = | |yY − ŷY←S | |2

L3 = | |yZ − ŷZ←S | |2

. (19)

After introducing additional noise parameter σ = σ1,σ2,σ3 to capture how much noise we have

in the outputs, we then have the following minimization objective for our multi-output model after

applying maximum likelihood inference:

min
θ,σ

1

2σ 2
1

L1
θ +

1

2σ 2
2

L2
θ +

1

2σ 2
3

L3
θ + logσ1σ2σ3. (20)

The minimization of the loss terms w.r.t. σ is to dynamically weigh the loss term L1, L2, and L3.

If a specific noise parameter increases, then the weight of the corresponding loss term decreases.

Thus, we can apply a dynamic weighting strategy according to each task’s uncertainty, i.e., the

noise parameter.

4 Experimental Results

We evaluate the performance and properties of the proposed method to answer the following

research questions:

(1) How do the proposed ComplexTF and DeepOTF methods perform compared to the classical

baseline methods (Section 4.2)?

(2) How does the training speed of DeepOTF compared to the baseline methods (Section 4.3)?

(3) How does the ECL scheme affect other methods (Section 4.4)?

(4) How well does the Dynamic Loss Weighting technique boost the final performance

(Section 4.5)?

4.1 Experimental Setup

Enviroment. We implement all experiments based on Python (version 3.9.13) and PyTorch(1.12.1)

on a Linux Server with 48 Intel Xeon Silver 4212 cores (2.20 GHz), 1 GeForce RTX 2080 Ti GPU,

and a 32 GB main memory.
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Table 2. The Statistics of Datasets

Case

1 2 3 4 5 6

Dimensions L (mm) 6 6 6 6 10 16

Dimensions W (mm) 3 3 3 3 5 8

Material Code HQ HW TG TN HQ HQ

Inductance (nH) [0.3,39] [0.3,18] [0.3,39] [0.6,22] [0.3,150] [1,470]

Tolerance (%) [3, 10] [3, 10] [3, 10] [3, 10] [3, 10] [3, 10]

Datasets. Due to significant differences in electronic parameters and geometrical parameters, we

restrict our research scope to the prediction of inductors. Inductors are a classic passive two-

terminal electrical component of RF circuits and have a wide range of applications. We conduct

our experiments on six dataset cases with different dimensions and materials. Table 2 shows all of

the geometric parameters and highlights their main characteristics, including the dimensions, the

material codes, inductance, and tolerance.

These datasets contain the analysis results of high-frequency chip ceramic inductors with dif-

ferent geometrical and electrical parameters. The sizes of dataset cases are 31,800, 29,401, 32,401,

32,401, 27,001, and 19,801, respectively. All analysis results are measured with the same commer-

cial standard RF impedance material analyzer, where the measured frequency ranges from 10 MHz

to 10 GHz.

Methods. We compare our DeepOTF with the following strong baselines: (1) Single MLP Predic-

tor (MLP) [29]; (2) Multi-task Learning with Uncertainty (MTL) [26], and (3) NeuroTF Model

with Pole-Residue-Based transfer functions (NeuroTF) [15]. Among all baselines, MLP [29]

uses a single Multi-Layer Perceptron as the plain predictor, which takes feature vectors, including

geometrical and frequency, as input and outputs the predicted value of each distributed param-

eter. The pole-residue-based NeuroTF approach [15] is one of the popular NeuroTF approaches

that adopts the pole-residue-based technique to address the discontinuity problem. The Multi-

task Learning with Uncertainty method [26] is a popular multi-task learning method. In the MTL

method, we adopt a share representation among the predictions of different distributed parameters,

thus enforcing a soft constraint on those predictions.

Evaluation Metrics. The proposed approaches aim to boost the quality of the learned predictions

for distributed parameters. We adopt the Sum of Absolute Errors (SAE) and Absolute Error (AE)

to measure the model performance and efficiency, respectively. The SAE metric is defined as the

summation of the prediction error and the consistency errors:

SAES = | |yS − ŷS | |1 + | |yY − ŷY←S | |1 + | |yZ − ŷZ←S | |1,

SAEY = | |yY − ŷY | |1 + | |yS − ŷS←Y | |1 + | |yZ − ŷZ←Y | |1,

SAEZ = | |yZ − ŷZ | |1 + | |yS − ŷS←Z | |1 + | |yY − ŷY←Z | |1.

(21)

The AE metric is defined as the absolute distance of the prediction error or consistency error:

AES = | |yS − ŷS | |1,AEY = | |yY − ŷY | |1,

AEZ = | |yZ − ŷZ | |1,AES←· = | |yS − ŷS←·||1,

AEY←· = | |yY − ŷY←·||1,AEZ←· = | |yZ − ŷZ←·||1.

(22)

The reported results are the average of the top-1 results in 3 runs from different random seeds.

DeepOTF and MTL are trained with 50 epochs to obtain the general predictor for all distributed

parameters. MLP and NeuroTF are trained with 50 epochs for obtaining the separate predictors of

each distributed parameter.
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Table 3. The Comparisons between Baseline Models and the Proposed Method

MLP [29] NeuroTF [15] MTL [26] ComplexTF (ours) DeepOTF (ours)

Case SAE (S) SAE (Y) SAE (Z) SAE (S) SAE (Y) SAE (Z) SAE (S) SAE (Y) SAE (Z) SAE (S/Y/Z) SAE (S/Y/Z)

1 1,173.43 68.52 7.63 520.06 1,328.70 88.67 71.61 4.40 8.98 4.32 2.85

2 1,263.73 71.17 8.72 335.21 2,530.98 92.22 67.58 3.91 9.11 4.11 2.84

3 1,115.61 77.33 7.28 409.45 5,308.14 89.63 72.04 4.47 8.81 4.22 3.10

4 1,381.91 56.00 6.72 856.16 572.35 87.99 23.78 5.26 7.87 4.20 4.25

5 459.69 59.56 8.52 204.96 3,706.76 50.32 42.53 3.86 4.77 3.02 2.14

6 247.21 53.87 7.65 189.24 1,542.85 31.39 47.22 3.27 4.73 2.43 3.16

Fig. 9. The analysis of the prediction results of different methods on dataset Case5. (a) Each item in SAE (Z );

(b) Each item in SAE (Y ); (c) Each item in SAE (S ).

4.2 Comparison Results

The results in Table 3 and Figure 9 show our DeepOTF attains superior performance among all

baselines regarding accuracy. More specifically, we observe the following:

— In terms of model performance, our DeepOTF beats all baselines. It attains up to 25× improve-

ment over the best baseline, i.e., MTL, while attaining up to 1, 700× improvement over the

NeuroTF method. Our equations-constraint learning scheme enforces consistency among the

outputs to make distributed parameters consistent and reliable predictions instead of biased

learning in others.

— From Figure 9, it can be seen that consistency errors take up a large percentage of the overall

errors, especially for AEY←Z , AEZ←Y , AEZ←S . Although the prediction error of MLP and Neu-

roTF are acceptable, their consistency error is unbearable. It also explains why it performed the
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Fig. 10. Testing errors of DeepOTF trained to learn the optimal transfer function compared with Neu-

ralTF [15]; MCI1005HQ, MCI0603TN, MCI0603HQ, MCI1608HQ are different inductors from four datasets

cases 1, 4, 5, 6, respectively).

worst across all methods. On the contrary, our method has the same errors for each item, be-

cause it maintains consistency among the predicted values. Therefore, our method obtains the

best performance.

— Regarding the performance details of the testing on various devices shown in Figure 10, we

selected four different devices (MCI1005HQ, MCI0603TN, MCI0603HQ, MCI1608HQ) from four

datasets (case1, case4, case5, case6), respectively and make detailed analysis. The NeuroTF and

our proposed method are compared separately, and for each different device, our method demon-

strates a prediction accuracy that far exceeds that of NeuroTF, and the prediction is at most 200

times better than that for NeuroTF.

— We notice that MTL is considerably better than other baseline methods, which corroborates

that the equations-constrained scheme is preferred. However, these methods rely on the shared

representation of predictions and thus fail to keep the consistency between predictions due to

the high complexity of the optimization process.

4.3 Comparison between DeepOTF Predictor and NeuroTF Predictor

To test our proposed model’s generalization ability and robustness against the NeuroTF method,

we performed an experiment on their performance comparison, in which we implemented a Deep-

ONet predictor without ECL, shorted as DeepOTF∗. Experiments were conducted on six dataset

cases to compare these two methods, and the experimental results are summarized in Table 4.

The table shows that our proposed framework shows substantial performance superiority over

the baseline NeuroTF method across all the cases. Remarkably, without elaborately designed trans-

fer functions, our method, i.e., DeepOTF, attains near 1.5× improvement in terms of AES . This

comparison verifies the superior generalization ability and robustness of our proposed DeepONet

on different data. We also compare the number of parameters and inference time of the two meth-

ods. Regarding efficiency, our DeepOTF outperforms the NeuroTF method, around 5% faster than

NeuroTF in training time. It is worth noting that, even though the NeuroTF method has fewer

parameters, the reason for the increase in inference time is that the computation of the transfer

function in NeuroTF takes more time compared to the matrix operations in DeepOTF.

Without the heavy computation of the transfer function, our DeepOFT method has a noticeable

advantage in reducing the computation cost.
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Table 4. The Analysis of the NeuroTF Method and the DeepOTF Method

NeuroTF [15] DeepOTF∗ (ours)

Case AE (S) Inference (s) #Params (M) AE (S) Inference (s) #Params (M)

1 0.3082 0.2986 9.616 0.1944 0.2843 18.064

2 0.3087 0.2922 9.616 0.1831 0.2869 18.064

3 0.3115 0.2935 9.616 0.1870 0.2851 18.064

4 0.3169 0.2924 9.616 0.1830 0.2865 18.064

5 0.3127 0.2909 9.616 0.2082 0.2865 18.064

6 0.3024 0.2961 9.616 0.1890 0.2842 18.064

Table 5. Comparison between MLP and MLP∗ (w/o ECL Scheme)

MLP [29] MLP∗ (ours)

Case SAE (S) SAE (Y) SAE (Z) SAE (S) SAE (Y) SAE (Z)

1 1,173.43 68.52 7.63 2.96 2.96 2.96

2 1,263.73 71.17 8.72 2.91 2.91 2.91

3 1,115.61 77.33 7.28 3.14 3.14 3.14

4 1,381.91 56.00 6.72 3.10 3.10 3.10

5 459.69 59.56 8.52 7.40 7.40 7.40

6 247.21 53.87 7.65 8.67 8.67 8.67

4.4 Effectiveness of Equations-constrained Scheme

We evaluate our equations-constrained scheme’s effectiveness with other predictors to further

validate it. Since the MLP method is the basic method, we test the equations-constrained scheme

on MLP as MLP∗, i.e., MLP with the equations-constrained scheme. Results in Table 5 show that

MLP∗ outperforms the one without the equations-constrained scheme.

This result implies that we can improve other prediction methods’ performance by simply adopt-

ing the equations-constrained scheme into their learning process.

4.5 Effectiveness of Dynamic Weighting Strategy

Recall that we adopt a dynamic loss weighting strategy in Section 3.3.2 and hope to strike a com-

promise between prediction error and consistent error. A set of ablation experiments is conducted

on the Case 6 dataset to investigate the effect of dynamic loss weighting. We evaluate the fixed

weighting version of our DeepOTF method as DeepOTFfixed, i.e., DeepOTF without the dynamic

loss weighting strategy.

Figure 11 shows that the DeepOTF outperforms the DeepOTFfixed, which identifies the impor-

tance of the dynamic weighting strategy.

4.6 Experiments on the Solenoidal Inductor Dataset

To further validate the effectiveness of our proposed method, we use a more complex case to

demonstrate its efficacy. In this case, we utilized the experimental dataset from Reference [30] for

a solenoidal inductor using a Nickel-Zinc (NiZn) ferrite magnetic integrated on the top metal

layer of a silicon interposer-based 2.5D heterogeneously integrated system score. The geometry

of the inductor is defined by eight parameters, and the corresponding ranges for each parameter

are shown in Table 6.

After sampling 1,000 instances using Latin Hypercube Sampling (LHS), the measured com-

plex permeability of the NiZn core [31] was imported into the full-wave electromagnetic solver
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Fig. 11. Ablation study on dynamic weighting strategy.

Table 6. Control Parameters of Solenoidal Inductor

Parameter Unit Min Max

Gap between windings д mil 2 20

Number of windings N 3 13

Size of via sr μm S0 103

Copper Trace Width wc mil 2 20

Copper Thickness Bottom tch μm 35 170

Copper Thickness Top tL,t μm 35 170

Magnetic Core Thickness 4 μm S0 630

Magnetic Core Width wd μm 50 350

Table 7. The Comparisons between the NeuroTF Model and the

Proposed Method on the Solenoidal Inductor Dataset

NeuroTF [15] ComplexTF (ours) DeepOTF (ours)

SAE (S) 121.07 13.10 68.32

SAE (Y) 201.81 13.10 68.32

SAE (Z) 203.33 13.10 68.32

Ansys HFSS [32] to simulate the EM parameters at 200 frequency points ranging from 10 MHz

to 500 MHz. In the training stage, 800 out of the 1,000 samples served as training data for the

experiment.

Based on the experimental results, we can see that ComplexTF and DeepOTF have significant

advantages over NeuroTF on the more complex Solenoidal Inductor Dataset (Table 7). On the

Solenoidal Inductor Dataset, ComplexTF achieves SAE (S), SAE (Y), and SAE (Z) values of 13.10,

which are much lower than NeuroTF’s values of 121.07, 201.81, and 203.33, respectively. DeepOTF

also achieves SAE (S), SAE (Y), and SAE (Z) values of 68.32, which is also lower than NeuroTF’s val-

ues. This indicates that ComplexTF can more accurately predict and model the outputs consistently,

resulting in lower consistent errors. Furthermore, DeepOTF and ComplexTF obtain the same low

error value of 13.10 across all three metrics, demonstrating better stability and consistency. In

contrast, NeuroTF exhibits significant variations in transformation errors across different outputs.

Our DeepOTF and ComplexTF perform better on the complex dataset, indicating their ability to

handle different types of input data effectively. In comparison, NeuroTF shows significantly higher

errors on this dataset, suggesting limited modeling capability for complex datasets.
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5 Conclusion

In this work, we presented the DeepOTF framework, a novel framework that integrates recent

neuro-operator learning advances with physical relationships embedded for EM behavior predic-

tion. Our DeepOTF framework consists of a customized deep operator network as a predictor, an

equations-constrained learning scheme, and a dynamic weighting strategy to enable the accurate

and consistent prediction of different distributed parameters of passive devices. Extensive experi-

ments demonstrate that our DeepOTF framework can achieve higher accuracy (up to 1, 700×) than

the baseline methods.

With the help of DeepOTF, we can provide faster and more accurate answers for time-

consuming electromagnetic simulations and analysis.
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