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Abstract—As the transistor technology nodes shrink into the
nano-scales, timing guardbands caused by aging effects and
process variations continue to increase. Approximate computing
can eliminate aging-and-variation-induced timing guardbands
without sacrificing the design performance. It can apply local
approximate changes (LACs) automatically in circuits to reduce
critical path delay (CPD). However, efficiently achieving timing
optimization under error distance constraints is still tricky.
This work proposes an automated timing-driven technology
mapping approximation framework based on reinforcement
learning (RL). The framework uses path-weighted graph neural
networks (PGNNs) to embed RL states and timing path-aware
LAC candidates to construct RL action spaces. It can efficiently
eliminate timing guardbands induced by aging and variation. Our
proposed circuit-agnostic framework operates on the gate-level
netlists. According to experiments on the open-source circuits
using TSMC 28 and 16-nm technology under aging and variation
conditions, our framework can achieve an average 24.78% CPD
reduction under five different error distance constraints and
4.83× speedup, compared with a state-of-the-art method.

Index Terms—Approximate computing, approximate logic syn-
thesis, timing optimization.

I. INTRODUCTION

W ITH the continuous shrinking of CMOS technology
nodes, transistor aging effects, such as negative bias

temperature instability (NBTI), and process variations make
timing closure and signoff increasingly challenging [1]. To
guarantee the parametric yield and circuit lifetime, designers
add performance-degrading timing guardbands on the oper-
ational clock period. However, with the technology scaling
down, these aging-and-variation-induced timing guardbands
are increasing rapidly, eventually resulting in severe timing
performance degradation [2]. Therefore, there is an urgent
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Fig. 1. Descriptive example of achieving timing optimization by approximate
computing. Left: The accurate circuit; top right: the approximate path applying
wire-by-constant LAC; and bottom right: the approximate path applying wire-
by-wire LAC.

need for effective methodologies in timing optimization that
can mitigate the impacts of aging and variation without
compromising performance.

Approximate computing has emerged as a promising design
paradigm to improve timing performance. It introduces slight
computational imprecision to reduce circuit delay and has
proven effective in numerous error-tolerant applications [3].
Prior efforts primarily focused on approximate circuit design,
often relying on human expertise. Recently, some studies
have proposed methods for automating approximate com-
puting within functional error constraints [3], [4], [5], [6],
[7], [8], [9]. Fig. 1 shows an example, where approximate
computing can reduce path delay by modifying local structures
in circuits. Such modifications are called local approximate
changes (LACs).

Several previous works [3], [4], [5], [6], [7] have approached
approximate logic optimization to enhance timing, using
methods like the greedy algorithm. PowerX [6] utilizes deep
learning to accelerate the flow by predicting logic errors.
SEALS [5] consider the relationship between gate and out-
put, termed “sensitivity,” to achieve speedups. HEDALS [4]
focuses on achieving approximate computing on critical timing
paths. Since they work on circuits with AND-Inverter graph
representations rather than real technology-dependent circuits,
the timing information is unrealistic at the Boolean level.
Similarly, technology mapping approximation efforts [8], [9],
utilizing genetic algorithms, aim to optimize timing in mapped
circuits, factoring in aging effects and process variations for a
reliability-aware design.

Error metrics are crucial in evaluating the accuracy of
approximate circuits. Two common error metrics are error rate
(ER) and distance. The ER is important for random/control cir-
cuits, and error distance is more critical for arithmetic circuits.
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Fig. 2. Delay ratios of the approximate circuits obtained by VECBEE-
SASIMI over the accurate circuits for different designs under (a) different ER
constraints and (b) different error distance constraints.

Recent studies in approximate computing have successfully
achieved timing optimization under ER constraints. As shown
in Fig. 2(a), VECBEE-SASIMI [3] reduces critical path delay
(CPD) under different ER constraints. The most critical paths
in arithmetic circuits are timing paths to the most significant
bits (MSBs) [10], where the signal value changes on MSBs
always result in significant error distances in previous works.
As demonstrated in Fig. 2(b), it causes the poor optimization
performance of VECBEE-SASIMI. Thus, the challenge lies
in optimizing timing under varying error distance constraints
without comprising circuit accuracy.

In summary, three main reasons cause poor timing
optimization under error distance constraints in previous
works: 1) various pseudo-linear heuristics or analytical meth-
ods, including genetic algorithms and greedy methods, result
in suboptimal solutions; 2) previous works treat the process
as a black-box optimization problem, lacking accurate timing
path modeling, which causes low efficiency; and 3) the
consideration of the relationship between timing paths and
LACs is limited in other proposed works, which makes it chal-
lenging to select LACs that can optimize timing performance
under specific error distance constraints without extensive
simulations.

Reinforcement learning (RL) has emerged as a power-
ful machine learning paradigm, demonstrating superhuman
performance in various optimization tasks [11]. In RL, an
agent learns an optimal policy through trial and error in an
interactive environment to maximize rewards. This involves
understanding the state of the environment, actions to alter
it, and rewards as feedback. Recent applications of RL in
electronic design automation, including gate sizing, transistor
sizing [12], physical design placement [13], and technology
mapping [14], have shown promising results. In this article,
we customize RL for technology mapping approximation to
optimize timing performance under error distance constraints.

For RL state embedding, the timing path cannot be accu-
rately modeled while collecting circuit features. However,
the circuit features on timing paths, especially critical paths,
are important in timing optimization. The essential rea-
son is that the equipped graph neural networks (GNNs)
in previous frameworks can only learn circuit information
from part of gates on timing paths due to over-smoothing
issue [11], [12], [13]. The RL action spaces significantly
affect the RL agent’s efficiency, where too vast action space
causes low-convergence speed and too narrow action space

causes terrible optimization quality [12]. Following previous
approximate logic optimization and technology mapping
approximation works [3], [4], [7], [8], [9], the action spaces
can be narrowed by generating LAC candidates. However,
these candidates are identified without considering relation-
ships between timing paths and LACs. It only optimizes timing
under ER constraints, thus causing poor timing optimization
performance. Thus, the RL action spaces for our framework
cannot be defined reasonably by LAC candidates without
considering the RL agent application.

In this work, we propose a timing-driven technology
mapping approximation framework based on RL. The frame-
work intelligently achieves approximate computing under
predictable error distance constraints. It reduces CPD con-
sidering aging effects and process variations. Our RL agent
has path-weighted GNNs (PGNNs) and timing path-aware
LAC candidates. For embedding the RL state, the PGNNs
open the black box of technology mapping approximation
through learning circuit information on global timing paths
without over-smoothing issues. For constructing a reasonable
action space, the timing path-aware LAC candidates can not
only narrow the action space but achieve timing optimization.
The customized RL states and actions can help the proposed
RL agent achieve higher-optimization efficiency and more
powerful model generalizability. According to aging and
variation-aware experiments on the TSMC 28 and 16-nm
technology, our framework can achieve an average of 24.78%
CPD reduction under 5 different error distance constraints.
The timing optimization takes 70.36 mins on average for
arithmetic circuits ranging from 2k to 30k gates. We highlight
our contributions in detail.

1) We present a novel timing-driven technology map-
ping approximation framework based on RL at the
gate level. It can perform approximate computing to
optimize aging-and-variation-aware timing performance
under error distance constraints automatically and effi-
ciently.

2) We propose PGNNs, namely, PGNNs, to model timing
paths accurately by learning global information on tim-
ing paths and local information in neighborhoods, which
helps embed RL states.

3) We generate timing path-aware LAC candidates consid-
ering the relationships between timing paths and LACs,
which helps construct RL action spaces. The gener-
ated candidates can optimize circuit timing performance
under error distance constraints.

4) Our circuit-agnostic framework is evaluated with
open-source designs. The results demonstrate that
our framework can efficiently achieve significant
optimization performance on unseen circuits with differ-
ent functions and sizes. Also, our framework can work
while meeting different function accuracy requirements.

II. PRELIMINARIES

A. Local Approximate Changes

Fig. 1 presents examples of accurate circuit and two
state-of-the-art LACs, including wire-by-constant [15] and
wire-by-wire [16] replacements. These LACs have been
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Fig. 3. Example of similarity score and logic depth. Wire W6 is the target
wire and wire W12 is the LAC candidate. Under different input vectors pi,
wire W6, and W12 signal values are shown on the right. They should be the
same under as many input vectors as possible to meet ER requirements.

extensively used in design methodologies to improve design
performance through approximate computing. Also, our
framework can be extended to include other local approxima-
tion changes.

Wire-by-constant substitutes a wire in the circuit with a
constant logic value “1” or “0”. The top right part of Fig. 1
shows an example of wire-by-constant approximation. The
replacement of wire W16 by the constant ‘0’ is demonstrated.
Thus, wire W16 is the target wire and the replacement
of constant 0 is the selected LAC. Paths that previously
comprised W16 are significantly accelerated by omitting the
propagation delay of gates U1, U2 and U7. Wire-by-wire
replaces a wire (approximated wire) in the circuit with another
wire (approximation wire). The bottom right part of Fig. 1
depicts an example of wire-by-wire approximation, where
W13 replaces W22. Wire W22 is the target wire, and wire
W13 is the selected LAC replacement. Similarly, paths that
previously comprised W22 are accelerated by omitting the
propagation delay of gates U6 and U10. Thus, all the delays of
timing paths comprising these wires become potentially more
minor under negligible and predictable logic errors.

For large circuits, the action space becomes vast, making
the optimal solution difficult to find within reasonable time
and resource limits. Previous works [3], [4], [5], [6], [7], [8],
[9] narrow the action space by generating the LAC candidates
based on similarity scores and logic depths. The similarity
score represents the percentage of cycles when the target wire
and the LAC hold the same value. It can be obtained through
logic simulation. The higher the value, the lower the ER. The
logic depth represents the propagation depth from inputs to
the LAC, which can be obtained by parsing circuits.

Examples: As shown in Fig. 3, we give an example to
compute similarity score and logic depth. For wire W6, the
similarity score of its ALC candidate W12 (SW6

W12) is computed
as

SW6
W12 =

Npi∑

pi

(
W12pi ==W6pi

)
?

Npi

(1)

where “(W12pi ==W6pi)?” equals to 1 if the signal value of
W12 is the same with W6 under input vector pi. Otherwise,
it equals to 0. Npi is the input vector number. And the logic
depth of W12 is 1.

(a)

(b)

Fig. 4. Delay distribution of the timing paths to the seventh bit (red), sixth
bit (green) and zeroth bit (blue) for an accurate (a) and approximate (b) 8-bit
adder.

B. Critical Paths Versus Timing Paths to High Bits

It is necessary to wait for the computational results of low
bits when computing the results of high bits. In the accurate
arithmetic circuits, the most critical paths are timing paths to
the MSBs [10]. An example is illustrated in Fig. 4, which
shows the delay distribution for different bit outputs in an 8-bit
adder. It is observed that the delay for the seventh bit (MSB)
is notably higher compared to the Sub-MSB and the least
significant bit (LSB) in accurate circuits. After approximating,
the delays of timing paths to the MSBs are reduced. Then,
timing paths to the higher bits have a higher probability of
being new critical paths.

C. Timing and Logic Error Evaluator

Our work requires accurate and fast timing and logic error
evaluator to improve optimization performance. This evaluator
consists of two parts:

Timing Evaluation: Aging effects and process variations
influence the timing performance, which can be analyzed
through aging- and variation-aware static timing analysis
(STA). Compared with classical STA flow, the extra gate-level
aging model and variation timing libraries are employed. For
aging effects, we follow the flow [17] to generate aging-aware
timing libraries based on SPICE Monte-Carlo simulation
with MOSRA aging model [18]. For process variations,
we adopt parametric on-chip variation analysis [19]. Both
aging-aware and variation-aware timing libraries are generated
using Synopsys PrimeLib [20]. Then STA is performed with
Synopsys PrimeTime. It outputs CPD for the approximate
circuit, which is defined as follows.

Definition 1 [CPD]: The largest path delay includes addi-
tional aging-and-variation-induced timing guardbands. It is
also the minimum value of the specified clock period.

The critical path delay CPD can be computed by (2). D

is the delay distribution of the most critical path consider-
ing aging and variation effects. μ(D) and σ(D) represent
mean and standard deviation values of delay distribution
D, respectively. CPD can cover typical aging-and-variation-
induced timing guardbands [1]. Thus, it is used to evaluate the
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reliability-aware timing optimization performance

CPD = μ(D)+ 3× σ(D). (2)

Logic Error Evaluation: The traditional simulation-based
method is time-consuming. In this work, we utilize the
method [3], namely, VECBEE, to efficiently achieve logic
error evaluation for approximate circuits. It is based on Monte
Carlo simulation and an efficient technique to capture a signal
change due to approximation that will cause a logic error.
It outputs error distance and ER for the approximate circuit,
which is defined as follows.

Definition 2 (Error Distance): The difference between the
approximate and accurate circuit output values under one input
vector.

Definition 3 (ER): The percentage of input vectors that the
approximate circuit output differs from the exact circuit.

Normalized mean error distance (NMED) and mean relative
error distance (MRED) are the mean error distance normalized
by the maximum output value and the corresponding output
value. They can be computed by (3) and (4), where Yacc

pi
and

Yapp
pi are the circuit output values of the accurate circuit and

approximate circuit under input vector pi, respectively. Npi is
the number of input vectors for testing and MSB is the value
of MSB. For example, MSB equals 63 for a 64-bit unsigned
adder

NMED =
Npi∑

pi

∣∣∣Yacc
pi
− Yapp

pi

∣∣∣

Npi ×
(
2MSB+1 − 1

) (3)

MRED =
Npi∑

pi

∣∣∣Yacc
pi
− Yapp

pi

∣∣∣
Npi × Yacc

pi

. (4)

ERs can be computed by (5), where Oacc
pi

and Oapp
pi are

the circuit output bits of the accurate circuit and approximate
circuit under input vector pi, respectively

ER =
Npi∑

pi

Oacc
pi
�= Oapp

pi

Npi

. (5)

D. Problem Formulation

Our essential parts contain circuit timing and logic
information. Timing information helps improve timing
performance and logic information helps meet the error dis-
tance constraint. We define timing wire as follows.

Definition 4 (Timing Wire): A timing wire includes aging-
and-variation-aware timing information and logic information
in the driving gate and loading gate.

An example of timing wire is illustrated in Fig. 1, and the
details of information in timing wire are shown in Table I.

Based on these definitions, the technology mapping approx-
imation problem can be formulated as a timing optimization
problem under error distance as follows.

Problem 1 (Technology Mapping Approximation): During
technology mapping, given a mapped accurate circuit
with aging-and-variation-aware timing information and logic
information, determine the optimal LACs for timing wires to
generate approximate circuits with maximum CPD reductions
under error constraints.

TABLE I
TIMING WIRE FEATURES USED IN OUR WORK

Fig. 5. Example of node and edge representation. Timing wire W6 contains
the timing and logic information of its driving gate (U2) and loading gate (U7).

III. OUR PROPOSED FRAMEWORK

A. Data Preparation

In this article, we apply graph learning in an optimization
loop. The accurate circuit is translated into a graph G = (V,E)

consisting of a node set V and an edge set E. Fig. 5 gives
an example of node and edge representation, where nodes are
timing wires and edges are signal propagation relationships
between two single timing wires. The circuit graph G is
represented with node feature matrix X, adjacency matrix J.
Node feature matrix X : {xk, k ∈ V} is composed of feature
vectors for all timing wires (nodes). They include their driving
and loading gates’ aging-and-variation-aware timing and logic
information. The details of features in xk for timing wire
(node) k are shown in Table I. These features are carefully
chosen based on domain knowledge after many experiments.
They are collected via aging-and-variation-aware STA and
logic simulation. They are expected to characterize the impact
of timing wires on circuit timing performance and function
accuracy under aging effects and process variations.

B. RL State

RL states S : {si, i ∈ Vs} represent selected timing wires
after embedding with circuit information through PGNNs. The
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Fig. 6. Illustration of PGNNs with path and multihop module.

progress of generating RL states can be divided into selection
and embedding.

In the selection stage, we generate a selected timing wire
set Vs ∈ V. It includes independent timing wires on potential
critical paths (worst-100 timing paths to each output). They
can be generated through aging-and-variation-aware STA,
introduced in Section II-C. In addition, the RL agent applies
multiple LACs simultaneously in each round to speed up the
optimization flow. However, the mutual influence of multiple
LACs can affect the circuit timing and error performance [21].
Thus, we follow the method in [21] to ensure the selected
timing wires on potential critical paths are almost independent.
Then, we can obtain a selected timing wire set Vs.

In the embedding stage, we propose PGNNs to embed
circuit information on timing paths and local neighborhoods
from the features of selected timing wires X : { �xi, i ∈ Vs},
and generate embedded RL states S : {si, i ∈ Vs}. The
information embedded in the RL state is proven useful while
improving the RL agent generalizability for solving different
circuit topologies and the quality of optimization. We give
more details about PGNNs as follows.

PGNNs are composed of two modules. A path module
can capture timing and logic information on global timing
paths and a multihop module can capture this information
in the local neighborhood. The timing paths can be modeled
accurately in PGNNs, which is still unsolved in other EDA
works [11], [12], [13].

Path Module: In the path module, the timing and logic
information of the worst-10 timing wire paths are aggre-
gated to generate path-based timing wire representations
XP : {xP

i , i ∈ Vs}. As shown in Fig. 6, the new timing wire
representation for timing wire W6 is generated through path
encoding and path combining. As an example, we introduce
the generating path-based timing wire representation xP

i for
timing wire i through learning information on timing paths.

First, each path p in the path set NP
i (the worst-10 timing

paths through timing wire i) is encoded. It is achieved through
learning the structural and semantic information of all nodes
{xjp , jp ∈ p} to generate path embeddings {ep, p ∈ NP

i }.
Unlike classical GNNs in an unordered way, a path naturally
comes with an order, preserving the ordered connections
among the nodes on the path. Thus, this step aims to learn
information about all the nodes on the path p and consider
the order of nodes on the path, preserving more relational

information among the connected nodes. To achieve path
encoding, we choose a simple sequence encoder gate recurrent
unit (GRU) [22] as the message function. For the path p ∈ N

p
i ,

we can get the path embedding ep followed as (6), where θg

represents all the learnable parameters

ep = GRUθg
({xjp, jp ∈ p}). (6)

After encoding all paths in the path set NP
i , we need

to combine these path embeddings {ep, p ∈ NP
i } together.

Different paths have different contributions to the target timing
wire representation. Thus, we adopt an attention mechanism
αp to learn the different weights

αp = exp
(
LeakyReLU(θa · ep)

)
∑

pk∈Np
i

exp
(
LeakyReLU(θa · epk)

) . (7)

Based on the attention mechanisms, the path-based timing
wire representation for timing wire i is expressed as

xP
i = σ

⎛

⎜⎝
∑

p∈Np
i

αp · ep

⎞

⎟⎠. (8)

Multihop Module: The multihop module is employed to
learn graph-structured information in local neighborhoods. In
the multihop module, the timing and logic information of
neighbor timing wires is aggregated to generate neighbor-
based timing wire representations XN = {xN

i , i ∈ Vs}. For
learning information from neighbor nodes, we adapt the
GCNII [23] to achieve graph learning as following (9), where
Ni is the neighbor timing wire set of timing wire i:

xN
i = GCNIIθ i

({xjn , jn ∈ Ni}
)
. (9)

Finally, the state of our framework for timing wire i can
be obtained by combining the path module output xP

i and
multihop module output xN

i

si = xP
i ‖xN

i . (10)

C. RL Action

RL actions A : {ai, i ∈ Vs} represent the chosen LACs
applied to timing wires. These LACs, which include wire-
by-wire and wire-by-constant replacements, are selected from
our specially designed RL action spaces. The action spaces
are constructed based on timing path-aware LAC candidates.
Diverging from conventional methods that generate LAC
candidates based on similarity scores and logic depth, our
work identifies timing path-aware LAC candidates by timing
path-aware similarity score and worst-arrive time. These two
metrics fully consider the relationships between LACs and
timing paths, ensuring a more nuanced and effective circuit
approximation process.

Timing Path-Aware Similarity Score: The signal value of one
wire under one input vector can only be propagated to some
target bits. The error distance is influenced when inaccuracies
occur on high bits, particularly the MSBs. To optimize circuit
timing, the LAC candidates are strategically placed on critical
timing paths. Therefore, ensuring that LAC candidates on
critical paths maintain values consistent with the target wire
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Fig. 7. Example of timing path-aware similarity score and worst-arrive time.
Wire W6 is the target wire and wire W12 is the timing path-aware LAC
candidate. Under different input vectors pi, the signal values of wire W6 can
be propagated to the least significant bit bit1 (LSB) when SPFbit1

W6pi
= 1; and

can be propagated to the MSB bit2 when SPFbit2
W6pi

= 1. While comparing

the signal values of wire W6 and W12, it is more important for them to be
the same when SPFbit2

W6pi
= 1 under error distance constraints.

is crucial. Such alignment plays a key role in meeting error
distance constraints, especially when the signal is propagated
to high-value bits.

As shown in Fig. 7, the signal value of wire W6 can be
propagated to the MSB bit2 through the red path under input
vectors {p1, p3, p5, p6} and the low-significant bit bit1 through
the blue path under input vectors {p2, p4}. To guarantee low-
error distance, it is more important for the wire W12 signal
to hold the same value with wire W6 under input vectors
{p1, p3, p5, p6} rather than under all input vectors. However,
the weights of different bits are considered equally while
computing similarity scores in previous works (1). In our work,
different bits are weighted with their weight value [details
described in (11)]. In addition, the signal propagation flag
(SPF) is introduced to determine whether one wire signal
value changes when one input vector is propagated to one
specific bit. As shown in Fig. 7, SPF equals 1 when the signal
change can be propagated to one specific bit. Otherwise, it
equals 0.

The progress can be cast as the Boolean satisfiability
problem for computing SPF values. The method in [3] based
on Boolean difference can help obtain SPF values efficiently.
The timing path-aware similarity score T represents the sim-
ilarity score of one LAC weighted by bits and SPF values.
It can be obtained through logic simulation where the higher
value means the lower-error distance (NMED).

Worst-Arrive Time: Large-scale circuits have no clear rela-
tionship between smaller logic depth and smaller signal arrival
time. This is because that even a few cells with large delay
can cumulatively result in substantial signal arrival time at
an LAC. To address this, our approach considers timing path
information to identify timing path-aware LAC candidates.
These candidates are pinpointed based on the worst-arrive time
D, which represents the propagation delay from the inputs
to the LAC candidate. Obtained via aging-and-variation-aware
timing analysis, a smaller value indicates a greater potential
for timing improvement.

Examples: Fig. 7 gives an example to compute timing path-
aware similarity score and worst-arrival time. For wire W6,

the timing-path aware similarity score of its candidate W12
(TW6

W12) can computed as

TW6
W12 =

Npi∑

pi

Nbit∑

bit

(
W6pi ==W12pi

)
?× SPFbit

W6pi
× 2bit

Npi × 2MSB
(11)

where “(W12pi == W6pi)?” equals to 1 if the signal value
of W12 is the same with W6 signal value under input vector
pi. Otherwise, it equals to 0. SPFbit

W6v
is SPF of the specific

bit bit for wire W6. 2bit and 2MSB are the weight values of
the specific bit bit and MSB, respectively. Npi and Nbit are the
number of input vectors and bits. MSB is the MSB value. The
worst-arrival time of W15 equals 24ps, which is collected by
aging-and-variation-aware STA.

The generation of the timing path-aware LAC candidate set
C relies on timing path-aware similarity scores T and worst-
arrive time D. In our approach, for each selected timing wire,
we include the top-20 candidates based on the timing path-
aware similarity scores in the candidate set C. The actions
A : {ai, i ∈ Vs} are expressed as

ai = (T, D), i ∈ Vs. (12)

We construct the action spaces as continuous spaces based
on C, offering two main advantages.

1) Compared to using discrete LAC candidates, our con-
structed action spaces can more effectively mine the
relationship between LAC candidates and timing paths
based on domain knowledge. The value of T impacts
the error distance (NMED) and D influences the CPD.

2) The continuous nature of our action space allows for a
broader range of possibilities in finding the optimal solu-
tion. However, the discrete action causes relative order
information loss and overburdens the RL agent [24].

By translating the discrete action space into a continuous
one, we ensure the RL agent’s actions A are mapped effectively
to the timing path-aware LAC candidate set C. After this
mapping, we generate approximate circuits by assigning LACs
selected from the LAC candidate set C.

D. RL Reward

RL reward R represents the CPD reduction under the error
distance constraint. As mentioned in Section II-C, the timing
and logic error evaluator can give us the accurate value of
critical path delay CPD and error distance NMED fast under
the aging effect and process variations. Then, the RL reward
R is computed as

R =
{

(CPDacc−CPD)
CPDacc

NMED ≤ NMEDcon
(NMEDcon−NMED)

NMEDcon
otherwise

(13)

where CPDacc represents the CPD of the given accurate
circuit. NMEDcon represents the NMED constraint, which can
be changed with requirements. When the error distance of
the approximate circuit is smaller than the constraint value
NMEDcon, we assign the reward based on the change in nor-
malized CPD. Specifically, the CPD reduction means a positive
reward. Conversely, if the error distance exceeds NMEDcon, a
negative reward is assigned as a penalty, proportionate to the
error distance, to mitigate unacceptable accuracy loss.
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Fig. 8. Overview of RL-driven technology mapping approximation framework, including: 1) prepare data; 2) select and Embed RL states S; 3) generate
timing path-aware LAC candidate set C and Construct RL action spaces based on C; 4) determine RL actions A; 5) map A to C; 6) compute RL rewards R;
and 7) update the policy.

E. Overall Flow

In our RL agent, we employ DDPG [24], a variant of
actor-critic algorithms, to determine the RL actions A based
on RL states S and RL reward R. In actor-critic algorithms,
there are two key components: 1) actor and 2) critic. Within
deep RL, which integrates neural networks, the actor is the
policy network π(S | θπ ). This network learns a parameterized
policy that maps all states S in one episode to actions A.
The critic is the value network Q(S, A | θQ), responsible for
learning a value function that evaluates the reward R resulting
from taking actions A on states S. Notably, our approach
is end-to-end, meaning that the PGNNs, the policy network,
and the value network are trained jointly, enhancing their
generalization ability.

The details of the training process are illustrated in
Algorithm 1. Graph learning is achieved first to collect circuit
structure and timing path information (lines 5–7). During
warm-up episodes, we randomly sample and store some
transitions in the replay buffer F (lines 8–12), which contains
old experiences from previous episodes. Then, the training
target of our value network Q is to make precise reward
predictions based on varying states, utilizing a loss function
based on the cross-entropy of predicted rewards and ground
truth simulations. The policy network π aims to generate
the action, subject to the state that maximizes the Q-value
that maximize the Q-value, with its loss function being the
gradient of the reward relative to actions (lines 17–18). Upon
completion of training, we achieve a finely tuned value
network and an effective policy network, ready for design
automation to optimize timing.

Once the RL agent is trained for technology mapping
approximation, an overview of the proposed framework is
shown in Fig. 8. In each iteration: 1) prepare data for the
given accurate circuit graph G = (V,E), including timing
wire feature matrices X and adjacency matrix J; 2) select
timing wires to generate Vs and embed feature vectors for
selected timing wires to RL sates S : {si, i ∈ Vs} using PGNNs;
3) generate timing path-aware approximate candidate set C and
construct continuous RL action space based on C; 4) determine
the RL actions A : {ai, i ∈ Vs} in the policy network; 5) map
the actions A to timing path-aware approximate candidates C
for generating approximate circuit; 6) compute the RL reward
R of the generated approximate circuit after taking actions A

Algorithm 1 RL Agent Training Methodology
Input: Circuit graph: G = (V,E); Node feature matrix:
X : {xk,∀k ∈ V}; Adjacency matrix: J; Number of sampled
data batch: Ns; Exponential moving parameter: B; Maximum
search episodes: M; Warm-up episodes: Mw; Replay buffer: F.
Output: PGNN parameters: θg, θa and θ i; Policy Network
parameters: θπ ; Value Network parameters: θQ.

1: {Vs} ← Select independent timing wires on potential
critical paths in G (shown in Section III-B);

2: {C} ← Generate timing path-aware LAC candidate set
(shown in Section III-C);

3: Construct continuous action spaces based on {C};
4: for episode← 1 to M do
5: for i ∈ Vs do
6: si ← Embed xi to generate state si using PGNNs;
7: end for
8: Receive observation states S;
9: Sample a set of actions A randomly;

10: Map actions A to C then obtain the approximate circuit;
11: Compute reward R of the circuit using Equation (13);
12: Store transition (S, A, R) in F;
13: if episode > Mw then
14: Sample a batch of (̂S, Â, R̂) from F;
15: Update θQ by minimizing the loss L:

16: 1
Ns

∑Ns
k=1

(
R̂k − B− Q

(
Ŝk, Âk | θQ

))2

17: Update θπ based on policy gradient ∇θπ J:
18: 1

Ns

∑Ns
k=1 ∇θπ Q

(
Ŝk,

(
π

(
Ŝk

)
| θπ

)
| θQ

)

19: end if
20: end for

on states S using timing and logic error evaluator; Here, timing
analysis focuses on optimized paths; and 7) update the RL
actions A based on RL reward R and states S.

IV. EXPERIMENTAL RESULTS

The timing-driven technology mapping approximation
framework is implemented in Python with the Pytorch library
and trained on a Linux machine with 32 cores and four
NVIDIA Tesla V100 GPUs. The maximum search episodes M
and warm-up episodes Mw are set to be 400 and 100. The train-
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TABLE II
ARITHMETIC BENCHMARK STATISTICS. #P.PATHS REPRESENTS THE

NUMBER OF POTENTIAL CRITICAL PATHS SELECTED IN THE FIRST

OPTIMIZATION ITERATION. THE NUMBER OF TIMING PATH-AWARE LAC
CANDIDATES FOR EACH SELECTED WIRE ON POTENTIAL CRITICAL

PATHS EQUALS 20

TABLE III
RANDOM/CONTROL BENCHMARK STATISTICS. #P.PATHS REPRESENTS

THE NUMBER OF POTENTIAL CRITICAL PATHS SELECTED IN THE FIRST

OPTIMIZATION ITERATION

ing process of our RL agent takes about 12.8 h using parallel
training method A3C [25] on 4 GPUs. We train TSMC 28-nm
and TSMC 16-nm RL frameworks using 28 and 16-nm stan-
dard arithmetic circuits, including different bit-width adders,
multipliers, and divisors. Reward shaping helps meet NMED,
ER, and MRED constraints in different frameworks.

To demonstrate the effectiveness and generalization ability,
we apply our trained framework to nine EPFL arithmetic and
nine EPFL random/control circuits [26] without retraining.
The benchmark statistics are shown in Tables II and III. All
accurate circuits are synthesized with TSMC 28 and 16-nm
technology using Synopsys Design Compiler [27]. Note that
all generated approximate circuits can obtain different timing
and area improvements. In our work, we focus on timing
improvements. For fair comparisons, the generated approxi-
mate circuits are post-optimized in the Design Compiler under
area constraints without adjusting any circuit structure to
compare the timing improvements. The used area constraints
are shown in Table V.

The timing path-aware similarity scores are generated
by logic simulation based on Mentor Modelsim [28]. The
CPDs and worst-arrival time are obtained through aging-
and-variation-aware STA using Synopsys PrimeTime [29]
with aging-aware timing library [17] and variation-aware
timing library [19]. During timing evaluation, the command
timing_pocvm_report_sigma 3 is applied to ensure that critical
paths are selected after considering enough timing guardbands.
Due to no specific application, the signal probabilities of
all gates are computed based on logic simulation when the
signal probabilities of all inputs are set to 0.5. Fig. 9 shows
distributions of signal probability in the divisor and the log2
unit. During logic error evaluation, the NMEDs, ERs, and

TABLE IV
ERROR DISTANCE RESULTS CAUSED BY TIMING ERRORS UNDER

DIFFERENT TIMING GUARDBANDS

(a)

(b)

Fig. 9. Signal probability distribution of gates in the divisor and the Log2
unit. (a) 128-bit divisor. (b) 32-bit log2 unit.

MREDs are calculated through VECBEE [3]. They can be
obtained based on Monte Carlo simulation to input vectors. In
terms of the number of input vectors Npi , we follow the setting
in [3] where Npi = 100 000, which can give a high-accuracy
error estimation.

For the 28-nm framework, we compare the tim-
ing optimization efficiency of our framework, including
optimization results and runtime, with 1) the genetic
algorithm-based method [8], [9]; 2) VECBEE-SASIMI [3]
using the greedy method; 3) a simple RL agent using LAC can-
didates; 4) a modified RL agent using timing path-aware LAC
candidates without GNNs; and 5) an RL agent equipped using
timing path-aware LAC candidates equipped with GCNII [23].

For the 16-nm framework, we compare the timing
optimization efficiency of our framework with 1) the genetic
algorithm-based method [8], [9]; 2) VECBEE-SASIMI [3];
3) PowerX [6] using deep learning to predict ER; 4) SEALS
using [5] sensitivity to achieve fast and accurate error esti-
mation; and 5) HEDALS [4] on critical timing paths. For
head-to-head comparisons, the objectives of all works are
optimizing CPD under error constraints, including NMEDs,
ERs, and MREDs.

A. Timing Errors Under Different Timing guardbands

Timing guardbands are essential to cover aging and
variation-induced timing degradations. Table IV gives the
NMED results of EPFL arithmetic circuits under various tim-
ing guardbands and without guardbands considering. A 5-year
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TABLE V
CPD UNDER FRESH CONDITION CPD-0, CPD UNDER 5-YEAR-AGED CONDITION CPD-5 OF APPROXIMATE CIRCUITS GENERATED BY OUR WORK

AND OTHERS UNDER THE SAME ERROR DISTANCE CONSTRAINT NMEDcon = 0.196%. THE UNITS OF CPD-0 AND CPD-5 ARE PS. AREA CON.
REPRESENTS THE AREA CONSTRAINTS WE USED TO RESYNTHESIZE APPROXIMATE CIRCUITS WITHOUT ADJUSTING CIRCUIT STRUCTURES AND THE

UNIT OF IT IS μm2. THE NMEDS OF ALL APPROXIMATE CIRCUITS ARE A LITTLE SMALLER THAN OR EQUAL TO 0.196%

aging condition is applied. D is the delay distribution of the
most critical path after considering aging and variations. And
μ(D) and σ(D) represent mean and standard deviation values
of the delay distribution D, respectively. According to the
results, μ(D) + 3σ(D) can avoid the majority of timing errors
in our experiments.

B. Optimization Results of the 28-nm Framework

Table V demonstrates the timing results under the error
distance constraint NMEDcon set to (20/210 − 1) ≈ 0.196%.
We observe that the approximate circuits generated by our
framework can outperform other state-of-the-art works. The
critical path delay of the fresh (CPD-0) and the 5-year-
aged condition (CPD-5) are examined for each circuit. All
test algorithms are terminated when the 5-year-aged criti-
cal path delay (CPD-5) no longer decreases or the error
distance (NMED) exceeds the constraint across 10 consec-
utive iterations, using CPD-5 in our RL reward R. Overall,
our framework achieves an average 25.41% CPD reduction
under the fresh condition and an average 26.92% critical
path reduction under the 5-year-aged condition. It means
the aging-and-variation-induced timing guardbands of accurate
circuits can be eliminated effectively through our work. After
analyzing the results, we summarize our findings below.

1) We use the trained RL agent to achieve timing
optimization on unseen circuits. The results suggest that
our work can generalize across various designs with
different functions and scales.

2) We achieve significant reductions of CPD under error
distance constraints. It means approximate circuits gen-
erated by our work are fast and accurate.

3) Compared with the genetic and greedy method, our RL-
based work can achieve much better-timing optimization
performance after constructing reasonable action space
and considering timing information.

4) Comparing the modified RL agent with the simple RL
agent, the modified work can achieve larger timing
optimization. Thus, the effectiveness of timing path-
aware LAC candidates can be proved.

5) Compared with the GCNII-RL agent, our work
achieves better-optimization performance benefiting
from modeling timing paths accurately in our RL state
representations.

Fig. 10. Average critical path delay CPD-5 ratios of the approximate circuits
obtained by our work and others over the accurate circuits under different
error distance constraints NMEDcon.

We compare the performance of our framework with
others under different error distance constraints NMEDcon,
including (5/210 − 1) ≈ 0.048%, (10/210 − 1) ≈ 0.098%,
(15/210 − 1) ≈ 0.147%, (20/210 − 1) ≈ 0.196%, and
(25/210 − 1) ≈ 0.244%. In Fig. 10, we illustrate how the
average CPD ratio varies with these error distance constraints.
The results indicate that our generated approximate circuits
consistently achieve greater reductions in CPD. This signifies
thatour frameworkcanattainhigher levelsof timingoptimization
while meeting diverse functional accuracy requirements.

To illustrate the effectiveness of the approximated circuits
generated by our work across the entire design space, we
compare the timing improvements under a range of area
constraints. Fig. 11 shows a comparison of CPD versus area
constraints for approximate circuits developed by different
methods when NMEDcon = (20/210 − 1) ≈ 0.196%. The
approximate circuits generated by our work outperform other
works across all area constraints, showcasing the breadth and
effectiveness of our optimizations. This achievement highlights
our framework’s ability to fulfill diverse design requirements
with superior timing optimization performance.

The focus of our work is on achieving timing optimization
within error constraints. Interestingly, this process also tends
to result in power reduction due to the nature of the approxi-
mations applied. PrimeTime measures the power consumption
after gate-level simulation. The results of different approxi-
mated circuits are shown in Table VI. It is noted that aging
effects typically increase transistor threshold voltage, leading
to reductions in both leakage and dynamic power consump-
tion [8]. Consequently, the power consumption of aged circuits
is generally lower than that of their fresh counterparts.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 23,2024 at 00:44:29 UTC from IEEE Xplore.  Restrictions apply. 



2764 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 9, SEPTEMBER 2024

(a) (b) (c) (d)

Fig. 11. Critical path delay CPD-5 ratios of the approximate circuits generated by different works over different area constraints for four different designs.
Area Con. Ratio represents the ratio of new area constraints over original area constraints shown in Table V. (a) Divisor. (b) Log2 unit. (c) Shifter. (d) Sine unit.

TABLE VI
POWER CONSUMPTION UNDER FRESH CONDITION POW-0, POWER CONSUMPTION UNDER 5-YEAR-AGED CONDITION POW-5 OF

APPROXIMATE CIRCUITS GENERATED BY OUR WORK AND OTHERS UNDER THE SAME ERROR DISTANCE CONSTRAINT

NMEDcon = 0.196%. THE UNITS OF POW-0 AND POW-5 ARE mW

TABLE VII
CPD UNDER FRESH CONDITION CPD-0, CPD UNDER 5-YEAR-AGED CONDITION CPD-5 OF APPROXIMATE CIRCUITS GENERATED BY OUR

WORK AND OTHERS USING TSMC 16-nm Technologies UNDER THE SAME ERROR DISTANCE CONSTRAINT NMEDcon = 0.196%.
THE NMEDS OF ALL APPROXIMATE CIRCUITS ARE A LITTLE SMALLER THAN OR EQUAL TO 0.196%

C. Optimization Results of the 16-nm Framework

The 16-nm frameworks for meeting different kinds of error
constraints are trained based on TSMC 16-nm standard arith-
metic circuits, including various bit-width adders, multipliers,
and divisors. Table VII demonstrates the performance of
approximate circuits generated by the 16-nm framework under
the NMED constraint. The constraint NMEDcon is set to
(20/210 − 1) ≈ 0.196%. Our evaluation includes analyz-
ing the critical path delay for both fresh (CPD-0) and the
5-year-aged condition (CPD-5) of each circuit. Notably, 16-nm
technology exhibits greater sensitivity to process variations
and aging effects than 28-nm technology, making it challeng-
ing for other methods to optimize timing effectively. However,
our framework successfully overcomes this, achieving an
average reduction of 27.59% in CPD-0 for fresh conditions
and 28.92% in CPD-5 for aged conditions.

For other kinds of error constraints, the 16-nm framework
is retrained by reward shaping. Table VIII demonstrates the
timing results under ER constraint ERcon setting to 2% for

random/control circuits. And Table IX demonstrates the timing
results under error distance constraint MREDcon setting to
(40/210 − 1) ≈ 0.392% for arithmetic circuits. Under error
rate ER constraints, the approximate circuits generated by our
framework achieve an average 21.93% CPD reduction under
the fresh condition and an average 24.55% reduction under
the 5-year-aged condition. Under relative mean error distance
MRED constraints, the approximate circuits generated by our
framework achieve an average 22.09% CPD reduction under
the fresh condition and an average 30.65% reduction under
the 5-year-aged condition.

Fig. 12(a) plots how the average CPD ratio changes
with error distance constraints NMEDcon under the TSMC
16-nm technology. The frameworks PowerX [6], VECBEE-
SASIMI [3], SEALS [5], although expedient in error
prediction, face limitations in their accuracy, impacting overall
efficacy. HEDALS [4] optimizes timing performance through
approximate computing on critical paths but tends to yield
local optima due to its greedy algorithm and independent
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TABLE VIII
CPD UNDER FRESH CONDITION CPD-0, CPD UNDER 5-YEAR-AGED CONDITION CPD-5 OF APPROXIMATE CIRCUITS GENERATED

BY OUR WORK AND OTHERS UNDER THE SAME ER CONSTRAINT ERcon = 2%. THE ERs OF ALL APPROXIMATE

CIRCUITS ARE SLIGHTLY SMALLER THAN OR EQUAL TO 2%

TABLE IX
CPD UNDER FRESH CONDITION CPD-0, CPD UNDER 5-YEAR-AGED CONDITION CPD-5 OF APPROXIMATE CIRCUITS GENERATED BY OUR

WORK AND OTHERS UNDER THE SAME ERROR DISTANCE CONSTRAINT MREDcon = 0.392%. THE MREDs OF ALL APPROXIMATE

CIRCUITS ARE A LITTLE SMALLER THAN OR EQUAL TO 0.392%

TABLE X
OPTIMIZATION RUNTIME (MIN.) COMPARISON

path-by-path consideration. Our RL-based framework, by
contrast, generates approximate circuits with greater reduc-
tions in CPD by incorporating a more comprehensive analysis
of timing path information. Fig. 12(b) and (c) plot how the
average CPD ratio changes with error distance constraints
ERcon and MREDcon, respectively. In summary, our work can
achieve more CPD reduction when compared with other works
under different error constraints.

D. Optimization Runtime

Table X demonstrates the runtime for timing optimization
across different methods under error distance constraints,
showing that our work optimizes the smallest design (Adder)
in 8.91 min and the largest one (Div) in 193.86 min.
Our method is slightly more time-consuming than others
in one iteration due to accurate aging-and-variation-aware
timing analysis on a limited number of optimized paths using
PrimeTime [29]. As demonstrated in Fig. 13, the bulk of
runtime in one iteration about 70% is consumed by logic
error and timing evaluation for both HEDALS [4] and our
work. Thus, the overall runtime is predominantly influenced

by the convergence speed of the optimization algorithms. Our
framework benefits from an accelerated convergence speed,
resulting in faster optimization and more enhanced scalability,
which is particularly advantageous for large-scale circuits. This
acceleration is achieved through a well-designed action space,
an optimal optimization policy, and applying multiple LACs
in each iteration.

E. Statistics on LACs

Fig. 14 displays the average percentage of different
types of LACs, including wire-by-constant and wire-by-wire
replacements, across various circuits under NMED, ER, and
MRED constraints. It reveals that wire-by-wire replacements
are more prevalent, constituting 67.6%, 59.8%, and 70.5%
under NMED, ER, and MRED constraints, respectively. The
lower prevalence of wire-by-wire replacements under ER
constraints is attributed to the relative ease of maintaining
low ERs compared to error distances in design automation.
Moreover, since wire-by-constant replacements tend to offer
larger timing optimization benefits, their usage increases under
ER constraints.

F. Why Our RL-Based Work Is Effective?

The experimental results show that the timing performance
of approximated circuits generated by our work under different
error constraints outperforms all other methods. As shown
in Table XI, we compare our work with other methods. In
summary, the improved efficacy of our work is achieved by
the following.

1) More Collected Information: First, the circuit struc-
ture information is important to avoid an accuracy loss
that is too high after approximate computing. The structure
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(a) (b) (c)

Fig. 12. Average critical path delay CPD-5 ratios of the approximate circuits obtained by our work and others over the accurate circuits using TSMC 16-nm
technology under different error constraints (a) NMEDcon; (b) ERcon; (c) MREDcon.

(a) (b)

Fig. 13. Runtime breakdown in one iteration of (a) HEDALS [4] and (b) our
work.

Fig. 14. Average percentage of different LACs under different error
constraints: (a) NMEDcon; (b) ERcon; and (c) MREDcon.

information about relationships between one gate and output
is defined as sensitivity in SEALS [5]. The simple deep
learning method [6] cannot handle circuit structure while it
is collected via graph learning efficiently in our work. In
addition, timing information on timing paths is critical for
optimization. Among previous works, HEDALS [4] is the only
one considering timing path information. However, it cannot
consider timing information on multiple timing paths jointly
where one LAC on one path can achieve timing optimization,
which might cause timing degradation on other paths due to
load increase. Finally, the relationship between timing paths
and LACs should be mined and used. However, it has been
ignored in previous works.

2) Better-Optimization Strategy: The solution space of
approximate logic optimization and technology mapping
approximation is always very large. Dynamic optimization
can solve it more efficiently than static methods. Traditional
algorithms used in other works, including greedy and genetic
algorithms, are constructed based on static optimization. RL
is based on the Markov decision process, which solves the
optimization problem in a dynamic way [30]. In addition,
the trained RL framework outputs an optimal policy network

TABLE XI
WORK COMPARISON FROM DIFFERENT VIEWS

rather than just optimal actions generated via traditional
optimization methods. It helps us to obtain stable performance.
More importantly, many RL frameworks that focus on solv-
ing similar problems can share knowledge to improve their
efficiency. In our work, similar problems are achieving timing
optimization under different error constraints and different
technology nodes.

V. CONCLUSION AND FUTURE WORKS

This work proposes and implements a timing-driven tech-
nology mapping approximation framework based on RL
to optimize aging-and-variation-aware timing under error
distance constraints. The high-efficiency and powerful gen-
eralization ability of our RL framework come from two
key strategies: 1) accurately modeling timing paths while
embedding RL states using PGNNs and 2) considering the
relationship between LACs and timing paths when construct-
ing RL action spaces. Experimental results with open-source
designs demonstrate the superior efficiency of our framework
over existing approaches, both in results and runtime. While
this work concentrates on technology mapping approxima-
tion, future endeavors aim to integrate approximate logic
optimization for enhanced timing optimization.
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