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Transistor aging leads to the deterioration of analog circuit performance over time. The worst aging degra-

dation is used to evaluate the circuit reliability. It is extremely expensive to obtain it since several circuit

stimuli need to be simulated. The worst degradation collection cost reduction brings an inaccurate training

dataset when a machine learning (ML) model is used to fast perform the estimation. Motivated by the fact

that there are many similar subcircuits in large-scale analog circuits, in this article we propose Wages to train

an ML model on an inaccurate dataset for the worst aging degradation estimation via a domain generalization

technique. A sampling-based method on the feature space of the transistor and its neighborhood subcircuit

is developed to replace inaccurate labels. A consistent estimation for the worst degradation is enforced to up-

date model parameters. Label updating and model updating are performed alternately to train an ML model

on the inaccurate dataset. Experimental results on the very advanced 5nm technology node show that our

Wages can significantly reduce the label collection cost with a negligible estimation error for the worst aging

degradations compared to the traditional methods.
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1 Introduction

Transistor aging is a major reliability issue for analog integrated circuits (ICs) under advanced
nanometer technologies. Very small transistor sizes, combined with increasing gate-oxide electric
fields, are the major sources of this problem. The performance of nanometer-scale ICs is adversely
affected by transistor aging induced by bias temperature instability (BTI) and hot carrier

injection (HCI) [1–3]. BTI is temperature-activated after a bias voltage has been applied to a
Metal Oxide Semiconductor Field Effect Transistor (MOSFET). HCI consists of a high electric field
near the drain of a transistor in saturation and brings the change in transistor characteristics. They
shift the electrical characteristics of negative-MOS and positive-MOS transistors at operation time.
The primary observation of BTI and HCI is an increase in threshold voltage (ΔVth ) [4]. Compared
with digital ICs, analog ICs are more susceptible to these transistor parameters [5, 6]. Besides, in
industry, different from digital ICs [7, 8], the transistor aging effect is directly evaluated by its ΔVth

in analog ICs due to their diverse performance specifications.
To achieve design-for-reliability (DFR), the aging analysis is used to predict the occurrence

of a circuit failure before errors actually appear in the circuit. The basic principle behind circuit
failure prediction is to obtain information about the change of circuit parameters over time and to
analyze the obtained data to predict failures. The environmental parameters, process variations,
and stresses have an influence on the transistor aging effect [9–11]. The environmental parameters,
such as temperature, supply voltage fluctuations, and usage time, have a direct influence on the
worst aging degradation. For example, an escalation in temperature correlates with an intensified
severity of degradation [10, 11]. The process variations can be modeled by probabilistic models,
such as Gaussian process regression and neural processes [12–14]. In industrial practice, the aging
degradation attributable to each transistor is quantified in relation to the stresses it experiences,
namely the voltage and current applied across its source, drain, gate, and substrate. Consequently,
aging analyses are conducted at the level of the transistor netlist, leveraging SPICE simulations
to ascertain stress levels by propagating circuit stimuli across each net and branch [15, 16]. In
practice, circuit dynamic stimuli (e.g., behavioral signal, frequency divider, and piece-wise linear)
and static stimuli (i.e., DC bias) need to be provided for transistor aging analysis [17, 18].

In practical scenarios, the determination of dynamic stimuli, as opposed to static stimuli (e.g.,
DC bias), proves to be challenging due to their susceptibility to the influence of upstream circuits
and the variability of actual input stimuli, among other factors. Consequently, within the industrial
context, the worst-case scenario is often employed as a benchmark for assessing reliability and per-
formance [19, 20]. One notable example is graph-based analysis, which is extensively utilized for
worst-case timing performance evaluation in static timing analysis [21, 22]. In the assessment of
circuit reliability in industry, it is typically necessary to simulate approximately 10 distinct stimuli
to ascertain the most severe degradation. Figure 1 shows an example that the worst aging degrada-
tion is determined by 10 circuit stimuli to simulate. However, this process incurs substantial costs.
First, a significant number of transient steps must be accepted in each SPICE simulation. Second,
the requirement to simulate around 10 different stimuli further escalates the resource and time
expenditure.

Machine learning (ML) models have the potential to supplant traditional analytical models by
facilitating rapid prediction and estimation tasks, once they have been trained on large datasets
with accurately labeled ground truth [23, 24]. These models are increasingly being tailored to
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Fig. 1. The worst aging degradation and underestimated worst degradations under 10-year usage time. Stim-

ulus definition format example: SIN(0 1.1 120MEG 1NS) defines a 120MHz sinusoid with 1.1V amplitude

and 1ns delay. M1 and M2 denote two transistors in this circuit. (a) Analog circuit and stimuli. (b) Ten stimuli

are given to obtain the worst degradation. (c) Stimuli are reduced to 3 so that the worst degradation of M1

is underestimated (the golden dash line is lower than (b)).

forecast circuit reliability as well [25–28]. For instance, the studies of Jin et al. [26, 27] describe an
ML model that utilizes stress factors, such as current density on the metal wire, as input variables
to predict electromigration degradation.

The most severe degradation can theoretically be estimated by applying model inference to the
stresses induced by each stimulus. However, this process often entails prohibitively long runtimes
during the model inference phase, especially since SPICE simulations are resource intensive for
large-scale circuits and need to be conducted for 10 different stimuli. In the work of Chen et al.
[25, 28], an ML model decouples hard-determined dynamic circuit stimuli from transistor aging
reliability analysis to avoid the expensive SPICE simulation. Specifically, an ML model is trained
using a dataset generated under a single stress condition with conventional training methods, aim-
ing to predict degradation under varied stress conditions. However, it cannot be directly used to
accurately estimate the worst degradations since it is possible that they are not induced by given
circuit stimuli. Furthermore, our observations suggest that there is no discernible pattern in the
distribution differences between underestimated degradation values and worst-case degradation
values. This presents significant obstacles in conducting worst aging analysis because there is no
justifiable prior distribution assumption that can be made for the underestimated and worst val-
ues. Consequently, modeling the problem with a probabilistic approach, such as using a Gaussian
process, becomes challenging.

Intuitively, one might consider training an ML model on a large dataset comprising the most
severe degradation cases using traditional training methods. However, gathering data on the worst
degradations for this purpose is prohibitively costly. Currently, existing ML techniques are not
effectively adapted for the worst aging analysis. To the best of our knowledge, this challenge has
not been addressed by any existing works.

A key strategy for efficiently analyzing the worst aging is to reduce the cost of collecting la-
bels. However, the accuracy of labels within the training dataset is compromised, which poses
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a significant challenge for training a model to accurately estimate the worst aging degradation.
Specifically, the worst degradation cases tend to be underestimated in the training dataset, as
they may not be triggered by the circuit stimuli provided for the training. This is illustrated in
Figure 1(b) and (c); when only three circuit stimuli are used in the aging simulation, the worst
degradation for transistor M1 is not captured accurately.

Domain generalization techniques have been developed to train predictive models on one do-
main and enable them to generalize effectively to other target domains [29, 30]. Drawing inspi-
ration from the prevalence of similar subcircuits within large-scale analog designs, this article
introduces Wages—an approach that employs domain generalization to train an ML model on an
inaccurate dataset for estimating the worst aging degradation. The contributions of this work are
as follows:

— Based on the assumption that transistors exhibit similar worst-case degradation if they share
comparable design parameters and are part of similar neighboring subcircuits, we develop
a sampling-based method. This method operates within the feature space defined by the
transistor and its adjacent subcircuit, and it serves as a substitute for the original labels,
representing the worst degradations.

— To ensure a consistent estimation of the worst degradations, the model parameters are up-
dated based on the data from the replaced worst degradation labels while efforts are made
to eliminate any pessimistic estimations.

— The model update introduces new feature mappings and label variations. We use these re-
placed labels to refine the ML model iteratively. Label updates and model updates are per-
formed alternately, enabling the training of the ML model on an inaccurate dataset.

— We conducted experiments on several advanced 5nm large-scale industrial designs. The ex-
perimental results demonstrate that our method, Wages, can significantly reduce the costs
associated with label collection while incurring a negligible estimation error for the worst
aging degradations compared to traditional methods.

The rest of the article is organized as follows. Section 2 outlines our problem formulation for
estimating the worst aging degradation and provides motivation for the domain generalization
methodology, informed by observations from large-scale analog ICs. In Section 3, we introduce
Wages, a method for training an ML model on an inaccurate dataset to estimate the worst aging
degradation using domain generalization. Section 4 details the data preparation process and de-
scribes the ML model used for evaluation. Section 5 discusses the experimental results. Finally,
Section 5 concludes the article and suggests directions for future work.

2 Preliminaries

2.1 Problem Formulation

In industry, the worst case can be used as a metric to assess reliability and performance [19, 20, 31].
For evaluating circuit reliability, it is crucial to accurately estimate the worst aging degradation of
each transistor prior to finalizing the design for manufacturing. In this work, increase in threshold
voltage ΔVth between fresh and after 1- or 10-year periods of usage is adopted as the metric for
transistor aging degradation [4]. Traditional methods, however, tend to suffer from either low
accuracy or high data collection costs. Therefore, this work aims to provide an accurate estimation
of the worst aging degradations at a reduced cost of label collection. The worst aging degradation
is formally defined as follows.

Definition 1 (The Worst Aging Degradation). The maximum degradation experienced by each
transistor when subjected to circuit stimuli over an equivalent period of usage time.
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Fig. 2. There are 15 ULSB arrays and 5 LLSB arrays in the large-scale design (14-bit Digital-to-Analog Con-

verter) [32]. They have a similar topology.

In the industry, usage time is often defined according to design specifications and can be set to
1 year or 10 years [8, 25, 28]. There exists a one-to-one mapping between dynamic stimuli, static
stimuli, and the circuit’s impact on transistor aging degradation. We define the ϵ-hop neighbor-
hood subcircuit of a transistor as follows.

Definition 2 (The ϵ-Hop Neighborhood Subcircuit of a Transistor). A circuit partition that includes
the transistor itself and any other devices within a distance of at most ϵ hops from this transistor.

Figure 2 gives one 1-hop neighborhood subcircuit example. Figure 3 gives 1-, 2-, and 3-hop
neighborhood subcircuit examples. ϵ is a hyperparameter related to our ML model configurations.

In industry, it is typical for designers to apply 10 specific stimuli to gauge the worst degradation.
Our methodology aligns with this industrial practice, using 10 stimuli to determine the worst
aging degradation over a consistent usage time. Moreover, to estimate the worst degradations
efficiently, it is crucial to decouple them from the detailed aging analysis, thereby circumventing
the need for time-consuming SPICE simulations. We will provide a formal definition of our problem
formulation.

Problem 1 (The Worst Aging Degradation Estimation). Given an analog design, static cir-

cuit stimuli (i.e., DC bias), and usage time, estimate the worst aging degradation of each transistor.

2.2 Observation and Motivation

In practice, the worst aging degradations of certain transistors may be underestimated if they are
not sufficiently stimulated by the given circuit inputs, as illustrated in Figure 1. However, in large-
scale designs, numerous similar subcircuits often exist. For instance, in a 14-bit Digital-to-Analog
Converter [32], depicted in Figure 2, there are 15 arrays of the upper least significant bit (ULSB)

and 5 arrays of the lower least significant bit (LLSB). These arrays share a similar topology but
receive different dynamic stimuli from upstream subcircuits, leading to varying aging degradation
among the transistors in these subcircuits. Consequently, the potential worst degradations can be
identified by examining these differing aging effects.

Domain generalization can be applied to learning from one domain with underestimated
worst aging degradations and developing a predictive model capable of estimating the worst
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Fig. 3. The neighborhood subcircuit of a transistor.

Fig. 4. Our proposed Wages overview.

degradations in another domain [29]. However, two primary challenges arise when employing
model generalization to train an ML algorithm on an inaccurate dataset:

— How to replace the (inaccurate) underestimated labels on the training dataset.
— How to use these replaced worst degradations to update model parameters.

3 The Wages Algorithm

3.1 Overall Flow

To minimize label collection costs, we introduce Wages, depicted in Figure 4, which employs do-
main generalization techniques to train an ML model on a dataset with underestimated labels for
worst aging degradation prediction. Our training approach utilizes a sampling-based method in
the feature space of the transistor and its ϵ-hop neighborhood subcircuit to replace these under-
estimated labels. The model parameters are then updated by enforcing consistent estimations of
the worst degradation. This process generates new feature mappings and label variations, which
are used to iteratively refine the ML model. Through alternating between label updates and model
training, the ML model becomes more accurate, even when the dataset initially contains inaccu-
racies. Ultimately, our proposed method enables the training of an ML model that can accurately
estimate the worst aging degradation for each transistor using an initially inaccurate dataset.
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3.2 Sampling-Based Replacement of Inaccurate Labels

The performance of an ML model is highly dependent on the accuracy of the training dataset.
However, collecting ground-truth data for the worst degradation scenarios is prohibitively expen-
sive. This cost reduction effort results in an inaccurate training dataset. In other words, the worst
degradation cases are often underestimated because they may not be triggered by the available
circuit stimuli.

In fact, the worst degradations of some unknown transistors are underestimated. y =

[y1,y2, · · · , yN ] ∈ R
N are N transistors’ degradations for given circuit stimuli and a same us-

age time. yi is the worst degradation of the i-th transistor when performing more than one circuit
stimuli. We take Figure 1(c) as an example, where three stimuli are given to obtain the worst
degradation. As mentioned in Sections 1 and 2, an increase in threshold voltage ΔVth between
fresh and after 1- or 10-year periods of usage is used as the aging degradation metric [4]. For
example, yM1 = 1.23 × 10−2 V—that is, the worst degradation among three stimuli, as shown in
Figure 1(c). However, according to Figure 1(b), the worst degradation of M1 is underestimated. For
convenience, we name these degradationsy as original labels. Then we need to replace the under-
estimated worst degradations so that the replaced worst degradation ŷ = [ŷ1, · · · , ŷN ] ∈ R

N is not
less than the original one—that is, ŷi ≥ yi for i = 1, · · · ,N .

In large-scale analog circuits, the presence of many similar subcircuits presents an opportunity
to rectify underestimated worst degradation estimates. As shown in Figure 5, the worst degrada-
tions for some components can be replaced with values derived from the degradation observed in
transistors with similar features and their surrounding subcircuits. Traditional ML models, such
as random forests or XGBoost, often require complex feature engineering to extract relevant infor-
mation from the circuitry. However, these methods lack task-oriented guidance. Recently, neural
network models have been introduced to automatically extract features tailored to specific tasks
[16, 24]. Therefore, in this work, we employ a neural network model to extract features from tran-
sistors and their neighborhood subcircuits.

We begin by representing the feature vector of the i-th transistor and its surrounding subcircuit
as fi . This vector can be generated by the initial layers of a neural network model to encapsulate
the characteristics of the transistor and its subcircuit. The core concept of this approach is that
a neural network model, designed with a task-specific orientation [16, 24], can extract features
that accurately represent the transistor and its neighborhood subcircuit within the degradation
model. Given that an analog circuit can be naturally depicted as a graph, we utilize a graph neural
network to tailor the feature extraction process for the transistor and its subcircuit. It will be intro-
duced in Section 4 in detail. Moreover, the feature vectors of all transistors and their neighborhood
subcircuits are collected as a feature matrix F = [f1, · · · , fN ].

Based on our observations, similar subcircuits are subject to varying dynamic circuit stimuli,
which depend on their upstream counterparts. Consequently, transistors within these similar yet
distinct neighborhood subcircuits experience different aging degradations. We propose that the
worst degradations can be inferred from the aging degradations observed in these similar sub-
circuits. Therefore, we hypothesize that a transistor is likely to have a similar extent of worst
degradation to another if they share comparable design parameters and are situated in analogous
neighborhood subcircuits. In essence, the likelihood of replacing the degradation of one transistor
with the more severe degradations of others increases when they exhibit greater similarity in de-
sign parameters and neighborhood subcircuits. It is important to note that our approach does not
require the adoption of explicit subcircuit identification methods. Instead, we employ a learning-
based technique for fuzzy matching of subcircuits, leveraging the potential relationship between
the aging effects and the characteristics of the neighborhood subcircuit.
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Fig. 5. Worst degradation replacement via sampling: accept scenario (a) and reject scenario (b). The green

arrow represents that the transistor and its neighborhood subcircuit are encoded as a feature vector. The red

arrow represents the mapping from a feature vector to the worst degradation. The purple and yellow dotted

circles denote the transistor and its neighborhood subcircuit.

Based on our assumption, we propose a sampling-based method on the feature space of the
transistor and its neighborhood subcircuit to replace the underestimated worst degradations, as
shown in Algorithm 1. First, we randomly choose ρ samples from the feature vectors of all transis-
tors and their neighborhood subcircuits (line 1). For each chosen sample fi within the ρ samples,
we cluster its k-nearest neighbors within all feature vectors (line 3). We will randomly sample one
neighbor from the k-nearest neighbors and try to replace fi ’s degradation. For each neighbor f j̃

in this cluster, the sampling probability is calculated as follows:

P(f j̃ )i = exp(−d2
i, j̃
/κ)/Z , j̃ = 1, · · · ,k, (1)

where di, j̃ = | | fi − f j̃ | |2 is the Euclidean distance between fi and f j̃ . It measures the similarity
between two transistors with design parameters and neighborhood subcircuits. κ is a steeping
coefficient hyperparameter. Z is a normalization factor.

Based on our assumption, according to the probability, we randomly select one neighbor fτ̃ (line
4). If its degradation yτ̃ is larger than yi , the worst degradation is updated by ŷi ← yτ̃ . Figure 5(a)
illustrates this acceptation scenario. Otherwise, as shown in Figure 5(b), we reject the sample and
the worst degradation is the original one—that is, ŷi ← yi . Algorithm 1 outputs the replaced worst
degradations ŷ = [ŷ1, ŷ2, · · · , ŷN ].

If the inaccurate worst degradations are replaced only once, it brings a low replacement effi-
ciency and inaccurate estimation caused by outliers. Thus, we replace the inaccurate worst degra-

dations M times to generate M worst degradations ŷ(m) = [ŷ(m)1 , · · · , ŷ
(m)
N
] such that ŷ(m)i ≥ y(m)i

andm = 1, 2, · · · ,M denotes them-th replaced worst degradations.
The ML model must be revised based on these replacements for the worst degradations. How-

ever, this model revision introduces variations in feature mappings and labels. To address this, we
employ cluster-based sampling to refresh the labels. These updated labels are then used to adjust

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 73. Publication date: August 2024.



Wages 73:9

ALGORITHM 1: Sampling-based replacement of inaccurate labels.

Input: Subcircuit encoding features F and original degradations y.
1: Randomly select ρ samples out of F ;
2: for i = 1 to ρ do

3: Cluster the neighborhood subcircuit encoding feature fi k-nearest neighbors f j̃ and calcu-

late sampling probability by Equation (1);
4: According to the probability, sample one fτ̃ from this cluster and obtain its label yτ̃ ;
5: if yτ̃ > yi then

6: ŷi ← yτ̃ ; � accept
7: else

8: ŷi ← yi ; � reject
9: end if

10: end for

11: return The worst degradations ŷ.

the parameters of the ML model. Nevertheless, the model revision can still result in variations
in feature mapping. Consequently, labels must be reevaluated and modified in accordance with
the new feature mappings. The processes of label updating and model refinement are carried out
alternately and repeatedly to effectively train the ML model despite the initial dataset inaccuracies.

3.3 Consistent Estimation-Based Parameter Updating

Upon acquiring M replaced worst degradations, we will utilize them to revise the parameters of
the ML model. Here, we denote an ML model as f (X ;W ), whereW is its model parameters and X
is a feature matrix, representing analog circuit, static circuit stimuli (i.e., DC bias), and usage time.
The relationship between X and F is F = fL(X ;W ), where L means the output of first L layers
of the ML model f (X ;W ). A direct approach involves training the ML model on these replaced
worst degradations. However, this strategy may cause the ML model parameters to overfit these
particular degradations, leading to overly pessimistic estimations.

To mitigate pessimistic estimations, we propose a parameter updating method based on con-
sistent estimation. The fundamental concept is to update the model parameters using consistent
estimations derived from multiple auxiliary models rather than relying solely on the replaced worst
degradations. While these models share the same configuration, their parameters are updated us-
ing different strategies. This approach can reduce the impact of the substituted worst degradations
on the models.

In the proposed method, there are 2+M models: one root model, one generalized model, and M

auxiliary models. Their model parameters are denoted asW (r ),W (д), andW (a)
m (m = 1, 2, · · · ,M).

The generalized and auxiliary models are derived from the root model. Subsequently, the root
model is updated to ensure consistent estimations across the generalized and auxiliary models.
This approach is designed to minimize the influence of the substituted worst degradations on the
generalized model, thereby reducing the likelihood of pessimistic estimations.

As shown in Figure 6, M auxiliary models (the model parameters W (a)
m ;m = 1, 2, · · · ,M) are

derived from the root model (the model parametersW (r )) by a gradient method with M replaced
worst degradations. The generalized model (the model parameters W (д)) is updated by the self-
ensembling method [33, 34] and the root model W (r ). More specifically, the generalized model
parametersW (д) are updated by weight averages of their earlier versions and the root model pa-
rametersW (r ). Thus, the self-ensembling method can make the generalized model learn from the
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Fig. 6. Consistent estimation-based parameter updating method. Auxiliary models are derived from the root

model by a gradient method (yellow arrow). The generalized model is updated by the self-ensembling method

and the root model (green arrow). Consistent estimations between auxiliary models and the generalized

model are enforced to update the root model (purple arrows).

replaced worst degradations. Consistent estimations between M auxiliary models and the gener-
alized model are enforced to update the root model. According to this strategy, the generalized
model with parameters W (д) is not directly updated by the replaced worst degradations so that
the pessimistic estimations can be eliminated.

Auxiliary Model Updating. With M replaced worst degradations ŷ(m), parametersW (a)
m of M

auxiliary model are generated from the root model by the gradient method as follows,

W (a)
m =W (r ) − α∇W (r )L(f (X ;W (r )), ŷ(m)), (2)

where L(f (X ;W (r )), ŷ(m)) is the empirical loss function defined as follows,

L(f (X ;W (r )), ŷ(m)) =
1

N
| | f (X ;W (r )) − ŷ(m) | |22 , (3)

which is the mean square error (MSE) between the estimated and replaced worst degradations.
It is used to enforce the estimated worst degradations f (X ;W (r )) close to them-th replaced worst
degradations ŷ(m). α is the step size.

Generalized Model Updating. Different from auxiliary models, the generalized model’s param-

etersW (д) are updated by the self-ensembling method [33, 34] with the root model’s parameters
W (r ) as follows:

W (д) = γW (д) + (1 − γ )W (r ), (4)

where γ is a smoothing coefficient hyperparameter. According to Equation (4), the generalized
model parametersW (д) are updated by weight averages of their earlier versions and the root model
parameters W (r ). Thus, the self-ensembling method can make the generalized model learn from
the replaced worst degradations but eliminate pessimistic estimations.

Root Model Updating. Note that the generalized model’s parameters W (д) and M auxiliary

model’s parametersW (a)
m are derived from root model’s parametersW (r ). To perform model gener-

alization and update the root model, we first evaluate a consistent estimation between M auxiliary
models and the generalized model as follows:

J(W (a)
m ) =

KL(f (X ;W (д)), f (X ;W (a)
m ))

N
, (5)

where KL denotes the Kullback-Leibler divergence. It measures the difference between two proba-
bility distributions of the estimated worst degradations from auxiliary models and the generalized
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Fig. 7. Feature mapping and label variation after model updating. Sampling in clusters is used to update

labels. The new labels are adopted to update the ML model. The updated model brings feature mapping

variation. Labels are updated again by sampling according to the features.

model [35]. Furthermore, the average of M consistencies is used as a generalization loss shown as
follows:

Lдen(W
(r )) =

1

M

M∑
m=1

J(W (a)
m ), (6)

where

J(W (a)
m ) = J(W (r ) − α∇W (r )L(f (X ;W (r )), ŷ(m)), (7)

according to Equation (2). Thus, consistent estimations can be enforced by minimizing the gener-
alization loss Lдen(W (a)) to update the root model’s parameters with the generalization rate η as
follows:

W (r ) ←W (r ) − η∇W (r )Lдen(W
(r )). (8)

3.4 Alternative and Iterative Updating

The ML model is updated using labels that have been revised to reflect the worst degradations. This
updated model introduces variations in feature representation, necessitating another round of label
replacement as illustrated in Figure 7. Specifically, we employ cluster-based sampling to refresh
the labels. These newly updated labels are then used to adjust the ML model’s parameters. As a
result of this update, the model exhibits variations in its features, which requires us to replace the
worst degradations once more in alignment with the modified features. To improve the estimation
of the worst aging degradation in a dataset that may be underestimated, we propose a method that
alternates and iterates between updating the labels and the model parameters.

First, the root model and the generalized model are initialized by a pretrained ML model. They
have the same configurations. The model is trained several epochs on the original inaccurate
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dataset. MSE is used as a loss function at the pretraining stage as follows:

L(f (X ;W (p)),y) =
1

N
| | f (X ;W (p)) −y | |22 , (9)

where W (p) denotes the pretrained model parameters. The loss function is used to enforce the
estimated worst degradations f (X ;W (r )) close to the original worst degradationsy. It is minimized
by a gradient method with the learning rate β to update pretrained model parameters W (p) as
follows:

W (p) ←W (p) − β∇W (p)L(f (X ;W (p)),y). (10)

Sampling-based label replacement and consistent estimation-based parameter updating are then
performed alternately and iteratively. Ultimately, the parameters of the generalized model, de-
noted as W (д), are produced to estimate the worst degradations during the inference stage. This
model yields more accurate estimations compared to the root model and reduces pessimistic esti-
mations. This improvement occurs because it is updated using a self-ensembling method, which
is less directly influenced by the substituted worst degradations. Our Wages flow is summarized
in Algorithm 2.

ALGORITHM 2: Our Wages flow.

Input: The original training set D = {X ,y}.
1: Pretrain a model to obtainW (p); � Equation (10)
2: Initialize root model’s parameters W (r ) ← W (p), initialize generalized model’s parameters
W (д) ←W (p);

3: for each generalization epoch do

4: form = 1 : M do

5: Replace worst degradations ŷ(m); � Algorithm 1

6: Compute auxiliary model parametersW (a)
m ; � Equation (2)

7: Evaluate consistent estimation J(W (a)
m ); � Equation (5)

8: end for

9: Evaluate Lдen(W (r )); � Equation (6)

10: Update root model parametersW (r ); � Equation (8)
11: Compute generalized model parametersW (д); � Equation (4)
12: end for

13: return Generalized model with parametersW (д).

4 Data Preparation and ML Model

4.1 Data Preparation

Netlist Representation. Transistor aging analysis is conducted at the transistor-level netlist [15,
17, 18]. A netlist intrinsically represents a hypergraph [37]. In this representation, each device,
direct current (DC) source, or ground (GND) is considered a node, and each net is viewed as a
hyperedge, as depicted in Figure 8(a) and (b). It can be readily demonstrated that constructing a
hypergraph has a computational complexity ofO(p+q), wherep andq denote the numbers of nodes
and hyperedges, respectively. In contrast, the existing directed multigraph representation [25, 28,
36], as shown in Figure 8(c), requires the removal of all nets while preserving the connections,
resulting in a computational complexity of O(p2q). Consequently, the traditional directed graph
representation involves an additional graph transformation step, incurring extra runtime overhead.
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When compared with the directed multigraph construction [28, 36], the hypergraph construction
is computationally less complex.

Formally, the hypergraph representation transfers a transistor-level netlist to a hypergraph
G(V,E,R), where V and E are the node set and hyperedge set. In particular, R represents the
set of connection pin types since different pins need to be distinguished and they play an impor-
tant role in transistor aging. To distinguish the type of connection, Ψ = {(υ, e, r )} represents the
set of tuples and each element contains a node υ ∈ V, a hyperedge e ∈ E, and their connection
pin type r ∈ R. In practice, the connection pin types contain gate, drain, source, substrate, anode,
cathode, and others [38].

Example 1. Figure 8(a) and (b) provide a concrete example. The node set contains all devices,
DC source, and GND—that is, V = {VDD,M1,M2,M3, R1,R2,GND}. The hyperedge set is E =

{n1,n2,n3,n4,n5}. The set of connection pin types contains gate, source, drain, and others—that
is, R = {д, s,d,otr }. (M1,n2,д) ∈ Ψ since M1 is connected to n2 via д (gate).

In addition to circuit topology, parameters of all devices, DC, and GND must be collected. For
example, the channel length is one of the transistor’s parameters and the resistance value is a
resistor’s parameter. All parameters of each device, DC source, or GND are concatenated as their

feature vector. We denote the feature vector of the i-th device as f (0)i . All feature vectors in an

analog circuit are stacked as a feature matrix F (0).

Aging Degradation Generation. To train an ML model, we must generate a label indicating aging
degradation for each transistor to form a training dataset. In each design, the aging degradation
for every transistor is directly obtained from an industrial aging DFR tool, using a single circuit
stimulus provided by expert designers to minimize the cost of label collection. However, this ap-
proach may yield inaccurate labels in the training dataset. More specifically, the worst degradation
cases, denoted by ΔVth , are likely to be underestimated in the training dataset because they may
not be triggered by the particular circuit stimulus applied.

To evaluate an ML model’s performance, it is necessary to acquire the ground-truth worst degra-
dations. In industry, achieving a well-balanced tradeoff between simulation time and aging reliabil-
ity involves applying 10 different circuit stimuli for the same usage time to capture the worst-case
degradations for aging reliability assessment. Therefore, based on expert designers’ specifications,
we adhere to this industrial convention and randomly generate 10 distinct circuit stimuli for each
design. Static circuit stimuli are easier to specify and, as such, remain fixed in practice. Dynamic
circuit stimuli, however, present a more significant challenge in determining accurately. Conse-
quently, while the static stimuli are kept constant, we randomly assign 10 different dynamic stim-
uli to each transistor to elicit 10 varied aging degradations ΔVth using the aging DFR tool, as
illustrated in Figure 1.

In industrial aging analysis, each dynamic circuit stimulus is defined by its type and parameters.
For example, in Figure 1, SIN(0 1.1 120MEG 1NS) specifies a 120MHz sinusoid with 1.1V amplitude
and 1ns delay. The type of stimulus is hard to deform, whereas the parameters of the stimulus
are easy to disturb. Consequently, based on the circuit stimuli provided by expert designers, we
introduce random variations to all parameters within the dynamic circuit stimulus, including pulse
characteristics like fall time, rise time, and width, as well as frequency divider attributes like ratio,
transition time, and average delay. Each parameter undergoes a random shift that conforms to a
standard normal distribution and is then scaled by a factor equivalent to the parameter’s original
value. The worst degradation ΔVth , or ground truth, for each transistor is determined by taking
the maximum value from the 10 distinct degradation measurements.
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Fig. 8. (a) Netlist. (b) Hypergraph. (c) Directed multigraph [28, 36].

4.2 ML Model

An analog circuit is modeled as a hypergraph. However, this hypergraph constitutes irregular
grid-based data, which do not align as neatly with the operations of convolution and pooling
found in convolutional neural networks [23, 24]. To address this, graph neural networks have been
developed to handle ML tasks on such irregular data structures [39, 40]. Leveraging the hypergraph
representation, we have devised a custom node embedding method that encapsulates each device
and its surrounding topology (the subcircuit) into a feature vector.

To distinguish among different pins, based on the traditional hypergraph [41], we introduce
|R| incidence matrices—that is, Hr ∈ R

|V |× |E | for ∀r ∈ R, where | · | is the set cardinality. Each
connection pin type has one incidence matrix. The topology is encoded as |R| incidence matrices
Hr , with entries defined as follows:

h(v, e)r =

{
1, (υ, e, r ) ∈ Ψ

0, o.w.
, (11)

where v ∈ V and e ∈ E. Equation (11) indicates that the entry value is 1 if a hyperedge e is
connected to a node υ via its pin r .

Example 2. Figure 8(b) and Equation (12) provide a concrete example. According to Figure 8(b),
only devices M1 and M2 are connected to the net n2 via д (gate). Therefore, the corresponding
entries are 1 and the rest are 0:

Hд =

M1
M2
M3
R1
R2

VDD
GND

n1 n2 n3 n4 n5�����������

0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

����������	
.

(12)

To distinguish among different pin types, we assign |R| trainable model parameterswr for ∀r ∈
R. To aggregate information from neighbors to the node itself in a hypergraph, we customize a
node embedding as follows:

F (l−1)
N
=

(∑
r ∈R

wrHr

) (∑
r ∈R

Hr

)�
F (l−1), (13)

F (l ) =σ
(
CONCAT

(
F (l−1)
N
, F (l−1)

)
·W (l )

)
, (14)
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Fig. 9. Node embedding in our HyperGNN.

where F (l )
N

is the feature representation of neighboring nodes. F (l ) is the feature representation of

all nodes. l means the l-th encoding. The initial feature representation F (0) is the device’s parame-
ters given from the netlist. For example, the channel length is one of the transistor’s parameters.
wr is a trainable model parameter for the type-r pin. CONCAT(·) is the concatenation operation.
W (l ) is trainable model parameters, and σ (·) is ReLU function. Essentially, W (l ) and σ (·) form a
typical fully connected (FC) layer to extract features from neighbor nodes and the node itself. As
shown in Figure 9,

∑
r ∈RH�r is used to aggregate information from neighbor nodes to the hyper-

edge itself.
∑

r ∈RwrHr is adopted to aggregate information from neighbor hyperedges to the node
itself. The node embedding, as shown in Equations (13) and (14), is recursively and sequentially
performed L times. Each transistor and its L-hop neighbor topology (subcircuit) are encoded as a
feature vector.

Based on our node embedding method, we design an ML model to estimate the worst degrada-
tion of each transistor. Our model contains L node embeddings and a Multilayer Perceptron

(MLP), where the MLP takes node embedding features and usage time τ as inputs. Since the
aging effect is associated with usage time. Our model is simply expressed as f (X ;W ), where
X = {H , F (0),τ }, H = {Hr ,∀r ∈ R}, and |R| incidence matrices Hr are used to encode the topol-
ogy of the hypergraph. τ = {1, 10} since typically, in industry, 1 and 10 aging years are used to
evaluate reliability. F (0) is the initial features of all nodes.W denotes model parameters, including
wr andW (l ).

In practice, the analysis of large-scale analog circuits introduces scalability challenges due to
the substantial amount of training time and memory resources required. The primary cause is the
iterative generation of node embeddings from neighboring nodes, as detailed in Equations (13) and
(14). Specifically, the embedding features are extracted from an L-hop neighborhood subcircuit. In
such cases, the intricate topology of analog circuits results in L-hop neighborhood subcircuits that
are extensive in scale. To effectively manage scalability for large-scale graphs, we employ a graph
clustering approach [42], supplemented by hypergraph partitioning techniques [37].

The adopted graph clustering method is shown in Algorithm 3. It takes the incidence matrices
H =

∑
r ∈RHr , feature matrix F (0) of the whole hypergraph representing an analog circuit, usage

time τ , and the original worst degradationsy as inputs. First, the hypergraph partitioning method
[37] is utilized to partition all nodes into c non-overlapping clusters V1,V2, · · · ,Vc , where Vi is the
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ALGORITHM 3: The graph clustering method with hypergraph partitioning.

Input: Incidence matrix H =
∑

r ∈RHr , feature matrix F (0), usage time τ , and the original worst
degradations y.

1: Construct a hypergraph G via incidence matrix H ;
2: Utilize the hypergraph partitioning method [37] to partition all nodes of G into c non-

overlapping clusters V1,V2, · · · ,Vc ;
3: for Each epoch do

4: Randomly select q clusters from c clusters to generate a subgraph Gs with nodes V =

{Vt1,Vt2, · · · ,Vtq} and the worst degradations ys of all nodes in Gs ;

5: Extract Xs = {Hs , F
(0)
s ,τ } from the subgraph Gs and input Xs and ys input into

Algorithm 2 to perform training;
6: end for

7: return Generalized model with parametersW (д).

i-th cluster node set. Then q clusters are randomly selected to generate a subgraph Gs with nodes
V = {Vt1,Vt2, · · · ,Vtq} and the worst degradations ys of its all transistor nodes for training,
where Vt i is the i-th selected node set. The random cluster selection scheme can help prevent
information loss that might occur due to hypergraph partitioning [42]. The core strategy hinges on
the ability to generate different subgraphs in various training epochs. Consequently, this approach
to graph clustering can enhance both robustness and scalability. Moreover, when compared with
the neighborhood expansion-based sampling method [28], our method not only reduces runtime
but also minimizes information loss. Employing the ML model trained with our proposed Wages
on an underestimated dataset, alongside the graph clustering method, we anticipate a substantial
reduction in the costs associated with label collection while maintaining a minimal estimation
error for the worst aging degradations.

5 Experimental Results

5.1 Benchmarks and Experimental Setting

Given the significant aging-related wear-out observed at the 5nm technology node within the in-
dustry, our experiments were conducted on eight different industrial phase-locked loop (PLL)

designs, all implemented using cutting-edge 5nm technology. The characteristics of the industrial
PLL designs are summarized in Table 1, which indicates that most designs are of a large scale. They
are documented in both Spectre and SPICE formats [43]. These designs incorporate 32 distinct
types of basic devices and 153 different device parameters. Based on their types and device param-
eters, we have categorized them into six groups, as depicted in Table 2. This table also enumerates
the number of parameters for each device category. Typical parameters include the channel length
for transistors and the resistance value for resistors.

To assess the estimation performance and generalization abilities of the model, both inference
and training were conducted eight times. In each iteration, one of the eight designs was selected for
testing while the remaining designs were used for training. The aging degradation was quantified
by measuring the increase in threshold voltage ΔVth between fresh and after 1- or 10-year periods
of usage, attributable to HCI and BTI [44].

In our Wages as shown in Algorithm 2, we set the number of nearest neighbors k = 10, the
predicted degradation number M = 10, the steeping coefficient κ = 2, the step size α = 0.2,
the smoothing coefficient γ = 0.9, and the learning rate β = η = 10−5. The generalization
epoch is 50. The selected sample number ρ is half the total transistors in the training set. These
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Table 1. Description of Our Benchmarks

Design #Transistors #Devices #Nets

1 4,348 99,009 18,155
2 4,382 99,696 18,299
3 3,999 179,758 31,303
4 3,998 185,480 33,819
5 4,980 692,480 111,308
6 523 31,279 6,002
7 6,398 452,109 76,807
8 1,998 96,749 16,006

Table 2. Device Type and Number of Their Parameters

Type #Parameters

Transistor 51
SPICE Transistor 75

Electrostatic Discharge/Diode 8
Capacitor 12
Resistor 6

DC Source 1

hyperparameters are determined by the grid search method [45]. In other words, the domain of
the hyperparameters is divided into a discrete grid. Then, every combination of values of this grid
is tried by calculating empirical loss using cross validation. Stochastic gradient descent is used for
optimization.

Our ML model is configured by the L = ϵ = 3 node embeddings with 512 output feature size and
an MLP, which consists of four FC layers with 4, 096, 4, 096, 1, 000, and 1 output feature size. In
the same manner, these configurations are determined by the grid search method [45]. We exploit
Algorithm 3 to achieve enough scalability on large-scale graphs. The node number in each cluster
is 50, and the random selection number is 20 in Algorithm 3. The number of training epochs is 200.

The feature representation is implemented with Python and NetworkX [48]. All ML models,
including our ML model and some baseline models, are implemented with TensorFlow [49], and
are trained and tested on a Linux machine with 18 cores and an NVIDIA Tesla V100 GPU with
32GB of memory. We use mean absolute error (MAE) and the R2 score [50] to evaluate the
absolute and relative accuracy of the testing set. A lower MAE or higher R2 score means better
accuracy.

5.2 Comparison with the Traditional Training Method

To demonstrate that our Wages method can provide fast and accurate estimations while reducing
the cost of label collection, we trained our ML model using the traditional approach on costly
ground-truth degradation data. In contrast, we applied our Wages to aging degradations induced
by a single circuit stimulus for each design.

According to Figures 10 and 11, the accuracies of our Wages are very close to the model trained
on ground-truth worst degradations by the traditional method. The reasons are that inaccurate
labels are calibrated by the proposed sampling-based method on the feature space of the transistor
and its neighborhood subcircuit and the model parameters are updated by the proposed consis-
tent estimation for the worst degradation. Label updating and model updating are alternatively
performed to train the ML model on the underestimated dataset. In addition, compared with the
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Fig. 10. Accuracies between traditional training with ground-truth and our Wages training w.o. ground-truth

in 1-year transistor aging simulation.

Fig. 11. Accuracies between traditional training with ground-truth and our Wages training w.o. ground-truth

in 10-year transistor aging simulation.

Fig. 12. Running time in training and simulation.

accuracy on the 1-year case as shown in Figure 10, our model can achieve a more accurate rela-
tive estimation (R2) on the 10-year case as shown in Figure 11. The main reason is that the 1-year
degradation is less than the 10-year degradation, causing more relative estimation error.

We present the running times and their detailed comparison between the traditional method,
which relies on ground-truth degradations, and our Wages, which uses aging degradations induced
by a single circuit stimulus for each design, as illustrated in Figure 12. The running time for the
1-year worst-case aging estimation model is equivalent to that of the 10-year model; therefore, we
only detail the running time for the latter. The phrase “sim. w. ten stress” refers to the running
time for 10 simulations needed to acquire ground-truth degradations, and “sim. w. one stress”
indicates the running time for a single simulation with only one stimulus. The phrase “typical train”
describes the traditional training method where the model is trained on ground-truth degradations
and “gen. train” refers to the training method where the model is trained on aging degradations
induced by just one stimulus for each design. The left bars represent the total training time for our
ML model using the traditional method on ground-truth degradations, which is the sum of “sim.
w. ten stress” and “typical train.” The right bars represent the total time for our Wages, which is
the combination of “sim. w. one stress” and “gen. train.”
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Table 3. Accuracies (MAE (mV) and R2) among the Industrial DFR Tool and ML Methods in 1 Year

Design 1 2 3 4 5 6 7 8 Ave.

Industrial tool

Static
MAE 1.026 1.041 1.138 1.146 1.080 0.972 1.113 1.136 1.082

R2 0.169 0.172 0.327 0.318 0.369 0.398 0.291 0.294 0.292

Dynamic
Random ave.

MAE 0.400 0.467 0.419 0.352 0.394 0.347 0.316 0.324 0.377
R2 0.661 0.672 0.837 0.823 0.782 0.781 0.843 0.869 0.784

Expert
MAE 0.141 0.157 0.398 0.411 0.342 0.224 0.248 0.319 0.280

R2 0.832 0.849 0.863 0.848 0.852 0.921 0.923 0.919 0.876

ML methods

GPR [46]
MAE 0.847 0.863 1.196 1.098 1.015 0.987 1.082 1.075 1.020

R2 0.324 0.459 0.269 0.261 0.309 0.342 0.286 0.303 0.319

GraphSAGE [39]
MAE 0.419 0.433 0.605 0.727 0.647 0.648 0.509 0.542 0.566

R2 0.524 0.476 0.458 0.453 0.573 0.568 0.587 0.616 0.532

RGCN [47]
MAE 0.317 0.364 0.461 0.478 0.536 0.464 0.425 0.453 0.437

R2 0.732 0.591 0.689 0.726 0.692 0.687 0.722 0.794 0.704

DHGCN [28]
MAE 0.325 0.366 0.468 0.493 0.534 0.448 0.408 0.428 0.434

R2 0.698 0.590 0.682 0.729 0.695 0.683 0.784 0.811 0.709

HyperGCN [41]
MAE 0.402 0.407 0.566 0.635 0.547 0.602 0.440 0.513 0.514

R2 0.609 0.527 0.603 0.612 0.628 0.619 0.713 0.751 0.633

Wages
MAE 0.154 0.176 0.412 0.407 0.336 0.284 0.277 0.303 0.294

R2 0.853 0.827 0.839 0.815 0.844 0.867 0.881 0.903 0.854

To train the ML model using ground-truth degradations, 10 simulations with various circuit
stimuli are necessary. These simulations significantly increase the running time overhead, making
the acquisition of ground-truth degradations exceedingly costly. Conversely, in our Wages method,
only a single circuit stimulus is required for each design to conduct a simulation and acquire
training labels. As a result, Wages incurs a lower running time overhead for the entire workflow,
which includes both simulations and training, even though it introduces a greater running time
overhead during the training stage.

5.3 Comparison with the Industrial Aging DFR Tool

We compare the estimation accuracies and running times of the industrial aging DFR tool as in-
dicated in Tables 3 through 5. “Static” and “Dynamic” refer to static and dynamic simulations,
respectively [17]. Both types of simulations take a transistor-level netlist and stimuli as inputs.
Unlike static simulation, traditional dynamic simulation accounts for dynamic stimuli, including
behavioral signals, frequency dividers, and piece-wise linear inputs, thus requiring a significant
number of acceptable transient analysis steps. Dynamic simulation is capable of producing a more
precise estimation of aging-induced transistor degradation, albeit at the expense of increased com-
putation time. The phrase “random ave.” represents the average estimation accuracy obtained from
10 random and varying stimuli using dynamic simulation.

Our Wages method surpasses static aging simulation because the latter does not account for
any dynamic circuit stimuli. Furthermore, Wages exceeds the average accuracy of dynamic aging
simulations. In addition, Wages can attain accuracy comparable to that of the industrial DFR tool
when using circuit stimuli provided by expert designers. When compared to the industrial DFR
tool, Wages achieves a significant speedup due to the absence of time-consuming SPICE simula-
tions. As indicated in Table 5, Wages achieves an average speedup of 347.053× over dynamic aging
simulations and 60.526× over static aging simulations when using the industrial DFR tool.

5.4 Comparison with Existing ML Models

To compare with the traditional ML method and the state-of-the-art ML models trained by tra-
ditional training methods, we implement GraphSAGE [39], DHGCN [28], RGCN [47], and Hy-
perGCN [41] with the same configurations and Gaussian Process Regression (GPR) [46], as
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Table 4. Accuracies (MAE (mV) and R2) among the Industrial DFR Tool and ML Methods in 10 Years

Design 1 2 3 4 5 6 7 8 Ave.

Industrial tool

Static
MAE 4.133 4.156 4.56 4.582 4.318 3.968 4.48 4.619 4.352

R2 0.172 0.170 0.315 0.322 0.381 0.417 0.309 0.287 0.297

Dynamic
Random ave.

MAE 1.578 1.869 1.677 1.487 1.638 1.434 1.292 1.392 1.546
R2 0.654 0.66 0.825 0.800 0.761 0.774 0.839 0.863 0.772

Expert
MAE 0.602 0.667 1.635 1.683 1.407 0.935 0.994 1.287 1.151

R2 0.829 0.855 0.870 0.837 0.831 0.917 0.920 0.923 0.873

ML methods

GPR [46]
MAE 3.401 3.447 4.982 4.793 4.460 4.132 4.512 4.603 4.291

R2 0.312 0.461 0.267 0.252 0.313 0.334 0.281 0.298 0.315

GraphSAGE [39]
MAE 1.714 1.771 2.819 2.946 2.548 2.633 2.074 2.207 2.339

R2 0.512 0.483 0.451 0.464 0.580 0.573 0.592 0.625 0.535

RGCN [47]
MAE 1.312 1.499 1.883 1.951 2.183 1.896 1.742 1.850 1.790

R2 0.725 0.608 0.701 0.732 0.704 0.692 0.736 0.803 0.713

DHGCN [28]
MAE 1.339 1.508 1.916 2.004 2.175 1.830 1.677 1.793 1.780

R2 0.702 0.582 0.685 0.736 0.697 0.688 0.781 0.827 0.712

HyperGCN [41]
MAE 1.649 1.673 2.318 2.584 2.230 2.447 1.801 2.005 2.088

R2 0.617 0.531 0.598 0.629 0.635 0.611 0.722 0.764 0.638

Wages
MAE 0.578 0.694 1.597 1.673 1.385 1.176 1.067 1.253 1.178

R2 0.861 0.839 0.894 0.843 0.857 0.892 0.913 0.936 0.879

Table 5. Running Time (s)

Design
Industrial DFR Tool ML Methods
Static Dynamic DHGCN [28] Wages

1 974 23,705 50 47
2 3,759 19,660 50 46
3 6,695 45,526 107 87
4 4,032 22,474 110 85
5 15,347 90,553 472 265
6 499 8,396 30 11
7 11,837 57,074 320 193
8 2,853 16,889 37 29

Ave. 5,750 35,535 147 95
Ratio 60.526 347.053 1.547 1.000

baseline models. Wages trains our model. Besides, the directed multigraph representation [28, 36]
is used in GraphSAGE [39], RGCN [47], and DHGCN [28] since they cannot perform ML tasks on
a hypergraph. The hypergraph representation is adopted in HyperGCN [41] and our ML model.
Different pins are not distinguished in GraphSAGE [39] and HyperGCN [41]. DHGCN [28], RGCN
[47], and our ML model can distinguish among them.

Among ML methods, as shown in Tables 3 and 4, our Wages can achieve the best accuracies
since underestimated labels bring estimation performance degradation to ML models trained by
the traditional method. GPR cannot consider circuit topology information, and this shallow model
cannot extract features by task orientation [16, 24]. Besides, the maximum marginal likelihood-
based training metric [46] makes it hard to handle inaccurate label scenarios. GraphSAGE [39]
and HyperGCN [41] cannot model the analog circuit heterogeneity. However, our Wages adopts
a domain generalization methodology to achieve a more accurate estimation of the worst aging
degradations. Besides, compared with DHGCN [28], as shown in Table 5, our Wages can achieve
1.547× speedup on average since there is no extra graph transformation in our ML model, whereas
DHGCN [28] adopts the directed multigraph representation, where all nets need to be removed
while the connections are retained.
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6 Conclusion and Future Work

In this article, we introduced Wages, a novel approach that utilizes domain generalization tech-
niques to train ML models on inaccurate datasets for the purpose of estimating worst-case aging
degradation. This approach is inspired by the prevalence of similar subcircuits within large-scale
analog designs. To compensate for unreliable labels, we developed a sampling-based method that
operates within the feature space of a transistor and its neighboring subcircuit. Label and model up-
dates were performed alternately, enabling the training of an ML model on the inaccurate dataset.
Our approach was validated through several industrial benchmarks on the advanced 5nm tech-
nology node, demonstrating Wages’ capacity for efficient training along with quick and precise
estimation of the worst degradation. Our methodology is readily adaptable to other worst reliabil-
ity analyses.

In the future, we aim to incorporate the ML-based aging reliability model into various design
stages, including sizing, placement, and routing, to streamline the design closure process. We also
plan to investigate additional techniques to balance runtime and accuracy more effectively. For
instance, integrating predictions from the industrial aging DFR tool as supplementary data inputs
to the learning model could be beneficial. Customized transfer learning will be explored to adapt a
model across different technological contexts. Further consideration must be given to the dynamic
and complex nature of circuit degradation prediction, which often involves time-dependent vari-
ations in circuit dynamic stimuli, such as behavioral signals and frequency dividers, along with
circuit usage time. We are committed to investigating more sophisticated techniques to address
this challenging issue.
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