
Routability-Driven and Fence-Aware Legalization
for Mixed-Cell-Height Circuits

Haocheng Li
CSE Department, CUHK
hcli@cse.cuhk.edu.hk

Wing-Kai Chow
Cadence Design System Inc.
wkchow@cadence.com

Gengjie Chen
CSE Department, CUHK
gjchen@cse.cuhk.edu.hk

Evangeline F. Y. Young
CSE Department, CUHK
fyyoung@cse.cuhk.edu.hk

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

ABSTRACT
Placement is one of the most critical stages in the physical synthesis
flow. Circuits with increasing numbers of cells of multi-row height have
brought challenges to traditional placers on efficiency and effectiveness.
Furthermore, constraints on fence region and routability (e.g., edge
spacing, pin access/short) should be considered, besides providing an
overlap-free solution close to the global placement (GP) solution and ful-
filling the power and ground (P/G) alignments. In this paper, we propose
a legalization method for mixed-cell-height circuits by a window-based
cell insertion technique and two post-processing network-flow-based
optimizations. Compared with the champion of the IC/CAD 2017 Con-
test, our algorithm achieves 18% and 12% less average and maximum
displacement respectively as well as significantly fewer routability vio-
lations. Comparing our algorithm with the state-of-the-art algorithms
on this problem, there is a 9% improvement in total displacement with
20% less running time.

1 INTRODUCTION
With the continuous shrinking of the semiconductor feature size to
7 nm [1], the number of in-cell tracks diminishes significantly and
the internal routability within a standard cell becomes inadequate. In
sub-10 nm technology nodes, there are cells of just six-track-high [2],
which results in difficulties in designing complex standard cells like
multiplexers [3] and multi-bit flip-flops [4] with high driving strength.
To achieve ascending performance and efficiency, complex cells are
now designed with multi-row-height [5], while simple cells remain
single-row-height for area efficiency.

Previous works on legalization algorithm for mixed-cell-height cir-
cuits can be categorized into three types [6]. (1) One honors the hori-
zontal cell order of GP. For example, Wang et al. [7] extend the dynamic-
programming-based single-row-cell legalizer Abacus [8] for multi-row
cells. They legalize cells from left to right and evaluate the cost of plac-
ing a cell in different rows while considering the dead-space created.
Chen et al. [9] formulate the legalization problem as a quadratic pro-
gram with a quadratic displacement objective and transform it into
a linear complementary problem (LCP) by the Karush-Kuhn-Tucker
(KKT) conditions. It should be noted there are several recent ordered
legalization algorithms under single-row-cell scenario (e.g., [10, 11]).
However, as a strong and unnecessary constraint, maintaining the cell
order of GP highly restricts the solution space, thus it may result in poor

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196107

Cell
M1 Cell Pin
M2 Cell Pin
M1 Rail
M2 Rail

Pin Access

Pin Short

Figure 1: Pin access and pin short.

results especially for a dense design. (2) The second type is free from the
artificial restriction on cell order. Chow et al. [12] propose a multi-row
local legalization (MLL) algorithm, which explores different row assign-
ments and cell order in a window around the GP location of each cell. It
sequentially legalizes cells by maintaining the row assignments and rel-
ative order of the previously legalized cells. For each new cell, different
row and order assignments are attempted, where the total displacement
is minimized by shifting cells horizontally. Its major limitation is that
the minimized displacement is w.r.t the current locations of the cells,
which can be accumulated to large displacements from GP locations
after many iterations. MrDP [13] proposes a wirelength-driven legal-
ization based on a chain move scheme and extends a dual min-cost flow
(MCF) method [14] from single- to multi-row cells for post-refinement.
A potential problem is that an objective of half-perimeter wire-length
(HPWL) instead of displacement in legalization may disturb some other
metrics optimized in GP. (3) There are some recent works that legalize
mixed-cell-height circuits with additional constraints like IR drops [2]
and minimum implant area (MIA) [15]. However, none of the previous
works solve the problem comprehensively. Some of them target at min-
imizing HPWL while some focus on the total displacement, but none of
them simultaneously handle other important measures and constraints
like the existence of fence region and routability issues which include
pin access, pin short and edge spacing.

In this paper, we present a fast and high-quality legalization frame-
work for standard cells with mixed cell heights, which outperforms the
state-of-the-art under the displacement objective. Our major contribu-
tions are as follows.
• We develop a mixed-cell-height circuit legalizer optimizing the
maximum and average displacementwith constraints on routabil-
ity and fences.
• We devise a method called multi-row global legalization (MGL)
that inserts a cell optimally into a window, minimizing an av-
erage displacement of all the cells in the region from their GP
positions.
• A bipartite graph matching is devised to minimize the maximum
displacement among a group of cells that can exchange their
positions without creating additional violations.
• We extend the min-cost flow (MCF) formulation of the fixed-row-
and-order problem to one that optimizes a weighted sum of the
maximum and average displacement, with range constraints on
the cell movements to avoid pin short and pin access violations.

https://doi.org/10.1145/3195970.3196107

The rest of the paper is organized as follows. Section 2 illustrates
the problem formulation and constraints. Section 3 provides a detailed
explanation of our proposed techniques. Section 4 verifies the effective-
ness of our approach, followed by a conclusion in Section 5.

2 PROBLEM FORMULATION
Given a set ofm multi-row height cells C = {c1, c2, · · · , cm }. The cell
height and displacement are measured in terms of the number of single
row heights. Let H be the largest cell height, Ch ⊆ C be then set of
cells whose height is h. The problem is to place each cell ci from global
placement (GP) (x ′i ,y

′
i) into (xi ,yi) with a corresponding displacement:

δi = δx i + δy i = |xi − x
′
i | + |yi − y

′
i |, (1)

such that the maximum and average displacement is minimized. Here,
the average displacement Sam is weighted by the number of cells of
the same height:

Sam =
1
H

H∑
h=1

1
|Ch |

∑
ci ∈Ch

δi , (2)

which is the metric used in the IC/CAD 2017 Contest [16].
Besides, cells should be overlap-free and aligned to placement sites

of the chip. The power and ground (P/G) alignment and the fence
region constraint are treated as hard constraints: (1) Cells with even cell
heights must be placed in alternate rows with aligned P/G rails [12];
(2) Cells assigned to a fence region must be placed inside the fence
boundary [17]. Note that cells of odd cell heights have no restriction
on the row assignments because they can be flipped to align with the
P/G rails.

The routability constraints including edge spacing and pin access/short
are considered as soft constraints [18]:
• A minimum spacing is required between any two cell edges;
• Signal pins of cells should not be short or inaccessible due to the
P/G grids and IO pins.

Note that a signal pin on metal layer k is short if it overlaps with a P/G
rail or an IO pin on metal layer k ; it is inaccessible if it overlaps with a
P/G rail or an IO pin on metal layer k + 1 [19]. As shown in Figure 1,
the left pin on metal layer one (M1) has pin access problem with the
rail on metal layer two (M2), and the M2 pin is short with the M2 rail.
In modern chip design, the P/G rails are usually regular grids running
horizontally and vertically in alternate metal layers [16].

3 ALGORITHMS

Legalization

MGL

Max Displacement
Optimization

Bipartite Matching

Fixed Row & Fixed
Order Optimization

Dual Min Cost Flow

Figure 2: The proposed legalization flow.

The overall algorithmic flow is illustrated in Figure 2, which consists
of three stages. (1) Given a GP solution with multi-row height cells,
we will first legalize it by MGL which inserts the cells sequentially
into the placement region. Note that a cell may belong to a specific
fence region. Cells that do not belong to any fence regions should be
placed in the default fence region which is the region outside all the
given fence regions. (2) Next, the maximum displacement is optimized
by swapping cells of the same type in the same fence region while
maintaining the average displacement. (3) Finally, keeping the rows
and cell order unchanged, the average and maximum displacement is
further optimized. Details of these three major steps will be explained
in the following sub-sections.

0 1 2 3 4 5 6 7 8

ct

c1

c2

c3

c4

(a)

0 1 2 3 4 5 6 7 8

c1

c2

c3

c4

(b)

0 1 2 3 4 5 6 7 8

ct

c1

c2

c3

c4

(c)

0 1 2 3 4 5 6 7 8

ct

c1

c2

c3

c4

(d)

Figure 3: Comparison between MLL and MGL: (a) GP; (b) Four
cells legalized; Final results of minimizing the total displace-
ment w.r.t. (c) current locations (MLL) and (d) GP locations
(MGL).

−2
0
2
4

a
xt

D
is
p.

Type A

−2
0
2
4

b
xt

Type B

−2
0
2
4

a c
xt

Type C

−2
0
2
4

d b
xt

Type D

Figure 4: Four types of displacement curves.

3.1 Legalization
In this section, we will introduce the multi-row global legalization
(MGL) method which legalizes cells sequentially to minimize the aver-
age and maximum displacement from the given GP positions.

MGL legalizes cells sequentially and is inspired by MLL [12]. Differ-
ent from MLL that calculates displacement based on the current cell
locations and can eventually accumulate a large displacement w.r.t. GP
locations, MGL minimizes the displacement from GP locations directly.
Figure 3 illustrates an example, where the given GP positions are shown
in Figure 3(a). Suppose cells c1 – c4 are legalized before target cell ct
is inserted as in Figure 3(b), which already has a total displacement of
two. In Figure 3(c), MLL optimizes the total displacement w.r.t. current
locations and achieves a value of one. However, the total displacement
from GP position is actually three. Figure 3(d) shows the result with
minimized total displacement from GP positions (i.e., two) produced by
MGL.

Algorithm 1 shows the flow of MGL. When legalizing a target cell
ct , a window rt around its GP location will be considered. Meanwhile,
legalized cells that lie completely within rt are referred as local cells,
which can be shifted for legalizing ct . In MGL, the row and order
assignment of local cells are fixed, but that of ct will be enumerated and
evaluated. With local cells’ row and their relative order fixed, inserting
ct with height h implies that we need to place ct in some gaps between
the legalized cells in h consecutive rows. A combination of those gaps
for inserting ct is an insertion point. For a given ct and rt , MGL first
obtains all the legal insertion points by using the enumerating method
in [12] (line 1). It then calculates the optimal displacement cost of all the
insertion points (lines 2-11). The displacement curve, which represents
the cost of each insertion point with varied x-coordinate of ct , can
be constructed by adding up the all displacement curves of the local
cells and ct . The construction of the curves will be explained in more
details later. The best position to insert ct with an insertion point is the
position with the lowest cost on the displacement curve. After inserting
ct at the position with the lowest cost, local cells will be shifted to the
left or right to legalize the placement (lines 12-13). The windows size
will increase if ct cannot be inserted.

In MLL, when a valid insertion point p is considered, there are only
two types of displacement curves for any local cell as illustrated by
type A and B in Figure 4 in which the horizontal axis is the x-position
of the target cell and the vertical axis is the displacement contributed
by the local cell. The curves are of these shapes since we are measuring

the distance from the original positions of the local cells before the
target cell is inserted. Cells on the right (left) of p in the window have
displacement curves of type A (B) because they may be pushed to the
right (left) by placing the target cell at different positions. The turning
points of these curves are called critical positions [12]. Since there are
only these two types of curves in MLL, the optimal position to place
the target cell can be obtained efficiently by finding the median of all
these critical positions.

Algorithm 1 MGL

Input: Window rt , GP position (x ′t ,y
′
t) of target cell ct .

Output: Legal positions of ct and local cells.
1: Find candidate insertion points {pi } in rt ;
2: for all pi ∈ {pi } do
3: for all breakpoint b do
4: Store (xb , left slope of b, right slope of b) in points;
5: end for
6: Sort points;
7: Construct total displacement curve of ct and local cells;
8: di ← optimal displacement;
9: x it ← optimal x-coordinate;
10: yit ← y-coordinate of pi ;
11: end for
12: j ← argmini di ;
13: Place ct at (x

j
t ,y

j
t) and spread local cells;

In MGL, the scenario is more complicated since the displacement
is counted w.r.t. the given GP position. There are two more types of
displacement curves as illustrated by types A – D in Figure 4. Consid-
ering the local cells on the right of a valid insertion point p, there are
two possible types of curves A and C . Cells with their GP positions
at or on the left of their current positions have displacement curves
type A because the target cell will only push them further to the right
from their GP positions. For cells with their GP positions on the right
of their current positions will have displacement curve type C . The
turning points on these curves are either critical positions as in MLL
(those labeled by a) or positions computable from the GP positions
of the local cells (those labeled by c). We call all these turning points
breakpoints. Similarly, for local cells which are on the left of the valid
insertion points, their displacement curves will be of types B and D.
Theorem 1 states that the final displacement curve is convex if the local
cells are originally at their optimal positions w.r.t. their GP positions,
before the target cell is inserted.
Theorem 1. Consider a windowW containing a target position (x ′t ,y

′
t),

a set S of local cells lying completely insideW and a target cell ct to
be inserted intoW . If all the cells in S are originally placed at optimal
positions (total displacement is the smallest under the fixed row & fixed
order constraint) w.r.t their GP positions, the displacement curve, where
the x-axis is the position of the target cell xt , obtained by adding up the
displacement curves of all the cells in S is convex and piecewise linear.

The proof is skipped here due to the lack of space. The pre-condition
of having the local cells at optimal positions w.r.t. their GP positions
would require running a min-cost flow (MCF) before invoking MGL
that will lengthen the running time. Therefore, in our implementation,
we will compute the cost at each breakpoint to find the optimal position.
Since the number of breakpoints is linear with the number of local cells,
so the optimal positions can be found very efficiently.

3.2 Maximum Displacement Optimization
In this section, we will present the maximum displacement optimization
method in a legal placement. Recall that in MGL, each cell is processed

sequentially and it will then be fixed to a segment once placed. The
maximum displacement can be further reduced if the row assignments
can be changed, especially for the cells being placed near the end of
MGL. It is inevitable to place them with large displacements if the
regions around their GP locations are dense. Figure 6(a) shows the
displacement of a cell type in a fence region. Each rectangle represents
a cell. Red cells are of the same type and gray cells are of other types.
The red lines connect cells to their corresponding GP positions. We can
see that some cells are placed to even tens of rows away from their GP
positions.

To reduce the maximum displacement without creating violations
in the legal placement, we perform a min-cost bipartite matching to
optimize the maximum displacement for each cell type in each fence
region. Given a bipartite graph G = (CT , PT ,CT × PT) on a subset of
cells of the same type CT ⊆ C and the current positions PT ⊆ P of the
cells in CT , any cell ci ∈ CT can take up the positions pj = (x j ,yj) of
another cell c j to minimize themaximum displacement without creating
any violations. The problem is to find a perfect matching S ⊆ CT × PT
between cells and positions with theminimum total cost

∑
(ci ,pj)∈S Di, j ,

where Di, j = ϕ(|x j − x
′
i | + |yj − y

′
i |) and ϕ(δ) is defined as a strictly

increasing function such that it is linear when δ is small to preserve
the average displacement. After a certain threshold of δ , ϕ will increase
rapidly in order to discourage large displacement. Here, we have:

ϕ(δ) =

{
δ , δ ≤ δ0,
δ 5

δ 4
0
, otherwise, (3)

where δ0 is the tolerable maximum displacement threshold. This min-
cost perfect matching problem can be optimally solved by formulating
as an MCF problem [20].

There are previous works that use bipartite matching in detailed
placement to minimize HPWL [21] but only those cells on "indepen-
dent" nets can be optimized simultaneously. Here the cost function ϕ is
defined in such a way that both the average and maximum displacement
are handled and all the cells of the same type can be optimized.

3.3 Fixed Row & Fixed Order Optimization
After the matching-based maximum displacement optimization, we per-
form a final post-processing refinement to further reduce the maximum
and average displacement by shifting the cells locally without changing
the cell order and row assignments. Taking the objective of the total
displacement as an example, given a set ofm multi-row height cells
C = {ci }, the problem can be formulated as a linear program (LP):

min
xi

∑
i
niδx i (4)

s.t. xi +wi ≤ x j , ∀(i, j) ∈ E, (4a)
li ≤ xi ≤ ri , ∀ci ∈ C, (4b)

where ni is the weight on the x-displacement δx i of cell ci , wi is the
width of ci , li and ri are the left and right boundary of the segment
containing ci , E is the set of neighboring pairs where (i, j) ∈ E if and
only if ci is the left neighbor of c j on some rows.

The LP in (4) can be converted to a dual MCF problem and effectively
solved [13, 14]. Compared to the MCF formulation in [13], our trans-
formation to MCF has three strengths. (1) There are significantly fewer
vertices in the flow network, which is more efficient. (2) The maximum
and average displacement are optimized simultaneously. (3) Weight ni
is set according to (2), while it is ignored (i.e., all one) in [13].

To obtain the MCF formulation, we first split the x-displacement δx i
in (4) to a pair of variables x−i and x+i and achieve (5).

In (5c) and (5d), {x li } and {x
r
i } are auxiliary variables, CL is the set

of left-most cells in at least one of the segments and CR is the set of

max
xi ,x−i ,x

+
i ,x

l
i ,x

r
i

∑
i
ni (x

−
i − x

+
i) (5)

s.t. x−i ≤ 0,xi − x ′i ≤ x+i , ∀ci ∈ C, (5a)
xi − x j ≤ −wi , ∀(i, j) ∈ E, (5b)

0 ≤ x li ≤ xi − li , ∀ci ∈ CL , (5c)
xi − ri ≤ xri ≤ 0, ∀ci ∈ CR . (5d)

right-most cells in at least one of the segments. The dual LP of (5) is:

min
f

Q =
∑
i

(
x ′i (f

+
i − f −i) − li f

l
i + ri f

r
i

)
−

∑
(i, j)∈E

wi fi j (6)

s.t. Fi = f +i − f −i + f ri − f li +
∑

j :(i, j)∈E
fi j −

∑
k :(k,i)∈E

fki = 0, ∀ci ∈ C, (6a)

0 ≤ f +i , f
−
i ≤ ni , ∀ci ∈ C, (6b)

f li , f
r
i ≥ 0, ∀ci ∈ C, (6c)

f li = 0, ∀ci ∈ C −CL , (6d)
f ri = 0, ∀ci ∈ C −CR , (6e)
fi j ≥ 0, ∀(i, j) ∈ E. (6f)

Summing up constraints (6a) together, we further have:

Fz = −
∑
i
Fi = 0, (7)

which implies the flow conservation in the flow graph. By consider-
ing (6) and (7), an MCF problem is formulated where each variable in (5)
corresponds to a vertex in the graph while the constraints in (5) are
illustrated by directed edges and dual variables { f } = { f −i } ∪ { f

+
i } ∪

{ fi j } ∪ { f
l
i } ∪ { f

r
i }. (7) is achieved by the flow conservation at an addi-

tional auxiliary vertex vz . Note that each of the auxiliary vertices {v−i },
{v+i }, {v

l
i }, {v

r
i } connects only two edges which can be combined to

form one edge. Hence, they can be eliminated. Note that this is a MCF
problem withm + 1 vertices and 2m + |CL | + |CR | + |E | edges, while the
MCF in [13] has 3m + 2 vertices and 6m + |E | edges. Our formulation is
simpler and thus can be solved more efficiently.

3.3.1 Extension Considering Maximum Displacement. The formula-
tion above optimizes the total displacement. To consider the maximum
displacement, we further introduce a pair of auxiliary variables δ−, δ+
whose absolute values represent the largest displacement of the cells
to the left and to the right of the corresponding GP position. Thus, we
extend (5) to consider a weighted sum as follows:

max
δ−,δ+,xi ,x−i ,x

+
i ,x

l
i ,x

r
i

n0(δ
− − δ+) +

∑
i
ni (x

−
i − x

+
i) (8)

s.t. δ− ≤ min{0,xi − x ′i } − δy i , ∀ci ∈ C, (8a)

δ+ ≥ max{0,xi − x ′i } + δy i , ∀ci ∈ C, (8b)
(5a) – (5d),

where n0 can be tuned to balance the maximum and the average dis-
placement in the objective function and δy i is the y-displacement of
cell ci , which are constants since the row assignments will be preserved
in this step. The dual LP is in (9), where f p , f n , { f pi } and { f

n
i } are

auxiliary variables for handling the maximum displacement.
Figure 5(a) shows an example. Cells c1 and c2 are single-rowwhile cell

c3 is double-row. The corresponding flow graph is shown in Figure 5(b).
Verticesvz ,vn andvp are auxiliary nodes while each of the other nodes
represents a cell in Figure 5(a). The solid straight edges fromvz (e.g., f l1)
represent the flows for the constraints of the left boundary. The solid
straight edge tovz (there is only f r3 in this toy case) represents the flow
for the constraints of the right boundary. The other solid straight edges
(e.g., f13) illustrate the flows for the constraints between neighbouring

3
1

2

(a) GP

1

3

2

N

P

Z

fp
2

fn

fn
1

fn
2

fp
1

fp
3

fn
3

f13

f23

f�
3

f+
3

fr
3

fp

f+
1

f�
2

f l
2

f�
1

f+
2

f l
1

(b) Flow network

Flow Cap Cost
f −1 1/4 1
f +1 1/4 -1
f −2 1/4 -1
f +2 1/4 1
f −3 1/2 -3
f +3 1/2 3
f l1 ∞ 0
f l2 ∞ 0
f r3 ∞ 5
f13 ∞ -3
f23 ∞ -3
f n1 ∞ 1
f
p
1 ∞ -1
f n2 ∞ -1
f
p
2 ∞ 1
f n3 ∞ -3
f
p
3 ∞ 3
f n 1/50 0
f p 1/50 0

(c) Edge capacity and cost
Figure 5: Example of fixed row and fixed order optimization.

min
f

Q + (f p + f n)max
i

δy i +
∑
i

(
x ′i (f

p
i − f ni) − δy i (f

p
i + f ni)

)
(9)

s.t. Fi + f
p
i − f ni = 0, f pi , f

n
i ≥ 0, ∀ci ∈ C, (9a)

Fz + f n − f p = 0, 0 ≤ f p , f n ≤ n0, (9b)

f p −
∑
i

f
p
i = 0, f n −

∑
i

f ni = 0, (9c)

(6b) – (6f).

cells. The solid curly edges (e.g., f −i) represent the flows formulating
the absolute value. The dotted edges (e.g., f n) represent the flows for
the formulation of the maximum displacement. The capacity and cost
of the edges are shown in the table on the right of Figure 5.

In this work, we deploy a network simplex algorithm with first
eligible pivot rule to solve the MCF problem. The worst case complexity
is O(nm2QU) [20], where n andm denote the number of nodes and arcs
in the flow network respectively,U denotes the maximum arc capacities
and Q denotes the largest arc cost.

3.4 Routability-Driven Refinement
Edge spacing rules define the minimum distances between different
types of cells. The method in Section 3.2 will not create violations to
any edge spacing rules because only cells of the same type will replace
each other in the bipartite matching and all pairs of consecutive cell
edges will remain unchanged. For the MGL and the fixed row and fixed
order optimization, fillers will be inserted for correct edge spacing when
calculating the width of the cell on the left of the insertion point.

Pin access and pin short violations are caused by signal pins of cells
overlapping with P/G rails or IO pins on the same layer (called pin
short) or on the next upper layer (called pin access). The violations can
be divided in three types: overlaps with horizontal rails, with vertical
rails and with IO pins. The method in Section 3.2 will not create pin
access or pin short violations. In MGL, these three types of violations
are considered separately. If an insertion point has violation with a
horizontal rail, it will not be considered as a valid insertion point. While
evaluating an insertion point, the optimal position is chosen accordingly
to the displacement curve. If there is violation with a vertical rail,

Table 1: Comparison between Our Algorithm and the Champion in IC/CAD 2017 Contest

Benchmark
#Cells of Different Heights

Density
Avg. Disp. Max. Disp. HPWL (+e9) Pin Access Edge Space Score S Runtime (s)

1 2 3 4 1st Ours 1st Ours 1st Ours 1st Ours 1st Ours 1st Ours 1st Ours

des_perf_1 112644 0 0 0 90.6% 0.710 0.903 7.7 8.4 1.30 1.35 11313 1815 0 0 0.89 1.10 9.548 10.878
des_perf_a_md1 103589 4699 0 0 55.1% 1.818 1.122 62.6 60.7 2.26 2.24 109 90 0 0 3.09 1.87 5.461 9.954
des_perf_a_md2 105030 1086 1086 1086 55.9% 3.476 1.380 68.0 48.1 2.28 2.26 87 188 0 0 6.12 2.12 5.503 9.369
des_perf_b_md1 106782 5862 0 0 55.0% 0.698 0.725 9.0 10.0 2.16 2.16 269 168 0 0 0.78 0.82 4.466 8.273
des_perf_b_md2 101908 6781 2260 1695 64.7% 0.655 0.718 20.0 23.3 2.19 2.20 12 26 0 0 0.81 0.91 4.159 9.098
edit_dist_1_md1 118005 7994 2664 1998 67.4% 0.798 0.752 7.9 5.7 4.09 4.09 0 45 0 0 0.88 0.81 5.166 9.319
edit_dist_a_md2 115066 7799 2599 1949 59.4% 0.646 0.697 16.4 16.4 5.18 5.18 69 42 0 0 0.76 0.82 4.306 9.808
edit_dist_a_md3 119616 2599 2599 2599 57.2% 0.901 0.837 28.0 31.4 5.46 5.45 158 1342 0 0 1.18 1.14 44.343 11.512

fft_2_md2 28930 2117 705 529 82.7% 0.675 0.905 6.6 7.1 0.49 0.51 4139 196 5980 0 1.01 1.11 1.175 2.961
fft_a_md2 27431 2018 672 504 32.3% 0.566 0.631 34.3 34.3 1.11 1.11 84 4 0 0 0.77 0.86 0.991 2.334
fft_a_md3 28609 672 672 672 31.2% 0.536 0.605 11.0 11.3 0.97 0.96 90 2 0 0 0.61 0.68 1.023 2.227

pci_bridge32_a_md1 26680 1792 597 448 49.5% 0.696 0.712 42.6 45.9 0.47 0.48 30 25 0 0 1.03 1.09 1.105 2.488
pci_bridge32_a_md2 25239 2090 1194 994 57.7% 0.898 0.872 27.2 18.1 0.59 0.60 2243 183 0 0 1.29 1.10 1.892 2.442
pci_bridge32_b_md1 26134 1756 585 439 26.6% 1.064 0.853 87.7 51.4 0.69 0.68 16 3 0 0 2.07 1.34 1.262 2.268
pci_bridge32_b_md2 28038 292 292 292 18.3% 1.084 0.785 72.3 61.7 0.60 0.59 26 5 0 0 1.93 1.31 1.076 6.952
pci_bridge32_b_md3 27452 292 585 585 22.2% 1.910 1.031 68.2 49.8 0.62 0.61 33 38 0 0 3.39 1.61 1.336 2.677

Norm. Avg. 1.18 1.00 1.12 1.00 1.00 1.00 8.25 1.00 1.26 1.00 0.72 1.00

positions on the left or on the right will be considered until a least-
displaced-position without any violation is found. For IO pins, penalties
will be given to the insertion points which overlap with IO pins.

Furthermore, to avoid more pin access and pin short violations in
the fixed row and fixed order optimization, the cells will be restricted
to a feasible range defined by the intersection of the row segment and
the P/G rails or IO pins. Thus, every cell has its left and right boundary
constraints in the MCF, i.e., CL = CR = C . li and ri in the formulation
is the left and right boundaries of cell ci ’s feasible range respectively.

3.5 Multi-Thread Implementation
To speed up the process, MGL is implemented with multi-threading.
Local windows that do not overlap with each other can be processed
simultaneous. A scheduling step decides which local windows can be
processed at the same time. The scheduler maintains a list Lp containing
the local windows under processing. For a local window that failed
to have the target cell inserted, it will be expanded and pushed into a
waiting list Lw . The scheduler will select local windows that do not
overlap with any window under processing and pushes them into Lp .

Legalizers in the child threads process MGL whenever there is any
local windows in the Lp and return results. Since the scheduler synchro-
nizes all threads after each MGL iteration, the multi-thread implemen-
tation is deterministic once the capacity of the list Lp is determined.

4 EXPERIMENTAL RESULTS
We implemented the proposed legalization algorithm for mixed-cell-
height circuits in C++ programming language. LEMON [20] is used as
the MCF solver. We run all experiments on a 64-bit Linux machine with
eight cores of Intel Xeon 2.1GHz CPUs and 64GB RAM.

In the first experiment, we compare with a binary from the first
place of IC/CAD 2017 Contest [16] and the results are listed in Table 1.
The second to sixth columns show some statistics of the benchmarks
including number of cells of different heights and design density. Here,
density is measured by the total free area over the total cell area. We
adopt the score function in the contest as much as possible1 to have a

1The runtime scores are not included because they are measured w.r.t other teams. The
penalties of maximum displacement and target utilization are not included because their
exact definitions are not clear and a constant factor is not revealed.

more comprehensive comparison:

S =

(
1 + Shpwl +

Np + Ne

m

) (
1 +

maxi {δi }
∆

)
Sam , (10)

where Shpwl is the increasing ratio in HPWL, Np and Ne are the num-
bers of violations on pin access/short and edge spacing,m is the num-
ber of cells, δi and Sam are calculated by (1) and (2) and ∆ is 100 [16].
Compared with the first place, our proposed algorithm achieves 18%
smaller average displacement and 12% shorter maximum displacement.
For routability-driven constraints, we have no edge spacing violations
while the first place produces nearly six thousand such violations. We
also have significantly fewer pin access and pin short violations. In
terms of S , our purposed method has 26% improvement on average.

In the second experiment, we compare with some state-of-the-art
placers [7, 9, 12]. The benchmarks are modified from the ISPD 2015
Contest [17] and provided by the authors of [12]. 10% of the cells were
selected and converted to double height and half width. Listed in Table 2,
We adapted our program to use total displacement as the objective
function and ignored fences as well as routability-driven constraints.
Note that the results of [7, 12] are improved ones reported in [9]. We
can see that we have improved over the previous published works by
20%, 17% and 9% respectively in total displacement.

In the third experiment, we verify the effectiveness of the two post-
processing stages. Figure 6 shows an example of the maximum displace-
ment optimization in which red cells are of the same type while red
lines connect cells to their corresponding GP positions. Cells with large
displacement in Figure 6(a) are moved to closer locations in Figure 6(b).
Table 3 lists the average displacement and maximum displacement be-
fore and after the post-processing stages. We can see that through the
proposed optimization, the maximum displacement and the average
displacement can be decreased by around 23% and 1%.

5 CONCLUSION
We presented a legalization method for mixed-cell-height circuits with
consideration of routability constraints like pin access, pin shorts, edge
spacing and fence regions. We proposed a multi-row global legaliza-
tion (MGL) that minimizes the total displacement of the cells within
a window towards their given global placement (GP) positions. We
formulated and solved the maximum displacement optimization into
by a min-cost flow (MCF). Finally, we formulated the fixed row and

Table 2: Comparison between Our Algorithm and State-of-the-Art Placers

Benchmark #Cell Density Total Disp. (sites) Runtime (s)
[12]-Imp [7] [9] Ours [12]-Imp [7] [9] Ours

des_perf_1 112644 90.58% 279545 474789 242622 188693 6.1 7.5 2.4 3.5
des_perf_a 108292 42.90% 81452 73057 72561 71044 2.5 3.8 2.3 1.8
des_perf_b 112644 49.71% 81540 72429 71888 70917 2.2 3.9 2.3 1.9
edit_dist_a 127419 45.54% 59814 60971 62961 56228 1.8 4.9 2.8 2.0

fft_1 32281 83.55% 54501 53389 46121 38821 1.0 1.3 0.7 0.9
fft_2 32281 49.97% 25697 21018 20979 20368 0.4 1.1 0.6 0.6
fft_a 30631 25.09% 19613 18150 18304 17375 0.2 1.2 0.6 0.5
fft_b 30631 28.19% 28461 21234 21671 20092 0.4 1.2 0.6 0.6

matrix_mult_1 155325 80.24% 80235 73682 71793 62026 4.0 5.4 3.6 3.3
matrix_mult_2 155325 79.03% 75810 65959 65876 58214 4.2 5.4 3.7 3.1
matrix_mult_a 149655 41.95% 46001 40736 40298 38013 1.6 5.7 3.4 2.6
matrix_mult_b 146442 30.90% 40059 37243 37215 35070 1.2 5.6 3.2 2.4
matrix_mult_c 146442 30.83% 42490 40942 40710 37907 1.4 5.6 3.2 2.4
pci_bridge32_a 29521 38.39% 27832 26674 26289 25917 0.3 1.2 0.6 0.4
pci_bridge32_b 28920 14.30% 27864 26160 26028 26081 0.2 1.0 0.4 0.4
superblue11_a 927074 42.92% 1786342 1983090 1742941 1595873 29.7 50.3 26.3 20.1
superblue12 1287037 44.72% 2015678 1995140 1963403 1716930 103.6 56.5 38.6 27.6
superblue14 612583 55.78% 1599810 1497490 1566966 1331144 16.7 48.1 17.7 13.1

superblue16_a 680869 47.85% 1173106 1147530 1135186 1055707 20.7 41.8 18.7 13.2
superblue19 506383 52.33% 806529 808164 781928 705239 10.5 29.6 13.2 10.7
Norm. Avg. 1.20 1.17 1.09 1.00 1.13 2.32 1.20 1.00

(a) Before

(b) After

Figure 6: Max displacement opti-
mization.

Table 3: Results of Post-Processing

Benchmark Avg. Disp. Max. Disp.
Before After Before After

des_perf_1 0.931 0.903 8.4 8.4
des_perf_a_md1 1.131 1.122 60.7 60.7
des_perf_a_md2 1.458 1.38 57.0 48.1
des_perf_b_md1 0.745 0.725 39.5 10.0
des_perf_b_md2 0.720 0.718 27.5 23.3
edit_dist_1_md1 0.762 0.752 5.7 5.7
edit_dist_a_md2 0.700 0.697 16.4 16.4
edit_dist_a_md3 0.839 0.837 31.4 31.4

fft_2_md2 0.916 0.905 9.6 7.1
fft_a_md2 0.637 0.631 34.3 34.3
fft_a_md3 0.611 0.605 11.3 11.3

pci_bridge32_a_md1 0.718 0.712 45.7 45.9
pci_bridge32_a_md2 0.876 0.872 18.1 18.1
pci_bridge32_b_md1 0.862 0.853 51.4 51.4
pci_bridge32_b_md2 0.791 0.785 61.7 61.7
pci_bridge32_b_md3 1.046 1.031 49.8 49.8

Norm. Avg. 1.01 1.00 1.23 1.00

fixed order optimization problem with a weighted sum of the maximum
and average displacement as objective into another MCF problem for
further optimization. Comparing with the champion of the IC/CAD
2017 Contest [16], we achived 18% less average displacement, 12% less
maximum displacement, and much fewer routability-driven violations.
We also compared with previous works and achieved a 9% improvement.

ACKNOWLEDGMENTS
This work is supported in part by The Research Grants Council of Hong
Kong Special Administrative Region, China (Project No. CUHK14208914).

REFERENCES
[1] X. Xu, N. Shah, A. Evans, S. Sinha, B. Cline, and G. Yeric, “Standard cell library design

and optimization methodology for ASAP7 PDK,” in Proc. ICCAD, 2017, pp. 999–1004.
[2] L. Mattii, D. Milojevic, P. Debacker, Y. Sherazi, M. Berekovic, and P. Raghavan, “IR-drop

aware design & technology co-optimization for N5 node with different device and cell
height options,” in Proc. ICCAD, 2017, pp. 89–94.

[3] S.-H. Baek, H.-Y. Kim, Y.-K. Lee, D.-Y. Jin, S.-C. Park, and J.-D. Cho, “Ultra-high density
standard cell library using multi-height cell structure,” in Proc. SPIE, vol. 7268, 2008.

[4] M. P.-H. Lin, C.-C. Hsu, and Y.-T. Chang, “Recent research in clock power saving with
multi-bit flip-flops,” in Proc. MWSCAS, 2011, pp. 1–4.

[5] D. D. Sherlekar, “Cell architecture for increasing transistor size,” Jan. 14 2014, uS Patent
8,631,374.

[6] Y. Lin, B. Yu, and D. Z. Pan, “Detailed placement in advanced technology nodes: a
survey,” in Proc. ICSICT, 2016, pp. 836–839.

[7] C.-H.Wang, Y.-Y. Wu, J. Chen, Y.-W. Chang, S.-Y. Kuo,W. Zhu, and G. Fan, “An effective
legalization algorithm for mixed-cell-height standard cells,” in Proc. ASPDAC, 2017, pp.
450–455.

[8] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: fast legalization of standard
cell circuits with minimal movement,” in Proc. ISPD, 2008, pp. 47–53.

[9] J. Chen, Z. Zhu, W. Zhu, and Y.-W. Chang, “Toward optimal legalization for mixed-
cell-height circuit designs,” in Proc. DAC, 2017, pp. 52:1–52:6.

[10] B. Yu, X. Xu, J.-R. Gao, Y. Lin, Z. Li, C. Alpert, and D. Z. Pan, “Methodology for standard
cell compliance and detailed placement for triple patterning lithography,” IEEE TCAD,
vol. 34, no. 5, pp. 726–739, May 2015.

[11] Y. Lin, B. Yu, Y. Zou, Z. Li, C. J. Alpert, and D. Z. Pan, “Stitch aware detailed placement
for multiple e-beam lithography,” Integration, the VLSI Journal, vol. 58, pp. 47–54, 2017.

[12] W.-K. Chow, C.-W. Pui, and E. F. Y. Young, “Legalization algorithm for multiple-row
height standard cell design,” in Proc. DAC, 2016, pp. 83:1–83:6.

[13] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert, and
D. Z. Pan, “MrDP: Multiple-row detailed placement of heterogeneous-sized cells for
advanced nodes,” IEEE TCAD, 2017.

[14] J. Vygen, “Algorithms for detailed placement of standard cells,” in Proc. DATE, 1998,
pp. 321–324.

[15] Y.-Y. Wu and Y.-W. Chang, “Mixed-cell-height detailed placement considering complex
minimum-implant-area constraints,” in Proc. ICCAD, 2017, pp. 65–72.

[16] N. K. Darav, I. S. Bustany, A. Kennings, and R. Mamidi, “ICCAD-2017 CAD contest
in multi-deck standard cell legalization and benchmarks,” in Proc. ICCAD, 2017, pp.
867–871.

[17] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015 benchmarks
with fence regions and routing blockages for detailed-routing-driven placement,” in
Proc. ISPD, 2015, pp. 157–164.

[18] V. Yutsis, I. S. Bustany, D. Chinnery, J. R. Shinnerl, and W.-H. Liu, “ISPD 2014 bench-
marks with sub-45nm technology rules for detailed-routing-driven placement,” in
Proc. ISPD, 2014, pp. 161–168.

[19] N. K. Darav, A. Kennings, A. F. Tabrizi, D. Westwick, and L. Behjat, “Eh? placer: a
high-performance modern technology-driven placer,” ACM TODAES, vol. 21, no. 3,
p. 37, 2016.

[20] Z. Király and P. Kovács, “Efficient implementations of minimum-cost flow algorithms,”
arXiv preprint arXiv:1207.6381, 2012.

[21] G. Chen, C.-W. Pui, W.-K. Chow, K.-C. Lam, J. Kuang, E. F. Y. Young, and B. Yu,
“RippleFPGA: Routability-driven simultaneous packing and placement for modern
FPGAs,” IEEE TCAD, 2017.

