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ABSTRACT
In recent years, neuromorphic computing systems based on memris-
tive crossbar have provided a promising solution to enable acceler-
ation of neural networks. Meanwhile, most of the neural networks
used in realistic applications are often sparse. If such sparse neural
network is directly implemented on a single memristive crossbar, it
would result in inefficient hardware realizations. In this work, we
propose 3D-FNC, a 3D floorplanning framework for neuromorphic
computing systems in consideration of both crossbar utilization and
design cost. 3D-FNC groups neurons that connect more common
neurons into one cluster, where the optimal number of clusters is
determined by L-method. As a result, the connections of a neural net-
work can be effectively mapped to memristive crossbars or discrete
synapses. Finally, a 3D floorplanning for memristive crossbars and
neurons is developed to reduce area and wirelength cost. Experimen-
tal results show that 3D-FNC can achieve highly hardware-efficient
designs, compared to state-of-the-art.
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1 INTRODUCTION
Neuromorphic computing systems (NCS) based on hardware designs
are intended to mimic neuro-biological architectures [1]. However,
the CMOS technology implementation has been shown to suffer from
mismatch between NCS building blocks (neuron and synapse) and
CMOS primitives (Boolean logic) [2]. Moreover, based on the conven-
tional CMOS technology, a large number of transistors are required to
mimic a single synapse [3]. To address this problem, many neuromor-
phic designs on device and architecture level have been explored. The
emerging memristor device inspires the approaches of using mem-
ristors to implement synapse circuit due to the similarity between
the memristive and synaptic behaviors [4]. In order to achieve area
efficient design, a memristive crossbar structure that connects all its
pre-synaptic (i.e. input) neurons to all its post-synaptic (i.e. output)
neurons is developed [5]. In addition, NCS with high complexity and
high connectivity is required to implement increasingly demanding
computational tasks. Traditional two-dimensional (2D) integration
may be hard to meet these requirements, as longer signal transmis-
sion distances are introduced due to a large number of connections
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Figure 1: (a) Connection matrix of a feed-forward neural net-
work with six pre-synaptic neurons {i1, . . . , i6} and six post-
synaptic neurons {o1, . . . ,o6}; (b) The connections are mapped
to fivememristive crossbarswith high utilizations and one dis-
crete synapse.

in 2D integration. On the other hand, three-dimensional integrated
circuits (3D ICs) involve vertically stacking multiple dies connected
by through silicon vias (TSVs), providing a promising way to enable
high density and high computation speed in NCS [6]. Besides, 3D
design in NCS can emulate real biophysical processing in human
brain [7].

Many works for NCS implementation on memristive crossbars
have been investigated. Wen et al. [8] proposed a design automation
framework for large scale hybrid neuromorphic computing systems.
Wu et al. [9] developed a thermal optimization for memristor-based
hybrid neuromorphic computing systems. In [8, 9], an iterative spec-
tral clustering is repeatedly performed to group the connections into
memristive crossbars. However, since the spectral clustering is exe-
cuted in every iteration, the methods could be time consuming when
the neural network is large. Cui et al. [10] proposed a sparse matrix
reordering method, which uses both row and column permutation
matrices to group the connections into crossbars. However, crossbar
utilization is not considered, thus the generated memristive cross-
bars with low utilization may result in highly area-inefficient designs.
In addition, so far all previous works are based on 2D integration,
thus some insurmountable obstacles are inevitably introduced by 2D
circuits like larger chip area and longer wirelength etc.

To overcome the above issues, in this paper we propose 3D-FNC, a
3D floorplanning framework for neuromorphic computing systems
in consideration of both crossbar utilization and design cost. Figure 1
illustrates an example how the proposed framework can effectively
map the connections into crossbars with high utilizations. To repre-
sent a neural network, in this paper we use connection matrix, which
is (0, 1)-matrix that “1” indicates a connection exists between two
corresponding neurons and “0” means two corresponding neurons
have no connection. As shown in Figure 1(a), if the sparse connection
matrix is directly mapped to a crossbar, the utilization of the crossbar
is low. However, through several techniques in our framework (e.g. hi-
erarchical clustering), the mapped crossbars with high utilizations
are shown in Figure 1(b). The corresponding 3D floorplan is shown
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Figure 2: 3D floorplan of the mapping results of the neural
network in Figure 1(a) and the memristive crossbar.

in Figure 2. Key technical contributions of this work are listed as
follows.

• Hierarchical clustering groups neurons of a neural network
into clusters. And the proposed distance metric can ensure that
neurons connecting more common neurons are grouped into
one cluster.
• An L-method is developed to determine the optimal number
of clusters.
• A 3D floorplanning is implemented to minimize the hardware
cost.

The remainder of this paper is organized as follows. Section 2
presents preliminaries of NCS. Section 3 is to describe the proposed
3D-FNC framework in details. Section 4 lists experimental results,
followed by conclusion in Section 5.

2 PRELIMINARIES
In a neural network, the pre-synaptic neurons send signals into the
network and the post-synaptic neurons receive information from
the pre-synaptic neurons through the synapses [11]. The synapses
apply different weights on the information during the transmission,
which can be expressed asO = IC . An element ci j in the connection
matrixC represents the weight of a synapse between the pre-synaptic
neuron i in I and the post-synaptic neuron j inO . Since the resistance
of memristor is programmed by applying current or voltage, the
memristor can be used to implement the weight of the synapse [5]. A
memristive crossbar example is shown in Figure 2.

In realistic applications, the size of neural networks is often very
large. For instance, AlexNet proposed by Krizhevsky et al. [12] in
2012 contains 650K neurons and 60M synapses. In addition, most of
large neural networks are sparse. If a sparse neural network is directly
implemented on a memristive crossbar, the crossbar utilization can
be low, resulting in highly area-inefficient designs. In this paper, we
define the utilization of a memristive crossbar as the ratio between the
utilized number of connections and the total available connections in
the crossbar. In order to enable energy and area efficient design, the
large neural network with high sparsity should be implemented by
using smaller size crossbars or discrete synapses.

We define the problem of 3D floorplanning for neuromorphic com-
puting systems (3D-FNC) as follows.

Problem 1 (3D-FNC). Given a sparse neural network withn neurons,
we map the connections into memristive crossbars with high utiliza-
tion or discrete synapses. Then we implement the 3D floorplanning of
memristive crossbars and neurons to minimize chip area, wirelength,
and TSV numbers.

Neural networks 

Hierarchical clustering 
generates clusters of neurons 

3D floorplanning for memristive 
crossbars and neurons 

NCS floorplanning results 

Figure 3: The flow of 3D-FNC.

Algorithm 1 Hierarchical clustering to cluster neurons
Input: Connection matrixC .
Output: A dendrogram of neurons.
1: Assign each neuron to a cluster;
2: Calculate distances among clusters; ▷ Equation (1)
3: for i ← 1 to n − 1 do
4: Merge two clusters {r } and {s} with the shortest distance;
5: ▷ Update distances between {r ,s} and other clusters {k}
6: d {k }, {r,s } ← min[d {k }, {r },d {k }, {s }];
7: end for
8: All neurons are clustered into one cluster;

3 3D-FNC FRAMEWORK
Given a sparse neural network, the proposed hierarchical clustering
partitions all the neurons into clusters, so that the connections can be
easily mapped to set of crossbars with high utilization. Based on the
cluster results, we implement a 3D floorplanning of neuromorphic
computing systems to achieve a minimum chip area, wirelength, and
TSV numbers under fixed-outline and no-overlapping constraints [13].
In this work, the memristive crossbars and the neurons are considered
as blocks. The partitioned sequence pair (P-SP) [14] is used to repre-
sent 3D floorplans. The chip area is evaluated by the method in [15],
which takes the fixed-outline constraint into account. To evaluate the
wirelength, we adopt the calculation model in [16] to decompose the
nets spanning multiple device layers into sub-nets, one on each device
layer, by introducing dummy pins corresponding to TSVs. Besides,
the number of TSVs of a net is |j − i | if the net spans layer i to layer j .
The flow of 3D-FNC is shown in Figure 3.

3.1 Hierarchical Clustering
Hierarchical clustering is used to generate clusters in a bottom-up
iterative manner [17]. In every iteration, two clusters with the shortest
distance are merged. Implication of “distance” varies with specific
applications in practice. The iterative merging is repeated until all
data points are formed into one cluster.

In our proposed framework, we aim to generate clusters that can
be mapped to memristive crossbars with high utilization. Therefore,
the neurons that connect more common neurons should be grouped
into one cluster. In this work, the hierarchical clustering is adopted
to cluster neurons. We redefine the distance between two neurons, ip
and iq (1≤p, q≤n), as follows:

dist(ip , iq ) =

√√√ n∑
j=1

(cpj & cqj − 1)2, (1)

where cpj represents the connection between neuron ip and neuron
oj (same for cqj ). Since two clusters with the shortest distance are
merged in every iteration, the distance metric in Equation (1) can
ensure the neurons connecting more common neurons are grouped
into cluster.
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Figure 4: A hierarchical clustering dendrogram.
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Figure 5: (a) The evaluation graph of the connection matrix
shown in Fig. 1(a). (b) Two best-fit lines are obtained at the
transition point x=3 by the L-method.

The flow of hierarchical clustering is shown in Algorithm 1. Start-
ing from n data points, hierarchical clustering first treats each point
as a single cluster (line 1). Then the iterative merging steps are per-
formed n-1 times and eventually build a dendrogram (cluster tree)
(lines 3–8). Therefore, the data points that are close will be merged
first, and far away clusters will not be merged until the late itera-
tions [18]. Figure 4 is used to illustrate the process of hierarchical
clustering. For the connection matrix of one layer in a feed-forward
neural network shown in Figure 1(a), it contains six pre-synaptic
neurons and six post-synaptic neurons. During the first iteration,
pre-synaptic neurons i1 and i3 are merged into a cluster since the
distance between them is the smallest (connect three common post-
synaptic neurons o2, o4, and o6). Next, i2 and i5 are merged to form a
cluster. Finally, two clusters {i1, i2, i3, i5} and {i4, i6} are merged into
one cluster. The generated dendrogram is shown in Figure 4.

3.2 Optimal Number of Clusters
Although the hierarchical clustering can generate a cluster tree, how-
ever, if the number of clusters is not given, the hierarchical clustering
cannot build the final clustering result. In this work, the L-method is
proposed to find the optimal number of clusters. We summarize the
major steps of the L-method for selection of the number of clusters in
Algorithm 2. The L-method is based on an evaluation graph where the
x-axis is the number of clusters and they-axis is the evaluation metric
used by the clustering algorithm. For the hierarchical clustering, the
y-axis values are the merge distance between the last two merged
clusters at x clusters. Since the hierarchical clustering merges a pair
of clusters in every iteration, the evaluation graph can be produced
by running the clustering algorithm only once (line 1). Note that the
sharp transition point on the evaluation graph is considered to be the
optimal number of clusters [19].

To illustrate how the L-method works, we use the connection
matrix shown in Figure 1(a) as an example. Based on the dendrogram
generated by hierarchical clustering, we plot the evaluation graph
in Figure 5(a), where x-axis shows the number of clusters and y-axis

Algorithm 2 L-method for selection of cluster numbers
Input: A cluster tree generated by the hierarchical clustering.
Output: The optimal number of clusters t̂ .
1: Construct the evaluation graph based on the cluster tree;
2: for each point t ← 3 to n − 2 do
3: Solve the regression problem at t ; ▷ Equation (2)
4: Calculate RMSEt at t ; ▷ Equation (3)
5: end for
6: Determine t̂ ; ▷ Equation (4)

represents the merge distance d . The L-method tries to determine
the optimal number by searching for two lines that can best-fit the
evaluation graph, and the intersection of these two lines represent
the transition point of the graph. In Figure 5(b), the two lines can
accurately fit the graph where one line fits the data in the interval
x ∈ [2, 3] and the other line fits the data in the interval x ∈ [4, 6].
It can be noticed that the sharp transition point is located at x=3,
meaning that the neurons should be grouped into 3 clusters.

Mathematically, the L-method can be formulated as the regression
problem [18] (lines 2–5). Considering the evaluation graph where the
number of clusters varies from 2 to n (n-1 data points in the graph),
and the data points are partitioned into a left region and a right region
at transition point x=t . The left region has points with x∈[2, t], and
the right region has points with x∈[t+1, n]. To ensure each region
contains at least two points, the value of t ranges from 3 to n-2. Then
the regression problem is solved respectively to achieve two best-fit
lines for the left and the right regions as follows:

RMSEl = min
sl ,bl
∥dl − sl · xl − bl ∥2,

RMSEr = min
sr ,br

∥dr − sr · xr − br ∥2,
(2)

where dl and dr are the merge distance values for left region xl ∈
[2, t]⊺ and right region xr ∈ [t + 1,n]⊺, respectively. (sl , bl ) and (sr ,
br ) represent the slope and bias for left-fit and right-fit lines. RMSEl
and RMSEr are the root mean square error of the two best-fit lines.
Then the total root mean square error (RMSEt ) is defines as follows:

RMSEt =
t − 1
n − 1

· RMSEl +
n − t

n − 1
· RMSEr . (3)

We solve the regression problems for all values of t , and the tran-
sition point that achieves the minimum RMSEt is assumed as the
optimal number of clusters (line 6):

t̂ = argmin
t ∈[3,n−2]

RMSEt . (4)

After solving the regression problem for the evaluation graph in
Figure 4, the transition point x=3 can achieve minimum total root
mean square error for the two lines. The three clusters are {i1, i3}, {i2,
i5}, and {i4, i6}, respectively.

4 EXPERIMENTAL RESULTS
We implement the hierarchical clustering and the L-method in MAT-
LAB on a 2.20 GHZ 64 bit Windows 7 machine with 4 GB RAM. 3D
floorplanning is implemented in C++ language on a 12-core 2.0 GHz
Linux server with 64 GB RAM.

4.1 Impact of L-Method
In this work, based on the evaluation graph generated by hierarchical
clustering, the L-method can find the optimal number of clusters. In

Poster Session 1 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

453



Table 1: Effectiveness of the proposed 3D-FNC.

Bench Sparsity
AutoNCS [8] 3D-FNC w/o. LM 3D-FNC

Area Wire #TSV util RT(s) Area Wire #TSV util RT(s) Area Wire #TSV util RT(s)(um2) (um) (um2) (um) (um2) (um)
n300 94.47% 3925.17 93398.64 353 0.65 20.37 4058.70 96424.28 349 0.45 6.46 3814.78 94389.73 358 0.67 5.21
n400 93.59% 7318.64 269163.17 427 0.76 35.28 7381.36 276821.31 420 0.57 13.23 7153.36 272542.70 426 0.77 11.17
n500 94.39% 10521.18 407018.25 491 0.70 69.43 10994.21 429515.68 477 0.47 32.14 10502.32 411046.51 485 0.68 29.62
avg. 94.15% 7255.00 256526.69 424 0.70 41.69 7478.09 267587.09 416 0.50 17.28 7156.82 259326.31 423 0.71 15.33
ratio – 1.01 0.99 1.00 0.99 2.72 1.04 1.03 0.98 0.70 1.13 1.00 1.00 1.00 1.00 1.00

order to see the effect of the L-method, we compare the floorplanning
results on the clustering results with and without the L-method. Since
the size of crossbar, s × s , is limited by the memristive technology,
the maximum size of crossbars is set to 64 × 64 in this work [8].
Without the L-method, the number of clusters is determined by the
way, in which iteratively increasing the number of clusters by one in
hierarchical clustering until the size of the largest crossbar is below
the size limitation. Thenwe run the 3D floorplanning on the clustering
results of the case with and without L-method, respectively. The layer
number is set to 2. The area of the neuron in 45nm technology is
2500um2 [20]. Besides each memristor and memristive crossbar use
4f 2 and s2 · 40f 2 circuit area (f =feature size), respectively [11]. The
experiment is tested on three Hopfield networks in [8] with the size
of 300, 400, and 500. In Table 1, “3D-FNC w/o. LM” and “3D-FNC”
list the average results. Column “util” gives the average utilization of
all mapped crossbars. Columns “Area”, “Wire” and “#TSV” represent
chip area, total half-perimeter wirelength overhead, and the number
of TSVs, respectively. We can see that in the case without L-method,
the utilization of mapped crossbars are reduced by nearly 30%. In
addition, area and wirelength are increased by around 4% and 3%,
which demonstrates that the hierarchical clustering with L-method
can result in highly hardware-efficient designs.

4.2 Comparison with Previous Work
We compare 3D-FNC with AutoNCS [8] on the hardware cost. In
AutoNCS, the iterative spectral clustering is used for grouping the
connections into the memristive crossbars. Since AutoNCS only gen-
erates 2D floorplanning output, to provide a fair comparison, we also
implement a 3D floorplanning based on the iterative spectral clus-
tering results of AutoNCS. The experiment is also tested on three
Hopfield networks in [8] with the size of 300, 400, and 500. Table 1 lists
the average statistic results. Column “RT” reports the total computa-
tional time in seconds. As shown in Table 1, compared with AutoNCS,
3D-FNC can achieve comparable area, wirelength cost and crossbar
utilization, while the runtime of 3D-FNC is far less than AutoNCS.
That is because in AutoNCS, the spectral clustering is executed in
every iteration, thus the clustering method could be time consuming
when the neural network is large.

5 CONCLUSION
In this paper, we have proposed an effective memristive crossbar
mapping for neuromorphic computing systems on 3D IC, where both
crossbar utilization and design cost are considered. Experimental re-
sults show that, compared with state-of-the-art, the proposed 3D-FNC
can achieve highly hardware-efficient designs. Memristive crossbar
gives hope for the anticipated efficient implementation of artificial
neuromorphic networks, thus we expect to see a lot of researches to
provide more efficient physical synthesis solutions.
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