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Abstract
Optical proximity correction (OPC) is crucial for pushing the

boundaries of semiconductor manufacturing and enabling the con-

tinued scaling of integrated circuits. While pixel-based OPC, termed

as inverse lithography technology (ILT), has gained research interest

due to its flexibility and precision. Its complexity and intricate fea-

tures can lead to challenges in mask writing, increased defects, and

higher costs, hence hindering widespread industrial adoption. In this

paper, we propose DiffOPC, a differentiable OPC framework that

enjoys the virtue of both edge-based OPC and ILT. By employing

a mask rule-aware gradient-based optimization approach, DiffOPC

efficiently guides mask edge segment movement during mask opti-

mization, minimizing wafer error by propagating true gradients from

the cost function back to the mask edges. Our approach achieves

lower edge placement error while reducing manufacturing cost by

half compared to state-of-the-art OPC techniques, bridging the gap

between the high accuracy of pixel-based OPC and the practicality

required for industrial adoption, thus offering a promising solution

for advanced semiconductor manufacturing.

1 Introduction
Optical proximity correction (OPC) is a critical technique in com-

putational lithography that compensates for the optical proximity

effect (OPE) caused by interference and diffraction in the lithographic

imaging process. As integrated circuit technology nodes advance

to 90 nm and below, simple resolution enhancement techniques

(RET) can no longer meet the requirements for high-resolution and

high-fidelity lithographic imaging. To address this challenge, OPC

has evolved from rule-based OPC (RBOPC) to model-based OPC

(MBOPC).

RBOPC relies on a pre-established mask correction rule table,

which is derived from engineering experience or fitted experimental

and simulation data [1]. Although RBOPC is computationally fast

and produces relatively simple optimized mask patterns, it can only

compensate for local OPE and cannot find a globally optimal solution

for the mask optimization problem.

MBOPC, on the other hand, is based on the physical model of litho-

graphic imaging and employs numerical optimization algorithms

to modify the mask pattern. As depicted in Figure 1, MBOPC can
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Figure 1: Model-based OPC includes pixel-based OPC (ILT)
and edge-based OPC (EBOPC).While ILTmasks face manufac-
turability issues requiring significant post-processing, EBOPC
masks are manufacturable but have performance limitations.
DiffOPC combines the advantages of both approaches, en-
hancing manufacturability and performance.

be further classified into edge-based OPC (EBOPC) and pixel-based

OPC (PBOPC). EBOPC divides the edge contour of the mask pattern

into several segments and iteratively optimizes the position of each

segment along its normal direction to compensate for lithographic

imaging errors [2].

However, current EBOPC methods, such as the Mask Error En-

hancement Factor (MEEF) matrix algorithm [2], have limitations in

computational efficiency and accuracy. The algorithm is computa-

tionally intensive, scaling poorly with the size and complexity of IC

layouts. Its foundational linearity assumptions often fail to account

for the nonlinearities prevalent in advanced lithography, leading to

subpar performance in complex cases where edge interactions are

significant and not adequately captured. The MEEF matrix, further

burdened by potential ill-conditioning and a static representation

throughout optimization, may not adapt to dynamic process varia-

tions, thus trading off accuracy for computational manageability.

PBOPC, also known as inverse lithography technology (ILT),

pushes the boundaries of mask optimization by rasterizing the mask

layout into a pixel array and optimizing the transmission of each

mask pixel by gradient descent [3]. This approach allows for free-

form curved edge contours and the addition of sub-resolution assist

features (SRAF) [4–7] to improve imaging performance. ILT algo-

rithms can be categorized into two classes based on their mask

representation: end-to-end pixel-based methods for prediction [8–

11] or acceleration, and implicit function-based methods using level

sets to enhance acceleration and manufacturability [12–14]. Among
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the SOTA ILT methods, MultiILT [11] adopts a multi-level resolution

strategy for better OPC performance and manufacturability.

Despite the advancements in ILT algorithms, they still face several

challenges that hinder their widespread adoption in the semiconduc-

tor industry. As illustrated in Figure 1, the pixelated mask patterns

generated by ILT are often complex and difficult to manufacture,

requiring costly rectangular decomposition into manufacturable

Manhattan polygons. Further, the application of decomposition and

mask rule check (MRC) methods to regularize the mask patterns may

lead to a decline in OPC performance and introduce new hotspots,

negating the performance advantages of ILT. Moreover, ILT algo-

rithms tend to over-optimize shape corners because the simulated

line-ends will never match the Manhattan rectangles at the line-end.

Nevertheless, these challenges have been largely overlooked, pre-

venting ILT’s large-scale adoption in the industry, which tends to

favor EBOPC due to lower manufacturing costs.

To bridge the gap between the manufacturability of EBOPC and

the performance of ILT, we propose DiffOPC, a differentiable edge-

based OPC method that leverages gradient information to optimize

edge placement error (EPE) while considering process variation. By

relaxing discrete edge movements and embedding mask rule con-

straints into the gradient computation, DiffOPC combines EBOPC’s

high manufacturability with ILT’s performance. Additionally, it en-

sures MRC-clean results, allowing the optimized mask patterns

to be directly used for mask fabrication without additional post-

processing.

DiffOPC introduces efficient solutions to enhance the edge-based

OPC process. In the forward algorithm, a flexible segmentation ap-

proach and CUDA-accelerated ray casting expedite differentiable

layout rasterization, while a novel SRAF seed generation algorithm

optimizes SRAF placement. In the backward algorithm, DiffOPC com-

putes lithography gradients for edge movements using a chain-rule

approach and incorporates mask rule constraints to ensure manu-

facturability. By combining these improvements, DiffOPC achieves

superior OPC performance with high manufacturability. In summary,

our main contributions are as follows:

• We propose DiffOPC, a differentiable edge-based OPC frame-

work that integrates EPE loss and leverages MRC-aware gradi-

ents for mask optimization.

• A flexible segmentation approach and a CUDA-accelerated ray

casting algorithm are introduced to expedite layout rasterization.

• DiffOPC efficiently computes edge segment gradients using a

chain-rule approach to ensure manufacturability.

• A novel SRAF seed generation algorithm leveraging gradients

for optimal SRAF placement and further optimization.

• DiffOPC bridges the gap between EBOPC’s manufacturability

and ILT’s performance, offering a promising solution for high-

quality and efficient OPC corrections. The experimental results

show that DiffOPC reduces EBOPC’s EPE by half, and even

achieves lower EPE than ILT while maintaining manufacturing

costs that are half of ILT’s.

2 Preliminaries
2.1 Forward Lithography Model

We employ the sum of coherent systems (SOCS) decomposition

of a 193𝑛𝑚 wavelength system as the optical model for lithography

modeling, following the same approach as [15]. The aerial image

intensity 𝑰 is represented by the convolution of the mask𝑴 and a set

of optical kernels 𝑯 . The 𝑁 𝑡ℎ
𝑘

order approximation to the partially

coherent system is obtained using eq. (1):

𝑰 (𝑥,𝑦) ≈
𝑁𝑘∑︁
𝑖=1

𝜎𝑖 |𝑴 (𝑥,𝑦) ⊗ ℎ𝑖 (𝑥,𝑦) |2 , (1)

where ⊗ denotes the convolution operation, ℎ𝑖 is the 𝑖
𝑡ℎ

kernel of 𝑯 ,

𝜎𝑖 is the corresponding weight of the coherent system, and (𝑥,𝑦) is
the index notation of the matrix. 𝑴 (𝑥,𝑦) represents the pixel value
at the point (𝑥,𝑦) of the mask image 𝑴 . A constant threshold resist

model (CTR) is applied to convert the aerial image intensity 𝑰 to the

printed resist image 𝒁 .

𝒁 (𝑥,𝑦) =
{

1, if 𝑰 (𝑥,𝑦) > 𝐼𝑡ℎ ,

0, otherwise,

(2)

where 𝐼𝑡ℎ is the intensity threshold.

2.2 Evaluation Metrics
In this paper, we use squared 𝐿2 error, process variation band

(PVB), edge placement error (EPE) and shot count [10] as three

typical metrics to evaluate OPC performance.

Squared 𝐿2 error 𝐿2 measures the difference between the nominal

resist image𝒁𝑛𝑜𝑚 and the target image𝑻 , defined as:𝐿2 (𝒁𝑛𝑜𝑚, 𝑻 ) =
∥𝒁𝑛𝑜𝑚 − 𝑻 ∥2

2
.

PVB evaluates the robustness of the mask against different pro-

cess conditions. A smaller PVB indicates a more robust mask.

PVB(𝒁𝑚𝑎𝑥 ,𝒁𝑚𝑖𝑛) = ∥𝒁𝑚𝑎𝑥 − 𝒁𝑚𝑖𝑛 ∥2
2
.

Edge placement error The Edge Placement Error (EPE) [15] quan-

tifies the geometric distortion of the resist image.

Shot count #Shot [10] is the number of decomposed rectangles that

replicate the original mask exactly.

2.3 Problem Formulation
Given a target design 𝑻 , we aim to find a set of boundary segments

𝑺 = {𝒔1, 𝒔2, . . . , 𝒔𝑖 }, and a binary mask𝑴 ∈ {0, 1}𝑚×𝑛 formed by the

matrix inside the boundary composed of these segments 𝑺 , where
𝑚 and 𝑛 are the dimensions of 𝑻 . The objective is to determine the

corresponding printed image 𝒁 that minimizes the weighted sum of

EPE, 𝐿2, PVB, and #shots.

3 DiffOPC Algorithm
To enable the application of differentiable EBOPC to arbitrary

layout patterns while utilizing minimal additional information, such

as the EPE measure points, several challenges need to be addressed:

1) Ensuring a more flexible movement of segments in Manhattan

geometries, particularly at pattern corners. 2) Mapping discrete edge

movements to a continuous space for efficient updates. 3) Maintain-

ing compatibility with the chain rule for differentiation during the

rasterization process, which converts edge parameters to pixel bi-

nary masks. In this section, we introduce the movement and update

mechanisms for edge segments, describe a CUDA-accelerated ray

casting algorithm for rasterization, demonstrate how lithography

gradients can be utilized to update the movement of edge segments,

and introduce an algorithm for SRAF placement.

3.1 Edge Segmentation and Movement
We present Algorithm 1 for segmenting target polygon edges into

smaller segments of a pre-defined length. The algorithm returns a
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Figure 2: DiffOPC: differentiable edge-based OPC framework.

minimal set of segments, denoted as 𝑺 ∈ R𝑁𝑠×2×2
, where R repre-

sents the real number domain and 𝑁𝑠 is the number of segments.

Each segment 𝒔𝑖 ∈ 𝑺 is represented by its starting and ending coor-

dinates in vector form: [[𝑥1, 𝑦1], [𝑥2, 𝑦2]]. These segments 𝑺 serve
as the optimization parameters for DiffOPC, providing increased

flexibility in handling corner edges compared to traditional EBOPC

methods which only optimize the edge movement distance. As il-

lustrated in Figure 2, each segment 𝒔𝑖 is associated with a direction

vector 𝒅𝑖 ∈ D, which enables better reconstruction of segments back

into polygons and determines the direction of movement. Further-

more, the algorithm ensures compliance with the MRC by merging

excessively short segments when necessary.

Algorithm 1 Edge Parameter Initialization.

Input: 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠 : mask polygon coordinates list;

𝑠𝑒𝑔_𝑙𝑒𝑛𝑔𝑡ℎ: fixed segment length.

Output: 𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 : List of polygons with segmented lines & directions;

1: for 𝑝𝑜𝑙𝑦 in 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠 do
2: for 𝑒𝑑𝑔𝑒 in 𝑝𝑜𝑙𝑦 do
3: 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ← Calculate the midpoint of the edge;

4: 𝑙𝑒𝑛𝑔𝑡ℎ ← Calculate the length of the edge;

5: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← Get edge direction vector (horizontal or vertical);

6: if 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 2 ∗ 𝑠𝑒𝑔_𝑙𝑒𝑛𝑔𝑡ℎ then
7: Create two segments from𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ;

8: else
9: 𝑠𝑡𝑒𝑝𝑠 ← Calculate the number of steps based on edge 𝑙𝑒𝑛𝑔𝑡ℎ

and 𝑠𝑒𝑔_𝑙𝑒𝑛𝑔𝑡ℎ;

10: for 𝑖 ← −𝑠𝑡𝑒𝑝𝑠 to 𝑠𝑡𝑒𝑝𝑠 do
11: Calculate the start and end points of the segment based

on𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 and step size;

12: if segment length > 𝑠𝑒𝑔_𝑙𝑒𝑛𝑔𝑡ℎ then
13: Split the segment into two segments at the𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ;

14: else
15: Create a single segment;

16: Mark the start or the end of edge segments as corner segments;

17: Add the segments and directions to polygon segments list;

18: Add the polygon segments and directions to 𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ;

19: return 𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ;

In DiffOPC, after determining the segments 𝑺 and their corre-

sponding directionsD, it is crucial to establish the velocity vector 𝒗𝑖
for each segment 𝒔𝑖 . The velocity vector connects the movement of

edge segments with the gradients obtained from lithography simula-

tions. The concept of velocity vectors is inspired by level set-based

ILT (LSILT). In LSILT, the velocity component is the projection of

the gradient of the implicit level set function 𝜙 onto the mask plane,

denoted as ∇𝜙 , which can be a vector in any direction. However,

in DiffOPC, the movement direction 𝒗𝑖 of an edge segment 𝒔𝑖 is
restricted to be perpendicular to its direction vector 𝒅𝑖 , (either hori-
zontal or vertical), satisfying the condition 𝒗𝑖 · 𝒅𝑖 = 0. Additionally,

we set the default orientation of all velocity vectors 𝒗𝑖 to point out-

ward from the polygon, as illustrated in Figure 2.

3.2 Differentiable Edge-Based OPC
The preprocessed data consists of segments 𝑺 and correspond-

ing velocity vectors 𝑽 . 𝑺 is stored as learnable parameters in tensor

𝑺 ∈ R𝑁𝑠×2×2
, while 𝑽 is a fixed tensor 𝑽 ∈ R𝑁𝑠×2

used in com-

putations, where 𝑁𝑠 is the number of segments. In DiffOPC, the

forward pass from edge parameters 𝑺 to the resist image 𝒁 involves

five differentiable steps: 1) Edge parameter rounding. 2) Merging

corner edges. 3) Edge-to-mask rasterization. 4) Forward lithography

simulation. 5) Loss calculation. Each step’s forward and backward

computations will be discussed in detail in this chapter.

Differentiable edge parameter rounding. Since the edge parame-

ters 𝑺 are real-valued, while the edge coordinate system is integer-

valued, the rounding operation is non-differentiable. To address this

issue and enable a differentiable process, we employ the straight-

through estimator (STE) for rounding 𝑺 .

𝑥𝑖 = STE(𝑥𝑖 ), 𝑦𝑖 = STE(𝑦𝑖 ), 𝒔𝑖 = STE(𝒔𝑖 ), ¯𝑺 = STE(𝑺) . (3)

STE is defined as:

𝑥 = STE(𝑥) = Round(𝑥), ▷ STE forward.
𝜕𝐿

𝜕 STE(𝑥) =
𝜕𝐿

𝜕𝑥
. ▷ STE backward.

(4)

The forward pass illustrated in Figure 3(a) applies the rounding

function to 𝑺 , while the backward pass directly propagates the

gradients from
¯𝑺 to 𝑺 , as shown in Figure 3(b).

Corner edge merging. During the optimization, as edges move, the

endpoints of different segments separate. For non-corner segments,

the segment length remains unchanged since they only move along

the normal direction. The newly formed edges between adjacent
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Figure 3: (a) STE forward; (b) STE backward.

segments can be obtained from the endpoints of the neighboring

edges without additional processing. However, for segments adjacent

to corners, the movement directions differ, requiring extra handling.

After the movement, the new intersection point may lie outside

the two segments. Therefore, it is necessary to additionally connect

the segments adjacent to the corners. The adjusted algorithm is

presented in Algorithm 2. After the forward pass of the corner

merging operation, the modified edge parameters
ˆ𝑺 ensure that all

adjacent segments at the corners are re-connected. The backward
pass is straightforward, as the gradients are directly propagated to

the rounded edge parameters
¯𝑺 .

Algorithm 2 Find Intersection and Adjust Corner Segments

1: function FindIntersectionAndAdjust(𝑠1, 𝑠2)

2: 𝑠𝑣 ← vertical segment; 𝑠ℎ ← horizontal segment;

3: 𝑝† ← the intersection point (𝑥 of 𝑠𝑣 , 𝑦 of 𝑠ℎ);

4: if 𝑠1 is vertical then
5: Adjust the end point of the vertical line 𝑠𝑣 to 𝑝†;
6: Adjust the start point of the horizontal line 𝑠ℎ to 𝑝†;
7: else
8: Adjust the end point of the horizontal line 𝑠ℎ to 𝑝†;
9: Adjust the start point of the vertical line 𝑠𝑣 to 𝑝†;
10: return the adjusted segments (𝑠1, 𝑠2 ) ;

Differentiable rasterization using CUDA-accelerated ray cast-
ing. The core challenge in DiffOPC is the edge-to-pixel rasterization,

as the lithography model in eq. (1) only accepts pixel-based mask

input 𝑴 . This rasterization process must be differentiable to allow

the gradient flow to reach the edge parameters from the mask, and it

should be as fast as possible since it is performed in every optimiza-

tion epoch. Traditional EBOPC methods involve moving segments

and then filling or subtracting the corresponding binary matrix at the

new positions. However, this approach is time-consuming due to the

need to sequentially access each segment and convert the segment’s

displacement into mask indices, repeatedly reading and modifying

the corresponding locations. To address these issues, a method that

effectively generates a binary mask from rounded edge parameters

using CUDA-accelerated ray casting is proposed in Algorithm 3.

Algorithm 3 presents an efficient, fully parallelized method for

generating a binary mask from edge parameters using ray casting.

The main function, Rasterize, initializes an empty mask and a

count matrix, then extracts horizontal segments from the edge pa-

rameters. Since the polygons in the mask are Manhattan rectangles

and closed shapes, the algorithm only needs to process segments

along one direction (either horizontal or vertical), reducing the com-

putational cost by half. For each segment, the algorithm performs

parallel computation across all grid points within the bounding box,

calling the check_cross function to determine ray-segment in-

tersections. The check_cross function uses cross products to

efficiently check if a ray from a point intersects a segment. After

Algorithm3 Parallelized Ray Casting for Edge toMask Rasterization

Input: Merged edge parameters: �̂� , width𝑊 , height 𝐻 ;

Output: Binary mask:𝑚𝑎𝑠𝑘 ;

1: function Rasterize(ˆ𝑺,𝑊 ,𝐻 )

2: 𝑚𝑎𝑠𝑘 ← zeros( (𝑊,𝐻 ) ) ; 𝑏𝑏𝑜𝑥 ← bounding_box(�̂� ) ;
3: 𝑝𝑜𝑖𝑛𝑡𝑠 ← grid_within(𝑏𝑏𝑜𝑥 ) ; 𝑐𝑜𝑢𝑛𝑡 ← zeros( (𝑊,𝐻 ) ) ;
4: ▷ Create grid points and initialize count
5: �̂�ℎ ← extract horizontal segments from �̂�;
6: for 𝒔𝑖 in �̂�ℎ parallelly do ▷ Parallel computation
7: for 𝑝 in 𝑝𝑜𝑖𝑛𝑡𝑠 parallelly do
8: 𝑐𝑟𝑜𝑠𝑠 ← check_cross(𝑝, 𝒔𝑖 ) ;
9: 𝑐𝑜𝑢𝑛𝑡 [𝑝 ] ← 𝑐𝑜𝑢𝑛𝑡 [𝑝 ] + 𝑐𝑟𝑜𝑠𝑠 ▷ Accumulate checks
10: __syncthreads(); ▷ Synchronize threads
11: 𝑚𝑎𝑠𝑘 ← mod(𝑐𝑜𝑢𝑛𝑡, 2) == 1; ▷ Apply even-odd rule
12: return𝑚𝑎𝑠𝑘 ;

13: function check_cross(𝑝 , 𝑺)
14: 𝑣1← 𝑝 − 𝑠.𝑠𝑡𝑎𝑟𝑡 ; 𝑣2← 𝑝 − 𝑠.𝑒𝑛𝑑 ; ▷ Vectors from 𝑝 to 𝑺
15: 𝑐𝑟𝑜𝑠𝑠 ← 𝑣1.𝑥 × 𝑣2.𝑦 − 𝑣1.𝑦 × 𝑣2.𝑥 ; ▷ Cross product
16: 𝑐𝑜𝑛𝑑1← (𝑣1.𝑥 < 0) and (𝑣2.𝑥 ≥ 0) and (𝑐𝑟𝑜𝑠𝑠 < 0) ;
17: 𝑐𝑜𝑛𝑑2← (𝑣1.𝑥 ≥ 0) and (𝑣2.𝑥 < 0) and (𝑐𝑟𝑜𝑠𝑠 > 0) ;
18: return 𝑐𝑜𝑛𝑑1 or 𝑐𝑜𝑛𝑑2; ▷ True if ray crosses the segment

processing all segments, the even-odd rule is applied to finalize the

binary mask based on the parity of intersections at each point. The

algorithm leverages parallel computation, efficient ray-segment in-

tersection checks, and the properties of Manhattan rectangles to

enable fast and accurate mask generation, making it suitable for use

in the DiffOPC framework.

The forward pass of the rasterization process converts the edge

parameters, represented as a tensor of shape [𝑁𝑠 , 2, 2], into a mask

tensor of shape [𝑊,𝐻 ], where 𝑁𝑠 is the number of segments, and𝑊

and𝐻 are the width and height of the mask, respectively. In contrast,

the backward pass requires transforming the gradients from the

lithography model, which are of shape [𝑊,𝐻 ], into gradients for the
segments, represented as a tensor of shape [𝑁𝑠 , 2, 2]. To accomplish

this, the algorithm first computes the gradient of the mask tensor

with respect to the edge parameters using automatic differentiation.

Let
𝜕𝐿
𝜕𝑴 be the gradient of the loss function 𝐿with respect to themask

tensor𝑴 , obtained from the lithography model. The goal is to calcu-

late
𝜕𝐿

𝜕 ˆ𝑺
, the gradient of the loss function with respect to the edge

parameters
ˆ𝑺 . Applying the chain rule, we have:

𝜕𝐿

𝜕 ˆ𝑺
= 𝜕𝐿

𝜕𝑴 ·
𝜕𝑴
𝜕 ˆ𝑺

. The

term
𝜕𝑴
𝜕 ˆ𝑺

represents the Jacobian matrix of the rasterization process,

which maps changes in edge parameters to changes in the mask ten-

sor. This Jacobian matrix is computed efficiently using Algorithm 4.

In our implementation, as in the Interpolate function in line 10,

we choose the gradient at the midpoint of each segment as the rep-

resentative gradient for that segment, as stated in eq. (9). Once the

Jacobian matrix is obtained, the gradient of the loss function with

respect to the edge parameters can be calculated by multiplying the

gradient of the loss function with respect to the mask tensor,
𝜕𝐿
𝜕𝑴 , by

the Jacobian matrix
𝜕𝑴
𝜕𝑺 . This operation effectively backpropagates

the gradients from the lithography model to the edge parameters,

enabling the optimization of the edge-based OPC problem using

gradient-based methods.

MRC aware optimization. One of the significant advantages of
EBOPC is the ability to obtain boundary information in real-time

during the optimization process, including edges, line ends, jogs,



Algorithm 4 Transform Mask to Edge Gradients with Velocity

1: Input: Gradient matrix
𝜕𝐿
𝜕𝑴 of size𝑊 × 𝐻 ;

2: Input: Edge segments
ˆ𝑺 of shape [𝑁𝑠 , 2, 2], where each edge is defined

by two points: start (𝑥1, 𝑦1 ) and end (𝑥2, 𝑦2 ) ;
3: Input: Pre-defined velocity list 𝑽 for each segment 𝒔𝑖 ;
4: Output: Edge gradients 𝜕𝐿

𝜕�̂�
of shape [𝑁𝑠 , 2, 2];

5: function ComputeEdgeGradients(
𝜕𝐿
𝜕𝑴 , �̂�,𝑽 )

6: Initialize
𝜕𝐿

𝜕 ˆ𝑺
to zeros of shape [𝑁𝑠 , 2, 2];

7: for each segment 𝑖 in �̂� do
8: (𝑣𝑥 , 𝑣𝑦 ) ← 𝑽 [𝑖 ];
9: (𝑚𝑥 ,𝑚𝑦 ) ← [ (𝑥1 + 𝑥2 )/2, (𝑦1 + 𝑦2/2) ]; ▷ Midpoint
10: 𝑔

mid
← Interpolate( 𝜕𝐿

𝜕𝑴 ,𝑚𝑥 ,𝑚𝑦 ) ;
11: 𝒗𝑖 ← [[𝑣𝑥 , 𝑣𝑦 ], [𝑣𝑥 , 𝑣𝑦 ] ]; ▷ Edge velocity
12:

𝜕𝐿

𝜕�̂�
[𝑖 ] ← 𝑔

mid
· 𝒗𝑖 ;

13: return 𝜕𝐿

𝜕�̂�
;

notches, and other features. This is not possible with PBOPC. While

level set-based methods can control boundaries globally, they lack

the ability to fine-tune specific locations. DiffOPC generates MRC-

clean optimization results by explicitly controlling manufacturability

through the velocity term 𝒗𝑖 during optimization. Before the exper-

iment, we divide the MRC edges into corresponding check pairs.

We classify mask rules into two categories: spacing checks, such

as minimum spacing, end of line spacing, jog to jog spacing, and

special notch spacing, and width checks, such as minimum width

check. Let 𝜹 denote the distance vector between check pairs. The

projection of 𝜹 along the y-direction is given by proj𝑦 𝜹 = (𝜹 · 𝒋)𝒋,
where 𝒋 is the unit vector in the y-direction. The projection along the
x-direction is similarly defined. We achieve MRC-aware optimization

by controlling the velocity 𝒗𝑖 as follows: 𝒗′𝑖 = 𝒗𝑖 · 𝜏 (𝜹) where 𝜏 (𝜹)
is a function related to 𝜹 , defined as: 𝜏 (𝜹) = 𝜎 (𝛽 (proj𝜹 −𝐷)) . Here,
𝐷 is a constant related to the mask rule, and proj is the projection

operator in either 𝑥 or 𝑦 direction, 𝛽 is the steepness of sigmoid func-

tion 𝜎 (·). For the spacing and width check, when the distance proj𝜹
is smaller than 𝐷 , the velocity term rapidly decays to 0, preventing

further reduction in the distance. When proj𝜹 is greater than 𝐷 ,

𝜏 (𝜹) returns to 1, allowing normal optimization to proceed without

interference. By controlling the velocity term based on the distance

between check pairs and mask rule constants, DiffOPC effectively

incorporates MRC constraints into the optimization process.

Lithography simulations. After obtaining the mask 𝑴 through

the rasterization process, we can utilize forward lithography model

in eq. (1) to calculate the aerial intensity 𝑰 . To obtain a continuous-

valued printed image 𝒁 , we employ the sigmoid function 𝜎 (·) to
scale eq. (2) into a continuous space: 𝒁 = 𝜎 (𝛼 (𝑰 − 𝐼𝑡ℎ)), where 𝛼 is

the steepness of 𝜎 (·), and 𝐼𝑡ℎ is the threshold intensity value.

Objective function. We employ a combination of three loss func-

tions: 𝐿2 loss, PVB loss, and EPE loss. The 𝐿2 loss and PVB loss are

defined as:

L2 = ∥𝒁𝑛𝑜𝑚 − 𝑻 ∥2, L𝑝𝑣𝑏 = ∥𝒁𝑚𝑎𝑥 − 𝒁𝑚𝑖𝑛 ∥2 . (5)

For the EPE loss, measured points are sampled along the boundary

of the target patterns, which includes a set of samples on horizontal

edges (HS) and a set of samples on vertical edges (VS). To map the

EPE loss to the continuous-value domain, we utilize the sigmoid

function. First, we calculate the distance between 𝒁𝑛𝑜𝑚 and the

target pattern 𝑻 at the sampled points in VS and HS:

𝑫𝑠𝑢𝑚𝑖 𝑗
=


∑𝑗+𝑡ℎ𝑒𝑝𝑒
𝑘=𝑗−𝑡ℎ𝑒𝑝𝑒 𝑫𝑖𝑘 , if (𝑖, 𝑗) ∈ HS,∑𝑖+𝑡ℎ𝑒𝑝𝑒
𝑘=𝑖−𝑡ℎ𝑒𝑝𝑒 𝑫𝑘 𝑗 , if (𝑖, 𝑗) ∈ VS,

(6)

where 𝑫𝑖𝑘 and 𝑫𝑘 𝑗 represent the distances between the printed

image and the target pattern at the corresponding locations, and

𝑡ℎ𝑒𝑝𝑒 is a threshold value that determines the neighborhood size for

the distance calculation. 𝑫 is calculated by 𝑫 = (𝒁𝑛𝑜𝑚 − 𝑻 )2. Next,
we apply the sigmoid function to the calculated distances to obtain

the continuous-valued EPE loss:

L𝑒𝑝𝑒 =
∑︁

(𝑖, 𝑗 ) ∈𝐻𝑆∪𝑉𝑆

1

1 + exp(−𝛾𝑫𝑠𝑢𝑚𝑖 𝑗
) , (7)

where 𝛾 is a scaling factor that controls the steepness of the sigmoid

function. The total loss function is then defined as a weighted sum

of the three individual loss components:

L𝑡𝑜𝑡𝑎𝑙 = 𝑤1L2 +𝑤2L𝑝𝑣𝑏 +𝑤3L𝑒𝑝𝑒 , (8)

where𝑤1,𝑤2, and𝑤3 are the weights assigned to each loss compo-

nent. The use of the sigmoid function in the EPE loss allows for a

smooth integration of the EPE into the continuous-value domain,

enabling efficient gradient-based optimization.

For the backward pass, the gradients of the total loss function

with respect to the segment 𝒔𝑖 are calculated using the chain rule:

𝜕L

𝜕𝒔𝑖
=

𝜕L

𝜕𝑴
· 𝜕𝑴
𝜕𝒔𝑖

=
𝜕L

𝜕𝑴

[
⌊𝑥𝑖1 + 𝑥𝑖2

2

⌋, ⌊𝑦𝑖1 + 𝑦𝑖2
2

⌋
]
· 𝒗𝑖 , (9)

where ⌊·⌋ is floor operation and

𝜕𝐿

𝜕𝑴
= 𝑤1

𝜕L2

𝜕𝑴
+𝑤2

𝜕L𝑝𝑣𝑏

𝜕𝑴
+𝑤3

𝜕L𝑒𝑝𝑒

𝜕𝑴
. (10)

For the 𝐿2 loss, the gradient is calculated as:

𝜕L2

𝜕𝑴
=2 · (𝒁 − 𝑻 ) ⊙ 𝜕𝒁

𝜕𝑴
=2𝛼 ·

{
𝑯 ′ ⊗

[
(𝒁 − 𝑻 ) ⊙ 𝒁 ⊙ (1 − 𝒁 ) ⊙

(
𝑴 ⊗ 𝑯 ∗

) ]
+(𝑯 ′)∗ ⊗ [(𝒁 − 𝑻 ) ⊙ 𝒁 ⊙ (1 − 𝒁 ) ⊙ (𝑴 ⊗ 𝑯 )]

}
,

(11)

where the 𝑯 ′ is the flipped optical kernel set 𝑯 , and the 𝑯 ∗ is the
conjugate of 𝑯 . Similarly, for the PVB loss, the gradient is calculated

as:

𝜕𝐿𝑝𝑣𝑏

𝜕𝑴
= 2 × (𝒁𝑚𝑖𝑛 − 𝒁𝑚𝑎𝑥 ) ⊙

(
𝜕𝒁𝑚𝑖𝑛

𝜕𝑴
− 𝜕𝒁𝑚𝑎𝑥

𝜕𝑴

)
. (12)

The derivation of
𝜕𝒁𝑚𝑖𝑛

𝜕𝑴 and
𝜕𝒁𝑚𝑎𝑥

𝜕𝑴 is similar to that of
𝜕𝒁
𝜕𝑴 in

eq. (11). For the EPE loss, the gradient is calculated by summarizing

the gradients at the measure points (𝑖, 𝑗):
𝜕L𝑒𝑝𝑒

𝜕𝑴
=

∑︁
(𝑖, 𝑗 ) ∈𝐻𝑆∪𝑉𝑆

𝜕L𝑒𝑝𝑒

𝜕𝑫𝑠𝑢𝑚𝑖 𝑗

·
𝜕𝑫𝑠𝑢𝑚𝑖 𝑗

𝜕𝑴
, (13)

where

𝜕L𝑒𝑝𝑒

𝜕𝑫𝑠𝑢𝑚𝑖 𝑗
= 𝛾 · 1

1+exp(−𝛾𝑫𝑠𝑢𝑚𝑖 𝑗
) (1 −

1

1+exp(−𝛾𝑫𝑠𝑢𝑚𝑖 𝑗
) ), (14)

and

𝜕𝑫𝑠𝑢𝑚𝑖 𝑗

𝜕𝑴
=


∑𝑗+𝑡ℎ𝑒𝑝𝑒

𝑘=𝑗−𝑡ℎ𝑒𝑝𝑒
𝜕𝑫𝑖𝑘
𝜕𝑴 , if (𝑖, 𝑗 ) ∈ HS,∑𝑖+𝑡ℎ𝑒𝑝𝑒

𝑘=𝑖−𝑡ℎ𝑒𝑝𝑒
𝜕𝑫𝑘 𝑗

𝜕𝑴 , if (𝑖, 𝑗 ) ∈ VS,
(15)



with

𝜕𝑫𝑖 𝑗

𝜕𝑴 calculated as:

𝜕𝐷𝑖 𝑗

𝜕𝑴
=

𝜕
(
𝒁𝑖 𝑗 − 𝑻 𝑖 𝑗

)
2

𝜕𝑴
= 2(𝒁𝑖 𝑗 − 𝑻 𝑖 𝑗 ) ·

𝜕𝒁𝑖 𝑗

𝜕𝑴
. (16)

The detailed derivation of

𝜕𝒁𝑖 𝑗

𝜕𝑴 can be found in eq. (11).

SRAF generation. SRAFs in lithography enhance sub-resolution

element printability by modifying diffraction and interference pat-

terns in photoresist, leading to widened process windows, improved

resolution, depth of focus, and reduced line edge roughness. The

primary distinction among prior works lies in their handling of

SRAFs. In level set-based ILT methods, the implicit function 𝜙 is

tied to the primary pattern, preventing the generation of SRAFs

during optimization. Conversely, pixel-based ILT methods like [11]

can generate SRAFs during mask optimization due to their higher de-

gree of freedom. However, pixel-based ILT cannot impose rule-based

constraints on SRAFs, causing their growth to rely solely on gra-

dients. This improves printability but can increase MRC violations

and hotspots. To address these issues, we propose a two-stage SRAF

optimization algorithm. The first stage involves efficient SRAF seed

generation using gradient contours, and the second stage employs

a differentiable edge-based optimization for the generated SRAFs.

This approach effectively avoids the problems of missing SRAFs in

level set-based methods and violations in pixel-based SRAFs.

Gradient Contour-based SRAF Seed Generation: During the opti-

mization process, we observe that certain regions near the main

pattern exhibit gradients that flip the mask value, changing it from

0 to 1. However, since the edge-based segments do not include these

regions, they remain at 0. Combining continuous transmission mask

(CTM) [16] theory and the results from [11], we conclude that these

gradients can contribute to SRAF generation. As depicted in Fig-

ure 4(a), the contour line of themask gradientmap shows the position

of the extreme gradient points and indicates the gradient drop rate.

The position of the extreme points can guide SRAF placement, while

the gradient information can guide the subsequent SRAF cleanup

process. The implementation involves extending the existing mask

by a certain distance related to the mask rules to create a SRAF

forbidden region. As illustrated in Figure 4(a), gradient contour lines

are drawn outside the SRAF forbidden region. The extreme points

and the corresponding contour aspect ratios are used as the center of

the SRAF seeds. The initial SRAF minimum width/length is set to a

fixed value, and the shape and placement of the SRAF are determined

based on the aspect ratio. This step does not require precise SRAF

generation; it only needs to determine the initial position and aspect

ratio.

Differentiable Edge-based SRAF Optimization: In the second stage,

the generated seeds illustrated in Figure 4(a) are processed using the

Algorithm 1 segmentation method to create new segments, which

are then added to the main optimization process. The SRAFs are

optimized together with the mask. To accelerate the SRAF optimiza-

tion process, we adopt a multi-resolution strategy similar to [11].

SRAF seeds are generated at low resolution, and then the seeds and

mask are refined in high resolution for more precise optimization.

Sample results are shown in Figure 4(b). The proposed two-stage

SRAF optimization algorithm enables the generation of SRAFs that

SRAF 
Forbidden 

Region

Initial
SRAF
Seeds

Gradient map & Initial SRAFs
(a)

Final mask and SRAFs
(b)

Figure 4: DiffOPC SRAF insertion and optimization.

enhance printability while minimizing MRC violations. We con-

ducted a comprehensive comparison of DiffOPC, ILTs, and EBOPC

in Table 1.

4 Experimental Results
In our implementation, we set 𝑁𝑘 = 24 for the SOCS approxima-

tion. The parameters 𝛼 = 𝛽 = 𝛾 = 50, 𝑤1 = 1,𝑤2 = 0.9,𝑤3 = 100.

The default segment length is set to 80 nm. The lithography recipe

is provided by the ICCAD 2013 [15] contest evaluation package. The

mask fracturing tool is implemented based on a GPU-accelerated

rectangular decomposition algorithm [17]. The entire framework

is written in PyTorch and tested on an Nvidia RTX 3090 GPU. The

mask rule check (MRC) is performed using KLayout. DiffOPC is

tested on both metal layer and via layer designs. The metal layer

evaluation designs for 32 nm M1 layout designs are from [15], and

larger layouts from [11] for the same process node. The via layer

evaluation designs are adopted from [18], containing ten 2𝜇𝑚 × 2𝜇𝑚

clips with different numbers of 70𝑛𝑚 × 70𝑛𝑚 via patterns. SRAF

seeds are generated in a low resolution of 512 × 512 and optimized

at a resolution of 2048 × 2048.

4.1 Experimental Results on Metal Layer
Comparison with ILT. Table 2 compares the performance of our

proposed DiffOPC framework with state-of-the-art (SOTA) ILT ap-

proaches, namely NeuralILT [10] andMultiILT [11], on the ICCAD13

benchmark. The comparison is based on keymetrics such as L2 (𝑛𝑚2
),

PVB (𝑛𝑚2
), EPE (𝑛𝑚), number of shots, and turnaround time (TAT,

seconds). DiffOPC demonstrates superior performance, achieving

an average L2 of 28280, which is 1.5% and 27% lower than MultiILT

and NeuralILT, respectively. Attributed to the utilization of EPE loss

introduced in eq. (7), DiffOPC achieves lower EPE, with an average

of 2.2, representing a 19% and 71% reduction compared to MultiILT

and NeuralILT. Moreover, DiffOPC requires significantly fewer shots

per case, with an average of 106.1 shots, representing a 62% and 81%

reduction compared to MultiILT and NeuralILT, which translates to

lower manufacturing costs. These results highlight the effectiveness

of DiffOPC in generating mask patterns with improved printabil-

ity while maintaining better manufacturability compared to ILT

methods. As mentioned in Section 1 and illustrated in Figure 5, ILT

approaches are prone to introducing MRC violations, which do not

meet industrial requirements. We also present the post-MRC results

for MultiILT in the "Post-MRC" column, where the TAT includes

both the ILT runtime and the post-processing time for cleaning mask

rule violations. It is noteworthy that the post-MRC stage for Multi-

ILT leads to a significant performance degradation, evident from the



Table 1: DiffOPC compared with ILTs and EBOPC.

Level set-based ILT Pixel-based ILT MEEF-based EBOPC DiffOPC

Shape Free-form (more smooth) Free-form (sharp corners) Manhattan shape Manhattan shape

Gradient update: Level set function Mask transmission Edge move distance Edge segment position

Optimization Gradient descent Gradient descent Newton’s method Gradient descent

SRAF None Automatic generation Pre-placed SRAF SRAF co-optimization

MRC clean? No No Yes Yes

EPE loss None None Yes Yes

Table 2: Comparison with ILT methods on ICCAD13 dataset.

ICCAD’20 NeuralILT [10] DAC’23MultiILT [11] MultiILT (Post-MRC) [11] DiffOPC

L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT

c1 215344 50795 63695 8 743 13.57 40779 50661 3 307 3.49 45940 54949 7 275 18.42 38661 55156 3 107 10.62

c2 169280 36969 60232 3 571 14.37 34201 44322 2 186 3.47 37035 45085 3 167 13.64 29548 45610 0 104 10.65

c3 213504 94447 85358 52 791 9.72 66486 71527 22 308 3.47 79751 82213 35 261 18.71 64706 93773 19 121 11.52

c4 82560 17420 32287 2 209 10.40 10942 21500 0 233 3.47 13111 32330 1 204 19.24 12054 25053 0 80 6.04

c5 281958 42337 65536 3 631 10.04 30231 51277 0 374 3.47 39236 60069 1 296 13.23 31774 56966 0 129 6.72

c6 286234 39601 59247 5 745 11.11 30741 44982 0 365 3.47 37493 56581 1 300 16.14 31791 52997 0 129 10.33

c7 229149 25424 50109 0 354 9.67 17101 40294 0 196 3.50 19133 48156 0 155 13.57 17847 45791 0 96 6.59

c8 128544 15588 25826 0 467 11.81 11935 20357 0 243 3.47 13917 28910 0 201 22.09 11641 23172 0 78 6.52

c9 317581 52304 68650 2 653 9.68 35805 57930 0 435 3.50 45659 70023 1 387 14.51 36595 65732 0 141 10.11

c10 102400 10153 22443 0 423 11.46 8825 18470 0 114 3.48 9715 22979 0 88 18.23 8184 17923 0 76 5.12

Average 38503.8 53338.3 7.5 558.7 11.18 28704.6 42132.0 2.7 276.1 3.48 34099 50130 4.9 233.4 16.78 28280 48217 2.2 106.1 8.42

Ratio 1.36 1.11 3.41 5.27 1.33 1.02 0.87 1.23 2.60 0.41 1.21 1.04 2.23 2.20 1.99 1.00 1.00 1.00 1.00 1.00

Table 3: Comparison with ILT methods on larger dataset.

ICCAD’20 NeuralILT [10] DAC’23MultiILT [11] MultiILT (Post-MRC) [11] DiffOPC

L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT

L1 494560 79933 120577 12 669 20 64020 93060 3 628 3.48 80403 101194 11 529 22.66 57178 97979 3 247 11.49

L2 448496 86995 104266 15 556 12 52072 84733 1 553 3.46 72261 91673 8 491 18.07 63288 85388 2 109 11.89

L3 492720 133281 152718 70 766 15 95174 116687 30 641 3.49 118860 125013 65 564 20.49 81120 120828 22 267 14.69

L4 361776 43797 92137 0 455 14 33076 67839 1 523 3.47 41526 76582 2 479 21.43 31531 70713 0 177 8.53

L5 561174 69521 122115 3 808 19 55013 100120 0 670 3.46 76176 111861 6 528 16.00 53484 102675 0 258 7.69

L6 565450 73790 117359 2 764 19 57386 94863 0 670 3.45 76644 108667 5 501 18.74 56581 97980 0 293 13.21

L7 445365 49031 92320 0 531 19 32947 73799 0 648 3.45 40838 84006 0 503 18.19 42091 84836 0 222 9.91

L8 407760 47409 84971 0 478 16 41265 67797 0 493 3.48 43475 73021 0 426 20.49 32482 68687 0 198 8.53

L9 596797 93922 115028 5 614 14 70385 108998 0 541 3.48 84857 120426 4 514 18.04 60748 111449 0 226 11.44

L10 381616 28028 80127 0 452 19 30091 62206 0 546 3.46 36767 67807 0 452 20.95 28334 63274 0 188 8.78

Average 70570.7 108161.8 10.7 609.3 16.7 53142.9 87010.2 3.5 591.3 3.47 67181 96025 10.1 498.7 19.51 50684 90381 2.7 218.5 10.62

Ratio 1.39 1.20 3.96 2.79 1.57 1.05 0.96 1.30 2.71 0.33 1.33 1.06 3.74 2.28 1.84 1.00 1.00 1.00 1.00 1.00

increased average values of L2, PVB, EPE, and TAT compared to the

original MultiILT results. The results of DiffOPC outperform all met-

rics of ILT in the post-MRC stage. This indicates that ILT-generated

patterns may not optimize as desired and could introduce more viola-

tions, prolonging processing times due to MRC. In contrast, DiffOPC

maintains superior performance without extra post-processing steps,

highlighting its robustness and efficiency in generating high-quality,

manufacturable mask patterns meeting industrial standards.

Large dataset. To further validate the robustness and scalability

of our proposed DiffOPC framework, we conduct experiments on a

larger dataset and compare its performance with SOTA methods in

Table 3. The results demonstrate that DiffOPC consistently outper-

forms the other methods, highlighting its effectiveness in handling

complex and diverse patterns. DiffOPC achieves an average L2 of

50684, which is 4.7% and 28.2% lower than MultiILT and NeuralILT,

NeuralILT [10] MultiILT [11] DiffOPC
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Figure 5: MRC violations across methods and datasets

respectively. Moreover, it exhibits superior performance in terms

of EPE, with an average EPE of 2.7, representing a 23% and 75%

reduction over MultiILT and NeuralILT. Notably, DiffOPC requires

significantly fewer shots per case, with an average of 218.5 shots,

which is 63% and 64% lower than MultiILT and NeuralILT. As ob-

served in the previous experiment, the post-MRC stage for MultiILT

leads to a deterioration in performance. This further underscores



Table 4: Comparison with traditional MEEF EBOPC on ICCAD
2013 benchmark.

MEEF-based EBOPC [2] DiffOPC w./o. SRAFs

L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT

c1 52310 60296 14 67 13 42177 57981 4 79 5.53

c2 36498 52124 2 60 11 31198 50474 2 58 5.35

c3 90824 103100 59 87 12 71643 81219 26 92 6.52

c4 12144 30663 2 34 9 14771 32059 0 30 3.29

c5 31832 60792 0 84 14 33986 61796 0 89 5.24

c6 30612 55751 0 98 14 33578 56752 0 85 5.44

c7 15343 48968 0 59 11 17928 48886 0 60 4.16

c8 11851 26149 0 33 9 12805 25942 0 43 3.82

c9 38858 71288 0 93 14 39543 73183 0 97 4.70

c10 6562 21024 0 26 9 8167 21332 0 19 3.39

Avg. 32683.4 53015.5 7.7 64.1 11.6 30579.6 50962.4 3.2 65.2 4.74
Ratio 1.07 1.04 2.33 0.98 2.44 1.00 1.00 1.00 1.00 1.00

the limitations of ILT-based methods in generating manufacturable

patterns that comply with industrial requirements.

Comparison with MEEF-based EBOPC on ICCAD2013 bench-
mark. To provide a fair comparison between proposed DiffOPC and

the traditional MEEF-based EBOPC method [2], we evaluate both

approaches on GPU without the inclusion of SRAFs. The results in

Table 4 demonstrate that DiffOPC consistently outperforms MEEF-

EBOPC. On average, DiffOPC achieves an L2 of 30579.6, which is 6.5%

lower than MEEF-EBOPC. Similarly, DiffOPC exhibits lower average

PVB, EPE, and TAT with 3.9%, 58%, and 59% respectively. These

findings highlight the superior printability of the mask patterns

generated by DiffOPC compared to the traditional MEEF-EBOPC.

It is worth noting that MEEF-EBOPC struggles to handle complex

patterns. The limitation is evident from the results presented in Ta-

ble 4, where MEEF-EBOPC exhibits particularly high EPE values

for complex test cases such as c3 (EPE = 59) compared to simpler

cases like c10 (EPE = 0). In contrast, DiffOPC demonstrates robust

performance across all test cases while maintaining a competitive

shot count compared to MEEF-EBOPC.

4.2 Experimental Results on Via Layer
In Table 5, we evaluate the performance of DiffOPC on the via

layer against SOTA ILT and EBOPC methods, including a commer-

cial tool, Calibre [19]. Comparison with ILT methods. DiffOPC

outperforms ILT methods in terms of L2 and EPE, achieving the low-

est values of 3957 and 13.5, respectively. Notably, DiffOPC achieves

these improvements while maintaining a significantly lower shot

count (9.7 shots on average), which is approximately 1/20th of the

shot count required by [11] (225 shots). Comparison with EBOPC

methods. Among the EBOPC methods, DiffOPC demonstrates su-

perior performance, achieving the lowest L2 (3957), EPE (13.5), and

TAT (2.8 seconds) compared to the commercial Calibre tool and the

MEEF-based approach.

4.3 Ablation Study
Efficiency of CUDA-accelerated ray casting rasterization. We

compare the runtime of our CUDA-accelerated ray casting rasteriza-

tion approach with the traditional EBOPCmethod based on indexing

and the find-then-move strategy. For a clip size of 2𝜇𝑚×2𝜇𝑚, a single

forward rasterization step in DiffOPC takes 16 milliseconds, while

Table 5: Result comparison on via layer.

ILT EBOPC

NILT [10] MILT [11] MILT(MRC) [11] Calibre [19] MEEF [2] DiffOPC

L2 4629 3963 4385 4136 4371 3957
PVB 11367 10478 11157 10648 11272 10880

∗
EPE 22 14.2 18.7 14.2 18.2 13.5

Shots 219 225 191 8.5 6.2 9.7

TAT 5.7 1.5 5.4 8.2 4.6 2.8

∗EPE: EPE threshold set to 1 𝑛𝑚.

the traditional method requires 196 milliseconds, representing a

12.3× speedup achieved by our CUDA ray casting implementation.

Ablation Study on Segment Length. Segment length in DiffOPC

also impacts optimization performance. In an ablation study using

the ICCAD 2013 benchmark, segment lengths of 60𝑛𝑚, 80𝑛𝑚, and

100𝑛𝑚 resulted in EPE of 2.6, 2.2, and 2.8, with runtimes of 8.95, 8.42,

and 6.92 seconds. This shows that optimal segment length selection

can enhance OPC performance. Future work could explore adap-

tive segment length strategies, adjusting lengths based on pattern

complexity and optimization progress for better performance.

4.4 Summary of Experimental Results
The experimental results on both metal and via layers demon-

strate DiffOPC’s superiority over SOTA ILT, post-MRC ILT and

EBOPC methods in terms of printability, manufacturability, and

cost-efficiency. On metal layers, DiffOPC consistently outperforms

SOTA ILT methods, exhibiting reduced EPE and shot count, along

with lower manufacturing costs, while maintaining competitive TAT.

The proposed framework eliminates the need for additional post-

processing to address MRC violations, making it an efficient and

reliable edge-based OPC solution for large-scale OPC tasks. On via

layers, DiffOPC achieves the best performance in L2, EPE, and TAT

among EBOPC methods, surpassing even the commercial Calibre

tool. Compared to ILT methods, DiffOPC shows the lowest L2 and

EPE values while significantly reducing the number of shots, lead-

ing to lower manufacturing costs and improved throughput. These

results highlight DiffOPC’s enhanced printability, pattern fidelity,

and computational efficiency.

5 Conclusion
We propose DiffOPC, a differentiable edge-based OPC frame-

work that bridges the gap between the superior manufacturability

of EBOPC and the enhanced performance of ILT. By leveraging a

CUDA-accelerated ray casting algorithm, DiffOPC enables a differ-

entiable rasterization process that allows gradients to propagate

through the lithography model, facilitating the efficient optimiza-

tion of edge segment positions. This innovative approach results in

significant improvements in key metrics such as L2 and EPE while

maintaining an exceptionally low shot count, leading to substan-

tially reduced manufacturing costs. Moreover, DiffOPC incorporates

an efficient SRAF generation method, which seamlessly integrates

SRAF with the main pattern optimization for a holistic and effective

OPC solution. Experimental results highlight DiffOPC’s superior

performance and efficiency over SOTA EBOPC and ILT methods,

making it a promising advancement in semiconductor technologies.
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