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Abstract

Modern boolean satisfiability (SAT) solvers heavily rely on the
conflict-driven clause learning (CDCL) framework to efficiently
search the solution space and resolve conflicts during the search
process. However, CDCL still faces challenges in terms of searching
efficiency, particularly in complex cases with deep/symmetric/tree-
based structures. To address this issue, numerous learning-driven
methods have been proposed. However, these methods primarily
focus on utilizing data-driven approaches to enhance searching
efficiency and decision accuracy, while overlooking the core issue
of the state explosion within the CDCL framework itself when the
search starts at the wrong point. In this paper, we introduce DiffSAT,
a novel approach that differentiates the discrete SAT problem and
progressively searches for satisfying assignments through the for-
ward and backward propagation of a neural network layer. DiffSAT
initiates with an initial assignment obtained through semidefinite
approximation and iteratively explores the solution space guided
by a differential loss function. Notably, DiffSAT does not require
training data and can be applied to large-scale problems that have
not been seen before. The experimental results provide evidence
that DiffSAT exhibits superior performance compared to existing
end-to-end learning-based SAT solvers and can be generalized to
solve large-scale SAT problems. Additionally, DiffSAT surpasses
state-of-the-art SAT solvers in effectively finding satisfying assign-
ments for complex problems in SATCOMP-2023.

1 Introduction

Boolean satisfiability is the problem of determining if there ex-
ists an assignment for all variables that satisfies a given Boolean
formula. In general, a boolean formula ¢ can be represented as
a conjunctive normal form (CNF) consisting of a conjunction of
clauses w, each of which denotes a disjunction of literals. A lit-
eral is either a variable x; or its complement. Each variable can
be assigned a logic value, either 0 or 1. An SAT solver either finds
an assignment such that ¢ is satisfied or proves that no such as-
signment exists, i.e., UNSAT. Particularly, the 3-SAT problem is
the first proven NP-complete problem [5]. Modern SAT solvers are
based on the CDCL algorithm, and it works as a basic engine for
many applications like circuit testing and formal verification. The
main advantage of CDCL-based solvers is their ability to learn from
conflicts and use that knowledge to prune the search space more
effectively. However, existing CDCL-based SAT solvers still suffer
from exponential searching space and are unable to correct errors
through a learning-from-mistakes system, resulting in an infinite
loop in solving complex SAT problems [2].

Recently, a growing number of learning-based approaches have
been studied extensively to improve SAT-solving efficiency, par-
ticularly under the consideration of CNF structure learning with
graph neural networks (GNNs). The learning-based approaches fall
into two directions. On the one hand, the end-to-end approaches
propose to solve SAT problems from scratch in a standalone way.
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The first end-to-end learning-based solver is NeuroSAT [16], which
models the SAT problem as a classification task and trains a GNN-
based classifier with single-bit supervision (satisfiable or not). SAT-
former [17] takes CNF instances as GNN inputs and leverages a
hierarchical transformer to capture the relationships among clauses,
search for UNSAT cores, and determine whether the instance is
satisfied or not. In general, such learning-based methods usually
begin at a graph neural network to get the embedding vectors of
literals and clauses and end with a classifier to determine whether
the whole problem can be satisfied or not. Meanwhile, if satisfied,
one of the satisfying assignments can be decoded from k-means
clusters of literal embeddings [16, 18]. Despite the significant im-
provements, current end-to-end learning-based approaches cannot
beat traditional solvers in both accuracy and solving efficiency.
On the other hand, learning-aided approaches try to learn an
efficient heuristic and are integrated as a plug-in component with
the traditional SAT solvers. For example, NeuroCore [15] improves
the variable branching heuristic in CDCL SAT solvers by predicting
the variables involved in the unsatisfiable core (i.e., a subset of
the SAT formula that remains unsatisfiable). NeuroBack [21] lever-
ages GNNis to predict phases (i.e., values) of variables appearing
in the majority (or even all) of the satisfying assignments that are
essential for CDCL SAT solving. Though accelerating CDCL SAT
solvers, the upper bound performance of learning-aided solvers is
ultimately limited by the capabilities of the underlying backbone
solvers. When the input CNF contains some complex structures,
such as cyclic or tree-based structures, it is easy for the CDCL SAT
solver to trap the iterative structure in an infinite loop. For instance,
consider the benchmark “sgen3-n260-s62321009-sat” from the SAT
Competition 2023 [1]. This particular SAT problem consists of only
260 variables and 884 clauses, making it relatively small in size.
However, despite its small size, it poses a significant challenge for
state-of-the-art CDCL-based SAT solvers. None of these solvers
can produce a satisfying assignment within a time limit of 10,000
seconds. This example highlights a scenario where the initial search
path of a SAT solver deviates significantly from the correct path.
Consequently, the CDCL framework’s inability to rectify errors
causes the solver to become trapped in an infinite loop.
Considering the above, we introduce DiffSAT, a differential ap-
proach aimed at progressively searching for satisfying assignments
for SAT problems. First, DiffSAT generalizes the original SAT prob-
lem into a maximum satisfiable (MaxSAT) problem and employs
a semidefinite approximation of the MaxSAT problem to obtain
an initial solution that satisfies as many clauses as possible. Then,
DiffSAT introduces a network layer, the MaxSAT layer, that differ-
entiates the proposed loss function and facilitates the search for
satisfying assignments. The main contributions are summarized as:

o We model the SAT solving from a novel perspective. Specifically,
for satisfiable CNFs, we transform the SAT problem into a
minimization problem and iteratively search for the satisfying
assignment in a differential manner;



e We introduce a novel neural network layer, termed the MaxSAT
layer, which integrates SAT solving into both the forward and
backward pass. The MaxSAT layer functions as a solver, sys-
tematically exploring the solution space and iteratively refining
variable assignments using gradient descent.

e Our empirical evaluation on random datasets demonstrates that
DiffSAT surpasses previous end-to-end learning-based solvers
and achieves performance comparable to the mainstream SAT
solver, Kissat, on large benchmarks. More importantly, DiffSAT
requires significantly less runtime compared to state-of-the-art
SAT solvers in finding satisfying assignments for some intricate
problems in the SAT Competition 2023.

2 Preliminaries
2.1 Approximation algorithms for MaxSAT

In addition to exact solvers based on combinatorial search, there
have been several approaches that explore approximation algo-
rithms for the MaxSAT problem, both from theoretical and practical
perspectives. These approaches primarily aim to achieve a high ap-
proximation ratio a, which refers to the quality of the approximate
solution compared to the optimal solution as

Approximated objective < « - Optimal objective.

The first approximation algorithm for the MaxSAT problem was
proposed in [7], which utilized a linear programming (LP) approxi-
mation with an approximation ratio of @ = 0.75. Building upon this,
they also introduced a semidefinite programming (SDP) approxi-
mation for the Max2SAT problem with an improved approximation
ratio of @ = 0.878. This SDP-based approach formed the foundation
for subsequent approximation methods in MaxSAT. Another SDP
approach, presented in [6], further refined the approximation ratio
to @ = 0.931 for the Max2SAT problem and extended it to handle the
Max3SAT problem with an approximation ratio of & = 0.875 [11].
Exploiting the high approximation quality of SDP relaxation for the
MaxSAT problem, a recent work [20] combined low-rank semidef-
inite programming with a branch-and-bound strategy, achieving
state-of-the-art performance for both the Max2SAT and Max3SAT
problems in the MAXSAT 2016 competition.

2.2 Problem Formulation

Deep-learning-based SAT solvers face challenges when attempt-
ing to solve SAT problems in an end-to-end manner, while tradi-
tional CDCL SAT solvers still struggle with the exponential search
spaces. To address these limitations, we propose a novel approach to
enhance end-to-end SAT solving. Our approach involves exploring
a differentiable loss function and integrating a MaxSAT solver layer
into deep learning systems. By doing so, we aim to overcome the
inherent limitations of CDCL systems when dealing with complex
CNFs. In this paper, our primary focus is on exploring satisfying
variable assignments for satisfied problems, as tackling unsatisfiable
certification presents a distinct and separate challenge.

3 Algorithm

The overview of our proposed DiffSAT is depicted in Figure 1.
DiffSAT begins by generalizing the original SAT problem to its
MaxSAT formulation and then utilizes semidefinite approximation
to find an initial solution by relaxing the discrete variables to con-
tinuous variables. Next, based on the variable-clause connection

graph (VCG), DiffSAT designs a loss function for each clause and
treats the partially connected graph as a network layer, named the
MaxSAT layer. Notably, the MaxSAT layer does not contain any
unknown parameters, as the weights of existing connections are
essentially the signs of variables in clauses, thereby eliminating the
need for labeled data or a neural network training phase. During
the forward pass, the MaxSAT layer checks the satisfiability of all
clauses based on the input assignment. In the backward pass, the
MaxSAT layer calculates the gradients of variables in the falsified
clauses and updates the variables with the largest absolute gradient,
thereby pushing the variable assignments towards satisfying more
clauses. This approach allows DiffSAT to embed logic formulas
into a network layer and continuously update variable assignments
differentially, avoiding the exponential discrete search in traditional
SAT solvers and achieving efficient SAT solving.

3.1 From SAT to MaxSAT

The MaxSAT problem serves as the optimization counterpart
to the satisfiability problem, aiming to maximize the number of
satisfied clauses. It is worth noting that if a solution to the MaxSAT
problem can satisfy all the clauses, the variable assignment can be
used to constitute a valid solution for the original SAT problem. In
the case of a SAT problem expressed in conjunctive normal form
with n binary variables and m clauses, its MaxSAT formulation can
be represented as follows:

max i \”/ 1{s;jo; > 0}, (1)

0 — n
ve{-1,1} =it

where V/ is the logical “or” symbol. The m clauses can also be repre-
sented as a clause matrix S € {1, —1,0}""*" with each element sij in
S denoting the sign of variable 9; in clause j. For conversing to loss,
we formulate Equation (1) in its minimization, or unsatisfiability,

form as
m n

z”;e?illr,ll}” ; Q 1{s;;j0; < 0}, (2)
where A is the logical “and” symbol. Indeed, the objective value in
Equation (2) is 0 if and only if a satisfiable solution can be found. We
aim to determine a continuous upper bound, referred to as “loss”, for
each clause in order to measure its unsatisfiability. The loss takes an
upper bound of +1 if the clause is unsatisfied, and zero or less if it is
satisfied. Therefore, the minimization problem in Equation (2) can
be solved by introducing a quadratic loss function [20] as follows:

(X1, sij6i)% = (mj — 1)2

loss; = o s (3
J

m
loss = Z lossj, (32)
=1

where loss; is the objective value of j-th clause, loss is the objective
value of all clauses, and m; is the number of literals in clause j, e.g.,
3 for the Max3SAT problem. The loss function in Equation (3) can
be described as a quadratic loss that takes the upper bound when
no literal in clause j is satisfied. Specifically, for any value of mj, it
can be easily verified that this quantity is equal to +1 if no literal is
satisfied, and 0 or less if at least one literal is True. Moreover, we
introduce v = 1 and sp; = —1 in Equation (3a) to make the purely
quadratic loss function.
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Figure 1: The overview of DiffSAT architecture.
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Figure 2: The illustration of the unsatisfiability loss.

Take a simple SAT problem with clauses (v1 V v2) A v; as an
illustrating example. Based on Equation (3), the loss function for
this SAT problem is

_(v1+vy—v9)? -1

_ (01 —vg)?
5 )

loss = loss; + lossy 2

Figure 2 illustrates the loss function for the first clause, i.e., loss;.

When both v; and vy are -1 (False), the quantity (v1 + v2 — vg)
evaluates to -3, resulting in a loss of 1 for this clause, which is
exactly the upper bound. However, when one or both literals equal
1 (True), (v1 + v — vg)? evaluates to 1, and the loss becomes 0,
indicating that the clause has been satisfied. It is important to note
that only when the loss values of all clauses are 0, indicating that
each clause has been satisfied, can we achieve a total loss of 0. In this
simple example, when v; is 1 (True), the loss terms for both loss;
and lossy become 0, resulting in a total loss of 0. Indeed, for the case

of any mj, it holds true that loss; < unsat(v,s;) = 1,Yo; € {-1,1}.

3.2 Semidefinite Initialization
Now, the MaxSAT solving is equivalent to finding an assignment
vector & € {—1,1}" that minimizes loss in Equation (3). By relaxing
each discrete variable &; to a unit vector v; € R¥, [|o;|| = 1, the loss
function becomes
IVsjl? = (mj = 1)?
am;

lossj (4)

Then, we associate the continuous variables with respect to a
unit “truth direction” v+ based on the randomized rounding [8].
The main idea of randomized rounding is that for every v;, we can
take a random hyperplane vector r from the unit vector and recover
the relaxed variables v; back to binary values with

b { 1, ifsign(r'o;) = sign(r o),

v =
i 1,

®)

otherwise,

where vg’ is the boolean output of v;. Intuitively, this scheme sets

vﬁ’ to be true if and only if v; is on the same side of the random
hyperplane r. Then, a coefficient vector st = {—1}™ is introduced
in the weight matrix S associated with the direction vector v+.
As discussed inSection 2.1, SDP is a theoretical approach that has
been introduced for approximating MaxSAT problems [9, 20] with
high approximation ratios. We choose the leverage semidefinite
approximation and the proposed loss function can be further relaxed
as the following SDP problem:

(STS,VTV),

min

VeRkx(n+1)
where § = [st,s1,...,s,]diag(1/ /4m}) € R™*(n+1) and v =
[vT,01,...,0n] € REX(D) For the Max2SAT problem, the formu-
lation of the proposed SDP relaxation is essentially the same as the
one presented in [9]. However, the main difference lies in the fact
that Equation (6) can be generalized to accommodate longer clauses.
It has been demonstrated that this low-rank SDP formulation can
recover the optimal SDP solution when k > V2n. To ensure the
global optimal solution in Equation (6), we set k = V2n + 1, as
suggested in [14]. Due to the relatively slow performance of the
augmented Lagrangian method, especially for medium-sized SDP
problems, we opt to employ coordinate descent, as proposed in [19],
to solve the SDP problem presented in Equation (6). This approach
is suitable since the problem belongs to a special class of SDP with
diagonal constraints. Particularly, if we hold all but one v; fixed, the
objective term that depends on v; is given by v;'— Yiexi (STS) ik 0k
Recall that ||o;|| = 1, there is a simple closed-form solution for the
remaining v; given by:

v; := normalize(— Z(STS)ikUk) =-
k#i

st |loil =Lie{T,1,2,...,n},

(6)

™)

zZi
llz:ll”
where z; = Y14;(S7S);x0k. The coordinate descent method iter-
ates the process described above until convergence, and it has been
proven to converge to the globally optimal fixed point of the Equa-
tion (6) [19]. In practice, it is also an order of magnitude or faster
than any other state-of-the-art SDP solver for such problems.

3.3 Differential MaxSAT Layer

Having generalized the original satisfiability problem to a MaxSAT
problem, we have successfully solved it by employing semidefinite
approximation and associated coordinate descent techniques, re-
sulting in fast computation. Now, our objective is to efficiently
determine the final solution starting from the SDP solution. Rather
than training a neural network to predict the final assignments that
satisfy all clauses, an inherently complex task, we develop a novel
solver layer architecture, MaxSAT Layer, with the aforementioned



differentiable loss function in Equation (3) to efficiently search from
the initial solution to the final optimum. We now present the details
of the forward and backward passes of our proposed MaxSAT layer.

Forward Pass. The forward pass algorithm is outlined in Algo-
rithm 1. In the forward pass, the inputs consist of relaxed solutions
and the given CNFs ¢. Subsequently, the layer transforms these
inputs by extracting the sign of the variables, thereby casting them
to Boolean values (line 1). The layer then assesses the satisfiabil-
ity of ¢’ (line 2). If the current variable assignment satisfies ¢’,
the MaxSAT layer outputs y¥ as True, indicating that ¢ is satisfied
and a feasible solution for the given CNF has been identified. Con-
versely, if ¢ cannot be satisfied, the MaxSAT layer outputs yk as
False, prompting the initiation of the backward pass to update the
variable assignment.

Algorithm 1 The forward pass of MaxSAT layer

Input: Variable assignment ok € R" at k-th epoch, conjunctive
normal formula ¢.
Output: yk, loss j, solution v*.

1: z”)k<—[v{.<>0:i:1,...,n];

¢ — @k, i)

. if ¢’ is satisfiable then
yk «— True;
U* — Uk :

else
yk « False;

: end if

AR U

Backward Pass. Algorithm 2 demonstrates the implementa-
tion of our backward pass, which is responsible for computing
the gradient of the layer inputs and deriving updates to variables
that aim to satisfy more constraints in ¢. The primary challenge
of the backward pass involves identifying the input variable that
may have contributed the most to the unsatisfiability of constraint
formulas. Let I represent the set of variables in satisfied clauses and
I denote its complement, which represents the set of variables in
falsified clauses. It has been established that variables in I are more
likely to be the sources of conflict. Therefore, we select one variable
from this set based on the first-order derivative of the loss function,
which will be discussed later, and update its value using gradient
descent. Intuitively, variables not present in I may have their gra-
dients set to zero, as their absence in I does not provide evidence
regarding the correctness or incorrectness of their current values.
The variable selection process in the MaxSAT layer resembles that
of the stochastic local search (SLS) algorithm, which is commonly
used in solving constraint satisfaction problems (CSPs) [4]. How-
ever, the main distinction is that SLS relies on meta-heuristics for
variable selection, whereas our MaxSAT layer selects a variable in
a differentiable manner during backpropagation.

The backward pass begins by initializing the gradient to zero
for all variables (line 1). If yk is false, indicating the presence of
unsatisfied clauses, we obtain the set of variables I that are present
in the falsified clauses. Once we have obtained the candidate set I
(line 5), we proceed to select the best variable from this set using a
criterion based on its gradient. Specifically, we compute the gradi-
ent for each variable in the candidate set and choose the variable

Algorithm 2 The backward pass of MaxSAT layer

Input: 0¥ € R” from forward pass, y¥ from forward pass, CNF ¢,

learning rate A.

Output: Gradient g of o¥, updated assignment ok+1,

1: gk — 0;

2 if yk is False then

3 e [ok>0:i=1...,n];
6 ¢ — (k. 5k

5: I {ie[1,n]lv;ed'};

6: foricIdo

7: gi < 9,kloss;

8: end for

9 if 3 g; # 0 then

10: gif «— argmax; . ||g:ll

11: else

12: v; := a random variable in a random falsified clause;
13: gi.“ := sign(v;);

14: end if

15: end if

16: Update oF*! — ok — gk,

with the largest absolute gradient, i.e., ||g;||. This gradient computa-
tion involves differentiating the loss function in Equation (4) with
respect to v; (line 7). Define this gradient as g;, we have

9; = VSTsi - llsill*v;. ®)
After obtaining the gradient for all variables in I, the MaxSAT
layer selects a variable and updates its value based on two situa-
tions: (1) If there exists a variable with a non-zero gradient (i.e.,
gi # 0), the MaxSAT layer selects the variable with the largest
absolute g; (line 10); (2) If there is no variable satisfying the above
condition, indicating that the search is stuck in a local optimum, the
MaxSAT layer randomly selects a variable from a falsified clause
(line 12) and artificially assigns a gradient with the same sign as
the selected variable (line 13). This criterion guides the updates
towards satisfying more clauses at each iteration, as selecting the
variable with the largest absolute gradient pushes the loss quantity
to decrease in the steepest direction.

4 Experiments
In this section, we aim to answer the following three questions

through a comparative analysis of the experimental results:

RQ1: Can DiffSAT outperform end-to-end learning-based SAT
solvers on random datasets?

RQ2: Can DiffSAT be generalized to handle large-scale SAT prob-
lems?

RQ3: Can DiffSAT demonstrate improved performance on com-
plex datasets compared to the SOTA SAT solver?

4.1 Experiment Settings

Evaluation Metric. DiffSAT aims to determine the satisfying as-
signment for a given CNF formula. The accuracy of DiffSAT is
evaluated based on whether the variable assignments it produces
can satisfy the given constraints. In contrast to DiffSAT, which
directly obtains variable assignments from the layer output, both



Table 1: Performance comparison of NeuroSAT, SATformer, and DiffSAT on random datasets.

SR(20) SR(50) SR(100) SR(200) SR(500)
CV=3 CV=4 CV>5| CV=3 CV=4 CV>5 | CV=3 CV=4 CV>5 | CV=3 CV=4 CV>5 | CV=3 CV=4 CV>5
NeuroSAT | 86%  81%  50% | 82%  44%  18% | 40%  20% 4% 6% 0% 0% 0% 0% 0%

SATformer 98% 94% 78% 98% 84% 25% 49%
DiffSAT 100%  100%  100% | 100%  100%  100% | 100%

42% 10% 12% 4% 0% 0% 0% 0%
100%  100% 100%  100%  100% 100%  100%  100%

NeuroSAT and SATformer apply k-means algorithm to cluster the
literal embeddings into two clusters, labeled A and B. This clus-
tering process generates two possible assignments: one assigns
the variables in cluster A as true and the variables in cluster B as
false, while the other reverses the assignments. If either of these
two assignments satisfies the given instance, we consider the SAT
problem to be solved.

Dataset Preparation. To train our learning-based baselines, namely
NeuroSAT [16] and SATformer [17], we generate a dataset consist-
ing of 50,000 satisfiable and 50,000 unsatisfiable instances. These
instances are generated using the same random k-SAT dataset gen-
eration scheme as described in [16]. In this dataset, we use the
SR(n) distribution, which represents pairs of random SAT prob-
lems on n variables. These pairs have the following properties: one
element is satisfiable, while the other is unsatisfiable, and the only
difference between them is a single-edge connection. During train-
ing, we sample the number of variables n uniformly from the range
of 10 to 40 (i.e., trained on SR(U (10, 40))). In addition to random
datasets, we also incorporate complex benchmarks from the SAT
Competition 2023'. These benchmarks are included to showcase the
effectiveness of DiffSAT in solving challenging satisfiable problems.

Implementation Details. We developed a prototype of our ap-
proach using PyTorch [13]. It is important to note that DiffSAT
does not have any parameters and therefore does not require any
training labels. We set the time limit for both SAT solvers and
DiffSAT as 10,000 seconds. For optimization, we utilize the Adam
optimizer [12] with a learning rate of 2 X 10~! for DiffSAT and
2 % 1073 for NeuroSAT and SATformer. The GNN message passing
rounds of both NeuroSAT and SATformer are set to 26 during train-
ing and 100 during inference. For the Hierarchical Transformer
structure in SATformer, we use literal embeddings as input tokens
and set the dimension of hidden state embeddings to 128. The win-
dow size is assigned to 4, and the total level of the hierarchical
structure is 4. These two models are trained for 20 epochs with a
batch size of 8 on a single Nvidia V100 GPU.

4.2 Performance Comparison with
Learning-based SAT Solvers

In this section, to answer RQ1, we compare the performance
of DiffSAT with end-to-end learning-based SAT solvers, including
NeuroSAT [16] and SATformer [17], in finding solutions for satis-
fied problems. We generate five testing datasets, including SR(20),
SR(50), SR(100), SR(200), and SR(500). Each testing dataset con-
sists of 100 satisfiable instances. To better quantize the problem
difficulty, we employ clause-to-variable (CV) ratio as in [17]. Here
CV = %, where m is the number of clauses and n is the num-
ber of variables. The higher CV value means that there are more

Uhttps://satcompetition.github.io/2023/

clause constraints in the formula and the instance is more difficult
to solve. Generally, there would be only 1 or 2 possible satisfying
assignments in total for satisfiable datasets with CV > 5.

The results are shown in Table 1, from which we have two obser-
vations. Firstly, for all datasets, DiffSAT solves more instances than
NeuroSAT and SATformer, especially for datasets with a large num-
ber of variables and a large CV ratio. For example, both NeuroSAT
and SATformer can not decode any correct satisfying solutions
of CNFs with 200 variables and CV>5, whereas DiffSAT can still
achieve 100% accuracy, i.e., finding satisfying solutions for all CNFs.
The superior performance of the DiffSAT comes from the appro-
priate usage of logic structure in neural network architecture. In
comparison, both NeuroSAT and SATformer solely rely on the
graph representation from data-driven structure learning, which is
based on a wrong assumption that similar structures will result in
similar search spaces. Secondly, DiffSAT can be generalized to larger
problems while learning-based NeuroSAT and SATformer can only
deal with simplified problems, limiting their applications in prac-
tice. Notably, as the problem size increases, Diff SAT maintains a
consistent 100% accuracy, whereas both NeuroSAT and SATformer
experience a significant decrease in accuracy. The ability to gen-
eralize to larger, unseen datasets remains a major challenge for
end-to-end learning-based SAT solvers, likely due to the limited
generalization capabilities of deep neural networks. However, Diff-
SAT breaks free from this dilemma, offering an alternative approach
to solving SAT problems in an end-to-end manner.

4.3 Performance Comparison with Kissat on

Large-scale Datasets

To demonstrate the scalability of DiffSAT, we address RQ2 by
comparing its runtime with Kissat [3], a widely used heuristic-based
SAT solver, on large-scale random datasets. We generate the com-
parison datasets using the k-SAT dataset generation scheme, which
includes SR(2500), SR(5000), SR(7500), SR(10000), SR(15000), and
SR(20000) with CV = 5. Each dataset comprises 10 satisfiable in-
stances, and we calculate the average runtime for both DiffSAT and
Kissat in finding satisfying assignments. The runtime comparison
results are presented in Figure 3, leading to two key observations.

Firstly, DiffSAT demonstrates scalability comparable to tradi-
tional heuristic-based SAT solvers, enabling its practical applica-
tion to large-scale SAT problems. For example, in the SR(20000)
dataset with CV = 5, which typically consists of 20,000 variables and
100,000 clauses, DiffSAT successfully discovers the satisfying solu-
tion within a reasonable timeframe. This marks the first instance of
an end-to-end learning-based method being successfully general-
ized to handle such large-scale problems. Secondly, we observe that
the runtime of DiffSAT is comparable to that of Kissat on large-scale
datasets, highlighting its efficiency. Notably, while DiffSAT may
require more time to find satisfying assignments for relatively small
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Figure 3: Comparison of Kissat and DiffSAT

datasets such as SR(2500), SR(5000), and SR(10000), the average
runtime of DiffSAT for solving larger problems like SR(15000) and
SR(20000) is actually smaller than that of Kissat. This behavior can
be attributed to the effective search strategy employed by DiffSAT,
which involves iteratively making small changes to the current
assignment of truth values, guided by a differential loss function to
satisfy more clauses at each iteration.

4.4 Performance Comparison with SOTA SAT

Solver on Complex Datasets

To address RQ3, we selected complex benchmarks with high CV
ratios from SAT Competition 2023 and compared the performance
of DiffSAT with SBVA-CaDiCaL [? ], the top solver in the Main
(Sequential) Track of SAT Competition 2023%. Specifically, we chose
4 instances that SBVA-CaDiCal failed to solve within 10,000 seconds
and 7 test cases that both DiffSAT and SBVA-CaDiCaL successfully
handled within a reasonable time. Detailed information about these
complex instances and the runtime comparison between DiffSAT
and SBVA-CaDiCaL [? ] is provided in Table 2.

To begin with, for the 4 challenging CNFs, DiffSAT managed to
find the satisfying assignment while SBVA-CaDiCaL became stuck
and could not prove the satisfiability of these problems within a
reasonable time frame. Notably, these problems typically have a
relatively small number of variables but a large number of clauses.
For instance, the test case “rbsat-v1150c84314gyes10” only consists
of 1150 variables, but the total number of clauses amounts to 84314,
resulting in an extremely high CV ratio of 73.32. In such scenarios,
it is highly probable that there is only one viable solution for this
SAT problem. If the initial search path of a traditional SAT solver de-
viates significantly from the correct path, the inability of the CDCL
framework to rectify errors through a learning-from-mistakes sys-
tem can lead to an infinite loop. In contrast, our proposed DiffSAT
algorithm, which is based on variable relaxation and the effective
differentiation of a loss function, allows us to at least reach a par-
tially satisfied solution in intermediate steps, rather than completely
failing if stuck. Furthermore, DiffSAT intelligently breaks free from
local optima by randomly selecting variables in falsified clauses for
gradient descent. These two strategies contribute to the effective-
ness of DiffSAT in finding solutions for complex CNFs on which
vanilla SAT solvers easily get stuck.

Zhttps://satcompetition.github.io/2023/results.html

Table 2: Experimental results of DiffSAT and the SBVA-CaDiCaL

Then, among the 7 SAT instances that both DiffSAT and SBVA-
CaDiCalL can solve, DiffSAT demonstrates faster performance in
finding satisfying solutions compared to SBVA-CaDiCaL. Notably,
for the instance “SCPC-900-27”, DiffSAT achieves a runtime im-
provement of up to 2061 times compared to SBVA-CaDiCaL. Upon
analyzing the solution process for this particular test case, we dis-
covered that over 99% of the final variable assignments should be
set to 0. In the DiffSAT solving process, the initial solution obtained
through solving semidefinite programming is entirely composed of
zeros, indicating that a significant proportion of variables require
no further updates. In other words, we have already reached a fa-
vorable state that closely resembles the final solution. In contrast,
traditional SAT solvers rely on random initialization and need to ex-
plore all possible assignments for each variable before reaching the
final solution, resulting in exponential search spaces and reduced
efficiency. In summary, the effectiveness of DiffSAT in handling
complex SAT problems positions it as a promising approach for
real-world applications.

5 Conclusion

In this paper, we propose DiffSAT, a novel learning-based frame-
work for SAT solving. DiffSAT combines a differential MaxSAT
layer with a semidefinite initialization, resulting in a powerful
and effective approach for solving SAT problems. Unlike existing
learning-based SAT solvers that primarily focus on learning struc-
tural information for prediction, DiffSAT takes a step further by
differentiating the discrete SAT problem and incorporating the log-
ical formulas into a network architecture. By relaxing the binary
constraint of the problem and allowing Boolean variables to be
represented in a continuous domain, DiffSAT overcomes the limita-
tions of the CDCL framework and accelerates the search process
through the guidance of a differentiable loss function, providing
valuable insights for SAT solving. Experimental results showcase
the superior performance of DiffSAT compared to existing end-to-
end learning-based SAT solvers. Moreover, this is the first time the
end-to-end learning-based method could achieve comparable per-
formance with traditional SAT solvers and even outperform them
on some intricate SAT instances. We believe that our approach
will serve as a foundation for differential logic learning and inspire
further innovation in the field of end-to-end SAT solving.
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