

Peak Power and Dynamic IR-drop Assessment via Waveform Augmenting

Yihan Wen¹, Juan Li¹, **Bei Yu**², Xiaoyi Wang

¹ Beijing University of Technology
² The Chinese University of Hong Kong

Oct. 29, 2024

1 Introduction

2 Proposed Method

3 Experimental Results

Introduction

Introduction

Power & IR-drop analysis are critical

- Power consumption on instances and voltage reduction on the power grid
- Essential metrics of chips performance

Power & IR-drop analysis are still facing challenges

- Implemented in later stages of the chip design flow
- Coverage of the worst-case scenario

Previous Works – Dynamic IR-drop Analysis

Vector-based analysis

Input vectors generated from gate-level simulation¹

Vectorless analysis

Input vectors generated from instances toggle probability propagation^{2,3}

¹Rouatbi et al. "Power estimation tool for sub-micron CMOS VLSI circuits" 1992

²M. G. Xakellis et al. "Statistical estimation of the switching activity in digital circuits" 1994

³R. Marculescu et al. "Probabilistic modeling of dependencies during switching activity analysis" 1998

Defects of previous vector-based & vectorless analysis

Vector-based analysis

- Hard to cover the worst case
- Need waveform to activate true worst-case scenario
- Very challenging⁴

Vectorless analysis

- Overly pessimistic results
- Real waveforms only activate logic in a small region
- vectorless propagates toggles throughout the entire netlist⁵

 ⁴C.-T. Hsieh et al. "Vectorless estimation of maximum instantaneous current for sequential circuits" 2006
⁵S. Soman et al. "Ensuring On-Die Power Supply Robustness in High-Performance Designs" 2011

Proposed Methods

Motivation:

Semi-vector-based analysis via waveform augmenting

- **Step 1**: Analysis toggle statistics in existing simulation waveform
- Step 2: Identify modules with potential coverage risk
- Step 3: Augment waveform to cover the worst case

Assessment flow of semi-vector-based analysis

Basic idea

- How to measure the toggle statistics? → Calculate toggle correlation
- How to augment the waveform to worst case? \rightarrow Build simultaneous toggle
- How to prevent pessimistic augmenting? \rightarrow Keep similar toggle correlation

Step 1: Analysis toggle statistics in simulation waveform

Modules quantifying

- Number of instances in a modern design can be vast
 - \rightarrow Analysis hierarchical instances (H-insts) rather than the flattened instances

Waveform quantifying

• Long waveform and sparse toggle events → Quantify toggle events into time slots

Step 1: Analysis toggle statistics in simulation waveform

Modules toggle activity correlation (MTAC)

- MTAC *c_{ij}* calculated based on the Pearson correlation coefficient
- *c_{ij}* measures the dependence relationship of toggle activity between modules
- Modules correlation graph $G{V, E} = K_n$, with modules correlation matrix $\mathcal{A}_G[i, j]_{i \neq j} = c_{ij} = c_{ji}$

$$c_{ij} = \frac{\operatorname{cov}(\mathbf{T}_i, \mathbf{T}_j)}{\sigma_{\mathbf{T}_i} \sigma_{\mathbf{T}_j}}$$

Step 2: Identify modules with potential coverage risk

12/22

Identify functionally independent modules clusters

- Correlation-independent modules with low absolute MTAC value
- Find clusters set $C = \{C_1, \dots, C_N\}$: correlation graph segmentation with c_{ϵ} $\overline{\mathbf{c}}(C_a, C_b) \le c_{\epsilon} \overline{\mathbf{i}}(C_a) \ge c_{\epsilon}, \ \overline{\mathbf{i}}(C_b) \ge c_{\epsilon} \forall C_a \in \mathbf{C}, \forall C_b \in \mathbf{C}, a \neq b$
- $\bar{\mathbf{c}}$ and $\bar{\mathbf{i}}$ defined similarly to the graph *cut* ⁶

⁶Z. Wu et al. "An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation" 1993

Step 2: Identify modules with potential coverage risk

Clustering algorithm: two-stage flow

- Extended from the S-M algorithm⁷
- SPLIT stage: recursively breaks the modules to satisfy $\bar{\mathbf{c}}(C_a, C_b) \leq c_{\epsilon}$
- MERGE stage: recursively merges pairs of clusters to satisfy $\overline{\mathbf{i}}(C_a) \ge c_{\epsilon}$

⁷J. Shi et al. "Normalized cuts and image segmentation" 2000

Step 3: Augment waveform to cover the worst case

Worst-case approximation by waveform augmenting

- Assuming correlation-independent modules switching simultaneously
- Aligning the highest switching slots by waveform shifting process

Experimental Results

Validated on ARM CPU design blocks

- Design blocks type: CPU core, SoC core, cache, interconnection controller
- Low toggle correlation disagreement between the original waveform and the augmented waveform: corr.error $=\frac{2}{n^2-n}\sum_{ij}(c_{ij}^o-c_{ij}^a)^2$

	Trme	Instances	Modules	Clusters	Augmented	
	Туре	number	number	number	corr. error	
1	CPU-core	600000+	200+	7	0.0058	
2	CPU-core	1000000+	100+	6	0.0007	
3	CPU-core	1500000+	1000+	3	0.0009	
4	Cache	1000000+	500+	13	0.0081	
5	SoC-core	3000000+	1500+	15	0.0029	
6	Soc-core	1500000+	1000+	13	0.0018	
7	Inter	1000000+	1000+	3	0.0030	
8	Inter	1000000+	1000+	3	0.0024	

Validation & test Waveform

- Validation waveform: segments with top 20% total switching count \rightarrow Concealed
- Test waveform: remaining parts → **Input of experiments**

Worst-case value estimation

- Proposed semi-vector-based assessment flow yields more reasonable results
- Peak power error: proposed 2.93% (V-based 8.98% & V-less 99.12%)
- Worst dynamic IR error: proposed 7.62% (V-based 19.05% & V-less 50.61%)

	Worst peak-power (mW)			Worst dyn-IR-drop (mV)			Runtime (Minutes)				
	Golden	V-based	V-less	Proposed	Golden	V-based	V-less	Proposed	V-based	V-less	Proposed
1	1372	1308	2905	1352	157.8	131.9	208.9	143.4	128	52	136
2	3175	2984	4333	3254	191.8	160.6	165.8	189.6	201	93	242
3	4371	4113	7983	4468	203.0	193.0	261.8	210.6	258	107	283
4	1981	1704	3428	1928	151.5	100.6	247.6	147.1	111	81	124
5	2435	2199	4489	2449	167.2	158.3	274.7	173.3	436	172	488
6	455	356	1411	407	119.6	108.1	191.0	127.1	161	130	179
7	2536	2380	5020	2589	149.2	92.3	282.3	174.4	322	170	357
8	2433	2352	4809	2464	159.0	114.2	244.4	187.0	281	144	321

Worst-case dynamic power and IR-drop estimation results

- Vector-based result failed to identify all IR-drop weak regions (highlighted in purple boxes)
- Vector-based mismatch regions appeared in the intersection of clusters
- Vectorless result exhibited overly pessimistic
- Proposed result is more accurate in both weak regions estimation and PDF of IR value

Conclusion

- Semi-vector-based assessment is proposed
- Functionally independent modules are through the analysis of modules toggle activity correlation
- Waveform is augmented by building simultaneous toggle of functionally independent modules
- Worst-case coverage of power and dynamic IR-drop assessment is improved

THANK YOU!