
NeuroSelect: Learning to Select Clauses in SAT Solvers∗

Hongduo Liu
CUHK

Peng Xu
CUHK

Yuan Pu
CUHK

Lihao Yin
Huawei Noah’s Ark Lab

Hui-Ling Zhen
Huawei Noah’s Ark Lab

Mingxuan Yuan
Huawei Noah’s Ark Lab

Tsung-Yi Ho
CUHK

Bei Yu
CUHK

Abstract
Modern SAT solvers depend on conflict-driven clause learning

to avoid recurring conflicts. Deleting less valuable learned clauses
is a crucial component of modern SAT solvers to ensure efficiency.
However, a single clause deletion policy cannot guarantee optimal
performance on all SAT instances. This paper introduces a new
clause deletion metric to diversify existing clause deletion policies.
Then, we propose to use machine learning to evaluate and select
clause deletion policies adaptively based on the input instance. We
show that our method can reduce the runtime of the state-of-the-art
SAT solver Kissat by 5.8% on large industry benchmarks.

1 Introduction
The Boolean satisfiability (SAT) problem consists of determining

a satisfying variable assignment for a Boolean function or proving
that no such assignment exists. It has wide applications in various
fields like circuit verification, test pattern generation, and automatic
theorem proving. SAT is the first problem proven NP-complete [1],
which means it is at least as hard as any other problem in the class
NP.

Clause deletion, a critical technique in modern SAT solvers, man-
ages memory and computational resources by removing redundant
or less useful learned clauses. While effective, traditional heuristics
for clause deletion often struggle with the variability inherent in
different SAT instances. Therefore, machine learning (ML) presents
a promising avenue for enhancing adaptability by automating the
selection of clauses based on their characteristics.

However, evaluating the usefulness of learned clauses using ML
models, as illustrated in Figure 1(a), faces significant challenges: (1)
ML models excel at identifying patterns in static data. However,
the state of a SAT solver is constantly changing as it navigates the
solution space, adding and deleting clauses. (2) The usefulness of a
learned clause is not only decided by itself but also determined by
other selected clauses, adding additional complexity to the decision-
making process. (3) Evaluating clauses directly requires model infer-
ences for each clause in every clause deletion phase, which requires

∗This work is partially supported by The Research Grants Council of Hong Kong SAR
(No. CUHK14210723).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3656250

SAT
Solver

<latexit sha1_base64="uvPGSaQZdC1MnSyHqP/D26vturc=">AAACCHicbVC7TsNAEDzzDOFloKTgRIREFdkoPMoIGsogkYcUW9b5sk5OOZ+tuzNKFKWk4VdoKECIlk+g42+4JC4gYarZmV3t7oQpZ0o7zre1tLyyurZe2Chubm3v7Np7+w2VZJJCnSY8ka2QKOBMQF0zzaGVSiBxyKEZ9m8mfvMBpGKJuNfDFPyYdAWLGCXaSIF95Ano4kHgYs+04ryqzKpBcB7YJafsTIEXiZuTEspRC+wvr5PQLAahKSdKtV0n1f6ISM0oh3HRyxSkhPZJF9qGChKD8kfTR8b4xCgdHJnVUSI0nqq/J0YkVmoYh6YzJrqn5r2J+J/XznR05Y+YSDMNgs4WRRnHOsGTVHCHSaCaDw0hVDJzK6Y9IgnVJruiCcGdf3mRNM7K7kXZvauUqtd5HAV0iI7RKXLRJaqiW1RDdUTRI3pGr+jNerJerHfrY9a6ZOUzB+gPrM8fVaGYRA==</latexit>¬x1 _ ¬x4 _ x5

<latexit sha1_base64="z+ut/ctWKbp5uvCDzL3Obuxv2pg=">AAAChHicbVHJTsMwEHXCVsJW4MjFomI5oCphKZxQBReOINGCVFeR40yCheNEsYOoon4Jf8WNv8FtUwQtc3rbyOOZIBNcadf9suyFxaXlldqqs7a+sblV397pqrTIGXRYKtL8OaAKBJfQ0VwLeM5yoEkg4Cl4vR35T2+QK57KRz3IoJ/QWPKIM6qN5Nc/SAAxlyUVPJYQDp1DIiHG776HienFFTv7w84n7N2/IGS2wYhT0MJjm4WpVng+WbHWNH6JiUNAhj+z+PWG23THheeBV4EGqurer3+SMGVFAlIzQZXqeW6m+yXNNWcChg4pFGSUvdIYegZKmoDql+MlDvGBUUIcmVGiVGo8Vn93lDRRapAEJplQ/aJmvZH4n9crdHTVL7nMCg2STR6KCoF1ikcXwSHPgWkxMICynJtZMXuhOWXa3M0xS/BmvzwPuqdNr9X0Hs4b7ZtqHTW0h/bRMfLQJWqjO3SPOohZlnVkuZZnL9sn9pl9MYnaVtWzi/6Uff0NLbO9iw==</latexit>¬x1 _ ¬x3 _ ¬x4 _ x5

¬x1 _ x5 _ x6

· · ·
¬x1 _ ¬x6 _ x7

delete

reserve

delete

.

.. .
..

<latexit sha1_base64="edzdVn7kugkJB0V3bF4r1iQE614=">AAACCHicbVC7TsNAEDzzDOFloKTgRIREFdkRrzKChjJI5CHFlnW+rJNTzmfr7owSRSlp+BUaChCi5RPo+BsuiQtImGp2Zle7O2HKmdKO820tLa+srq0XNoqbW9s7u/befkMlmaRQpwlPZCskCjgTUNdMc2ilEkgccmiG/ZuJ33wAqVgi7vUwBT8mXcEiRok2UmAfeQK6eBC42DOtOK8qs2oQnAd2ySk7U+BF4uakhHLUAvvL6yQ0i0FoyolSbddJtT8iUjPKYVz0MgUpoX3ShbahgsSg/NH0kTE+MUoHR2Z1lAiNp+rviRGJlRrGoemMie6peW8i/ue1Mx1d+SMm0kyDoLNFUcaxTvAkFdxhEqjmQ0MIlczcimmPSEK1ya5oQnDnX14kjUrZvSi7d2el6nUeRwEdomN0ilx0iaroFtVQHVH0iJ7RK3qznqwX6936mLUuWfnMAfoD6/MHUoeYQg==</latexit>¬x1 _ ¬x2 _ x5
<latexit sha1_base64="Aep1g3Ww148dalSbXZk3SV32jBY=">AAACCHicbVC7TsNAEDzzDOFloKTgRIREFdm8ywgayiCRhxRb1vmyTk45n627M0oUpaThV2goQIiWT6Djb7gkLiBhqtmZXe3uhClnSjvOt7WwuLS8slpYK65vbG5t2zu7dZVkkkKNJjyRzZAo4ExATTPNoZlKIHHIoRH2bsZ+4wGkYom414MU/Jh0BIsYJdpIgX3gCejgfuBiz7TivDqdVv3gPLBLTtmZAM8TNycllKMa2F9eO6FZDEJTTpRquU6q/SGRmlEOo6KXKUgJ7ZEOtAwVJAblDyePjPCRUdo4MqujRGg8UX9PDEms1CAOTWdMdFfNemPxP6+V6ejKHzKRZhoEnS6KMo51gsep4DaTQDUfGEKoZOZWTLtEEqpNdkUTgjv78jypn5Tdi7J7d1aqXOdxFNA+OkTHyEWXqIJuURXVEEWP6Bm9ojfryXqx3q2PaeuClc/soT+wPn8AVBSYQw==</latexit>¬x1 _ ¬x3 _ x5 ML

Model

Learned ClausesSAT Problem

(a)

SAT
Solver

<latexit sha1_base64="uvPGSaQZdC1MnSyHqP/D26vturc=">AAACCHicbVC7TsNAEDzzDOFloKTgRIREFdkoPMoIGsogkYcUW9b5sk5OOZ+tuzNKFKWk4VdoKECIlk+g42+4JC4gYarZmV3t7oQpZ0o7zre1tLyyurZe2Chubm3v7Np7+w2VZJJCnSY8ka2QKOBMQF0zzaGVSiBxyKEZ9m8mfvMBpGKJuNfDFPyYdAWLGCXaSIF95Ano4kHgYs+04ryqzKpBcB7YJafsTIEXiZuTEspRC+wvr5PQLAahKSdKtV0n1f6ISM0oh3HRyxSkhPZJF9qGChKD8kfTR8b4xCgdHJnVUSI0nqq/J0YkVmoYh6YzJrqn5r2J+J/XznR05Y+YSDMNgs4WRRnHOsGTVHCHSaCaDw0hVDJzK6Y9IgnVJruiCcGdf3mRNM7K7kXZvauUqtd5HAV0iI7RKXLRJaqiW1RDdUTRI3pGr+jNerJerHfrY9a6ZOUzB+gPrM8fVaGYRA==</latexit>¬x1 _ ¬x4 _ x5

<latexit sha1_base64="z+ut/ctWKbp5uvCDzL3Obuxv2pg=">AAAChHicbVHJTsMwEHXCVsJW4MjFomI5oCphKZxQBReOINGCVFeR40yCheNEsYOoon4Jf8WNv8FtUwQtc3rbyOOZIBNcadf9suyFxaXlldqqs7a+sblV397pqrTIGXRYKtL8OaAKBJfQ0VwLeM5yoEkg4Cl4vR35T2+QK57KRz3IoJ/QWPKIM6qN5Nc/SAAxlyUVPJYQDp1DIiHG776HienFFTv7w84n7N2/IGS2wYhT0MJjm4WpVng+WbHWNH6JiUNAhj+z+PWG23THheeBV4EGqurer3+SMGVFAlIzQZXqeW6m+yXNNWcChg4pFGSUvdIYegZKmoDql+MlDvGBUUIcmVGiVGo8Vn93lDRRapAEJplQ/aJmvZH4n9crdHTVL7nMCg2STR6KCoF1ikcXwSHPgWkxMICynJtZMXuhOWXa3M0xS/BmvzwPuqdNr9X0Hs4b7ZtqHTW0h/bRMfLQJWqjO3SPOohZlnVkuZZnL9sn9pl9MYnaVtWzi/6Uff0NLbO9iw==</latexit>¬x1 _ ¬x3 _ ¬x4 _ x5

¬x1 _ x5 _ x6

· · ·
¬x1 _ ¬x6 _ x7

.

..

<latexit sha1_base64="edzdVn7kugkJB0V3bF4r1iQE614=">AAACCHicbVC7TsNAEDzzDOFloKTgRIREFdkRrzKChjJI5CHFlnW+rJNTzmfr7owSRSlp+BUaChCi5RPo+BsuiQtImGp2Zle7O2HKmdKO820tLa+srq0XNoqbW9s7u/befkMlmaRQpwlPZCskCjgTUNdMc2ilEkgccmiG/ZuJ33wAqVgi7vUwBT8mXcEiRok2UmAfeQK6eBC42DOtOK8qs2oQnAd2ySk7U+BF4uakhHLUAvvL6yQ0i0FoyolSbddJtT8iUjPKYVz0MgUpoX3ShbahgsSg/NH0kTE+MUoHR2Z1lAiNp+rviRGJlRrGoemMie6peW8i/ue1Mx1d+SMm0kyDoLNFUcaxTvAkFdxhEqjmQ0MIlczcimmPSEK1ya5oQnDnX14kjUrZvSi7d2el6nUeRwEdomN0ilx0iaroFtVQHVH0iJ7RK3qznqwX6936mLUuWfnMAfoD6/MHUoeYQg==</latexit>¬x1 _ ¬x2 _ x5
<latexit sha1_base64="Aep1g3Ww148dalSbXZk3SV32jBY=">AAACCHicbVC7TsNAEDzzDOFloKTgRIREFdm8ywgayiCRhxRb1vmyTk45n627M0oUpaThV2goQIiWT6Djb7gkLiBhqtmZXe3uhClnSjvOt7WwuLS8slpYK65vbG5t2zu7dZVkkkKNJjyRzZAo4ExATTPNoZlKIHHIoRH2bsZ+4wGkYom414MU/Jh0BIsYJdpIgX3gCejgfuBiz7TivDqdVv3gPLBLTtmZAM8TNycllKMa2F9eO6FZDEJTTpRquU6q/SGRmlEOo6KXKUgJ7ZEOtAwVJAblDyePjPCRUdo4MqujRGg8UX9PDEms1CAOTWdMdFfNemPxP6+V6ejKHzKRZhoEnS6KMo51gsep4DaTQDUfGEKoZOZWTLtEEqpNdkUTgjv78jypn5Tdi7J7d1aqXOdxFNA+OkTHyEWXqIJuURXVEEWP6Bm9ojfryXqx3q2PaeuClc/soT+wPn8AVBSYQw==</latexit>¬x1 _ ¬x3 _ x5

ML Model

.

..

.

..

delete

delete

reserve

Learned Clauses

Deletion Policy i

Deletion Policy m

.

..

.

..
.
..

Deletion Policy 1

SAT Problem

(b)

Figure 1: Two learning aided clause deletion mechanisms. (a)
Evaluate learned clauses directly; (b) Evaluate clause deletion
policies.

acceleration of GPUs. The computational demand is even more sig-
nificant than SAT solving.

In an attempt to tackle these challenges, Vaezipoor et al. [2] pro-
posed a method for training clause deletion heuristics using rein-
forcement learning. The trained policy outputs an integer literal
block instance (LBD) threshold and deletes all clauses with LBD val-
ues above the threshold. However, this preliminary study primarily
focuses on conceptual development, lacking comprehensive results
on real SAT instances.

Based on the above observations, our paper shifts the focus from
individual clause evaluation to assessing the overall quality of clause
deletion policies using ML, as shown in Figure 1(b). We propose an
ML model that dynamically selects the most suitable clause deletion
policy based on the characteristics of the input SAT problem.

This approach acknowledges that the effectiveness of clause dele-
tion depends not only on the characteristics of individual clauses
but also on the overarching strategy guiding their elimination. It
allows a better understanding of the cumulative impact of removing
multiple clauses over time, offering a more comprehensive view
of their long-term effectiveness. Moreover, evaluating the deletion
policy only requires a one-time inference of the ML model before
SAT solving, which can be efficient even on CPUs.

The initial step of our method involves the generation of comple-
mentary clause deletion policies. Generally, modern SAT solvers use
a single clause deletion policy that considers factors such as clause
activity, size, and glue value. Although it works well for many cases,
it’s not universally optimal for all SAT instances. We note that cer-
tain variables are more involved in Boolean constraint propagation,
making clauses containing them more efficient at narrowing the
search space. By integrating this propagation involvement metric
into clause deletion policies, we can significantly reduce solving

https://doi.org/10.1145/3649329.3656250

time for certain SAT instances. The new policy, guided by variable
propagation frequency, enhances existing strategies, offering our
ML model a broader spectrum of options.

The second step focuses on selecting the most effective clause
deletion policy. This involves leveraging the advantages of various
policies while mitigating their drawbacks. However, classifying large-
scale industrial SAT instances containing thousands of variables and
clauses presents considerable challenges for conventional methods.
Previous message-passing neural networks can only capture local
formula information, failing to model long-term variable interac-
tions during solving. To address this, we propose a global attention
network that captures implicit inter-dependencies between variables
not embodied in the original clauses. Transformers enable global
attention but often scale quadratically in time and space complexity.
Therefore, our model utilizes linear attention, substantially reduc-
ing complexity and facilitating efficient training and inference. The
global view and reduced complexity from linear attention empower
our model to classify industrial SAT instances effectively.

In conclusion, our main contributions are as follows.
• We propose a new clause deletion criterion complementing ex-
isting clause deletion metrics.

• We present a learning-aided clause deletion algorithm capable
of adaptively selecting the optimal clause deletion policy for
any given SAT instance. This method requires only a one-time
inference, making it efficient even on CPUs.

• To classify large industrial SAT instances, we propose a graph
transformer network with linear attention to capturing both
local and global information of SAT problems.

• Compared to the leading SAT solver Kissat, our approach reduces
average runtime by 5.8% for industrial cases.

2 Preliminaries
SAT Problem. The satisfiability problem is a fundamental problem
in computer science and addresses whether a given propositional
logic formula can be satisfied by assigning truth values to its vari-
ables. A formula is considered satisfiable if an assignment exists that
makes it evaluated as true and unsatisfiable otherwise. A proposi-
tional logic formula can be transformed into a conjunctive normal
form (CNF) to facilitate this analysis. In CNF, the formula is expressed
as a conjunction (“and") of disjunctions (“or") of literals. A literal can
be either a Boolean variable, denoted as 𝑥 , or its negation, denoted
as ¬𝑥 . For instance, (𝑥1 ∨ 𝑥2) ∧ (¬𝑥2 ∨ 𝑥3) is an example of a CNF,
with 𝑥1, 𝑥2, ¬𝑥2, and 𝑥3 all being literals. The disjunctions (𝑥1 ∨ 𝑥2)
and (¬𝑥2 ∨ 𝑥3) within the CNF are also clauses. By assigning values
of 𝑥1 = True, 𝑥2 = False, and 𝑥3 = True, the CNF can be satisfied.
Conflict Driven Clause Learning Algorithm. The conflict-driven
clause learning (CDCL) algorithm is a prominent technique in mod-
ern SAT solvers. The algorithm’s flow is depicted in Figure 2. It
begins by selecting a variable and assigning it a value, triggering a
sequence of Boolean Constraint Propagation (BCP) and potentially
more variable assignments. If a conflict arises, indicating an unsat-
isfiable set of assignments, the algorithm analyzes the conflict and
learns a new clause to prevent the solver from repeating the same
mistake. If the conflict occurs at the top level and remains unresolved,
it signifies the unsatisfiability of the given problem. Otherwise, the
algorithm backtracks to a point where it can resolve the conflict and

Variable
Branch

Conflict?

Input CNF

N

Y Conflict Analysis

Top Level?BCP

All Vars
Assigned? SATY

Backjump

UNSAT

N

YN

Add Learned
Clause

Delete?

Clause
Deletion

Y

N

Figure 2: The flow of conflict-driven clause learning (CDCL)
algorithm.

resume from there. This iterative process continues until all vari-
ables are assigned (yielding a satisfying solution) or unsatisfiability
is established.

As the algorithm progresses, it accumulates a considerable num-
ber of learned clauses. The growth in the number of clauses can
significantly impact memory usage and potentially slow down the
solver. Clause deletion is a necessary strategy to manage resources
effectively. Hence, certain learned clauses are selectively removed
when either the number of learned clauses or the total number of
clauses surpasses a predefined threshold. The process of clause dele-
tion typically incorporates heuristics that determine the least useful
clauses for removal. These heuristics consider factors such as the
clause’s activity (how frequently it has been involved in conflict
analysis), its size (number of literals), and its glue value (a measure
of the diversity of decision levels within the clause).
Machine Learning for SAT. Recently, machine learning has been
harnessed in SAT solving, with the approaches broadly falling into
two categories. The first category comprises end-to-end solvers,
while the second focuses on enhancing modern SAT solvers’ per-
formance by incorporating neural network predictions. End-to-end
solvers [3, 4] directly find a satisfiable solution or predict unsatis-
fiability through neural networks. However, they exhibit a lack of
completeness, which means they cannot provide proof of unsatisfia-
bility. Moreover, their effectiveness has primarily been demonstrated
on small SAT instances encompassing up to hundreds of variables,
failing to show any possibilities to surpass model SAT solvers. In
contrast, learning-aided solvers incorporate neural networks to re-
fine search heuristics in modern SAT solvers, and the completeness
of the solver will not be influenced. Notable improvements have
been achieved in various aspects, including branch heuristics [5, 6],
prediction of satisfying assignments [7], glue variable prediction [8],
and restart policies [9].
GNN and Graph Transformers. Graph Neural Networks (GNNs)
are specialized neural networks for analyzing data represented as
graphs [10, 11]. These graphs are expressed as G = (V,E), with V

and E symbolizing nodes and edges, respectively. GNNs aim to learn
functions mapping nodes to vectors, which is useful for tasks like
graph classification and link prediction. The fundamental concept in
GNNs involves updating a node’s representation using its neighbors’
information. Specifically, for any node 𝑣 ∈ V, the message passing
at layer ℓ in a GNN is given by:

hℓ𝑣 = UPDATE
(
hℓ−1𝑣 ,AGG

({
mℓ𝑢𝑣 : 𝑢 ∈ N(𝑣)})) , (1)

0 500 1,000 1,500 2,000 2,500

0

1

2

3

·10−3

Variable ID

Fr
eq
ue
nc
y

Figure 3: Distribution of
propagation frequency.

0 1,000 2,000 3,000 4,000 5,000
0

1,000

2,000

3,000

4,000

5,000

Kissat runtime (s)

Ki
ss
at
-n
ew

(s)
Figure 4: Default vs. new
clause deletion policy.

where N(𝑣) represents nodes connected to 𝑣 in the graph G. mℓ𝑢𝑣 is
the message passed from the node 𝑢 to node 𝑣 . The function AGG(·)
aggregates messages from all neighboring nodes into a single vector,
and UPDATE(·) modifies hℓ−1𝑣 to hℓ𝑣 using this vector. This process
of iteratively propagating information enables GNNs to effectively
capture the graph’s relational structure.

Beyond the traditional local neighborhoodmessage passing, there’s
increasing interest in using Transformers for graph encoding [12, 13].
These models employ global attention, aggregating embeddings from
all nodes to update each node’s representation. This global attention
can be seen as extending GNN message passing to a fully connected
graph, where every node is considered a neighbor to every other (i.e.,
∀𝑣 ∈ V,N(𝑣) = V). By incorporating global attention, these models
enhance their ability to understand long-range interactions between
nodes, as well as potential links within the graph. As its ability to
detect implicit dependencies, graph transformers have been applied
to learning-based SAT solvers [14, 15] to enhance the performance.

3 A New Clause Deletion Metric

3.1 Motivation

As depicted in Figure 2, each time a variable is assigned a value,
Boolean constraint propagation (BCP), also known as unit propaga-
tion, is triggered. During BCP, identification of a unit clause (a clause
with only one unassigned literal) leads to setting the truth value of
that literal to satisfy the clause. This assignment can spark further
propagations, as it may result in the emergence of additional unit
clauses. This iterative process continues until no more unit clauses
are available or a conflict is encountered. Learned clauses containing
the propagated variable are crucial at each step for deducing new
assignments or learned clauses, thereby rendering them useful.

Figure 3 presents the frequency of variable propagation when
solving a SAT instance from SAT competition 2022 using the Kissat
solver [16]. We observe that some variables are propagated signif-
icantly more frequently than others, indicating that the learned
clauses containing these variables are referred to more often. This
implies their greater involvement in deriving new assignments or
conflicts.

Current clause deletion policies rank clauses based on conflict
analysis participation, clause size, and glue value. Our approach
proposes a deletion criterion based on a clause’s propagation fre-
quency, hypothesizing that clauses containing frequently propagated
variables are valuable in narrowing the search space. We suggest
tracking each variable’s propagation times since the last deletion to
determine clause importance.

~glue ~size
0313263

frequency~size~glue
02324434463

Default:

New:

Figure 5: The default clause scoring algorithm in Kissat and
our new clause scoring algorithm considering variable propa-
gation frequency.

3.2 Injection into Kissat
To evaluate the effectiveness of propagation frequency in guiding

clause deletion, we integrated the new criterion into the state-of-
the-art SAT solver Kissat [16].
Clause Deletion in Kissat.. In Kissat, learned clauses are classified
as either non-reducible or reducible. Non-reducible clauses, distin-
guished by their low glue values, are consistently retained within the
solver. Reducible clauses, in contrast, undergo periodic deletion. This
deletion process employs a scoring mechanism that favors the elimi-
nation of clauses with lower scores. The scoring is primarily decided
by the glue value of a clause, with its size serving as a secondary
criterion. Therefore, the one with a lower glue value is assigned a
higher score among the two learned clauses. If the glue values are
identical, the clause with the smaller size receives the higher score.
New Clause Deletion Policy.. Our new clause deletion policy
incorporates variable propagation frequency as an additional metric.
For a given clausec, we denote this new criterion asc.frequency,
calculated using the equation:

c.frequency =
∑︁
𝑣∈𝑐

(𝑓𝑣 > 𝛼 𝑓max). (2)

Here, 𝑓𝑣 indicates the frequency of variable 𝑣 used to trigger propaga-
tion since the last clause deletion, and 𝑓max represents the maximum
propagation frequency among all variables. The factor 𝛼 is an ad-
justable parameter set to 4/5, according to our empirical studies.
Figure 5 shows the distinctions between the original and our new
clause scoring algorithms, illustrating how various metrics form a
64-bit score for a learned clause. The symbol ∼ represents element-
wise negation, emphasizing that lower values translate to higher
scores.
Performance Comparisons.. Figure 4 compares runtimes on SAT
competition 2022 instances using a standard 5,000s timeout, contrast-
ing the default clause deletion policy in Kissat and our new clause
deletion policy (Kissat-new). Instances that remained unsolved by
both policies are not included. Each dot represents an instance, with
its position reflecting the solution time under the respective poli-
cies: the x-coordinate for the default clause deletion policy and the
y-coordinate for our new policy. Dots on the 5,000-second bound-
ary signify timeouts under either policy. Instances falling below the
dotted diagonal line indicate where our new policy outperforms the
default policy used in Kissat. Conversely, instances above this line
show where our policy is less effective. These results suggest the
need to adaptively select the most suitable clause deletion policy
based on the specific instance.

4 Learning-aided Deletion Policy Selection
4.1 Overall Flow

Figure 6 illustrates the NeuroSelect algorithm, our learning-aided
approach to select clause deletion policies. The algorithm begins

<latexit sha1_base64="X+bd4OIrendfcDkOjXGkKcr0Fb0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6e+1y9X3Jo7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbTOa95lzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAF1o2M</latexit>

x1
<latexit sha1_base64="MJew4JbJU/wO92dtyPloP2pAv2k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUUY8FLx4r2lZoQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6d+vV+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuat7teaVRzeMowgmcQhU8uIQG3EATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcHWo2N</latexit>

x2
<latexit sha1_base64="zAJ5oklQbb3xCL8QzI/AKbPS9ZY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIV9Vjw4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/ql33iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPqt5l1bu7KNcqeRwFOIYTqIAHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEI3o2O</latexit>

x3

Graph Embedding
Default Policy

Propagation Frequency
Guided Policy

<latexit sha1_base64="zAJ5oklQbb3xCL8QzI/AKbPS9ZY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIV9Vjw4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/ql33iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPqt5l1bu7KNcqeRwFOIYTqIAHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEI3o2O</latexit>

x3

<latexit sha1_base64="MJew4JbJU/wO92dtyPloP2pAv2k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUUY8FLx4r2lZoQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6d+vV+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuat7teaVRzeMowgmcQhU8uIQG3EATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcHWo2N</latexit>

x2

<latexit sha1_base64="X+bd4OIrendfcDkOjXGkKcr0Fb0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6e+1y9X3Jo7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbTOa95lzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAF1o2M</latexit>

x1
<latexit sha1_base64="ddyY2IRgq9yE0MSfX9xhrZ8ow/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2zgDcoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+3LmlevefdXlUY1j6MIZ3AOVfDgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH+XJjXc=</latexit>

c1

<latexit sha1_base64="fkSKkDLz4hQEcJ5f1yff7g79VMc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ3qg3LFrbkLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttr1mndV8+4vK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+dNjXg=</latexit>

c2

Message Passing

<latexit sha1_base64="zAJ5oklQbb3xCL8QzI/AKbPS9ZY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIV9Vjw4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/ql33iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPqt5l1bu7KNcqeRwFOIYTqIAHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEI3o2O</latexit>

x3

<latexit sha1_base64="MJew4JbJU/wO92dtyPloP2pAv2k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUUY8FLx4r2lZoQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6d+vV+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuat7teaVRzeMowgmcQhU8uIQG3EATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcHWo2N</latexit>

x2

<latexit sha1_base64="X+bd4OIrendfcDkOjXGkKcr0Fb0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6e+1y9X3Jo7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbTOa95lzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAF1o2M</latexit>

x1

Linear Attention

-1

-1
1

1
<latexit sha1_base64="zAJ5oklQbb3xCL8QzI/AKbPS9ZY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIV9Vjw4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/ql33iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPqt5l1bu7KNcqeRwFOIYTqIAHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEI3o2O</latexit>

x3

<latexit sha1_base64="MJew4JbJU/wO92dtyPloP2pAv2k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUUY8FLx4r2lZoQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6d+vV+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuat7teaVRzeMowgmcQhU8uIQG3EATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcHWo2N</latexit>

x2

<latexit sha1_base64="X+bd4OIrendfcDkOjXGkKcr0Fb0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6e+1y9X3Jo7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbTOa95lzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAF1o2M</latexit>

x1
<latexit sha1_base64="ddyY2IRgq9yE0MSfX9xhrZ8ow/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2zgDcoVt+YuQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+3LmlevefdXlUY1j6MIZ3AOVfDgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH+XJjXc=</latexit>

c1

<latexit sha1_base64="fkSKkDLz4hQEcJ5f1yff7g79VMc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ3qg3LFrbkLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttr1mndV8+4vK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+dNjXg=</latexit>

c2

Message Passing

<latexit sha1_base64="zAJ5oklQbb3xCL8QzI/AKbPS9ZY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIV9Vjw4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/ql33iuV3ao7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPqt5l1bu7KNcqeRwFOIYTqIAHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEI3o2O</latexit>

x3

<latexit sha1_base64="MJew4JbJU/wO92dtyPloP2pAv2k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUUY8FLx4r2lZoQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6d+vV+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuat7teaVRzeMowgmcQhU8uIQG3EATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcHWo2N</latexit>

x2

<latexit sha1_base64="X+bd4OIrendfcDkOjXGkKcr0Fb0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6e+1y9X3Jo7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbTOa95lzbu7qNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAF1o2M</latexit>

x1

Linear Attention

-1

-1
1

1

HGT Layer HGT Layer Node Embeddings

MLP
<latexit sha1_base64="rIh8rU0H8IEVMQB5alrvfZEPkqs=">AAACGXicbVDLSsNAFJ34rPEVdelmsAhdlSSKiiAU3LisYB/QhDCZTtqhk0mYmYgl9Dfc+CtuXCjiUlf+jdM2irae1eGcc7n3njBlVCrb/jQWFpeWV1ZLa+b6xubWtrWz25RJJjBp4IQloh0iSRjlpKGoYqSdCoLikJFWOLgc+61bIiRN+I0apsSPUY/TiGKktBRYNg6c8wuPkx68Cxzo6bwmLvQ8Ewfuj+N+O0eBVbar9gRwnjgFKYMC9cB697oJzmLCFWZIyo5jp8rPkVAUMzIyvUySFOEB6pGOphzFRPr55LMRPNRKF0Z6dZRwBSfq74kcxVIO41AnY6T6ctYbi/95nUxFZ35OeZopwvF0UZQxqBI4rgl2qSBYsaEmCAuqb4W4jwTCSpdp6hKc2ZfnSdOtOidV5/q4XKsUdZTAPjgAFeCAU1ADV6AOGgCDe/AInsGL8WA8Ga/G2zS6YBQze+APjI8vueSdkA==</latexit>

c1 := ¬x1 _ x2

c2 := ¬x2 _ x3

Figure 6: Overview of NeuroSelect.

with transforming the input CNF formula into a compact graph rep-
resentation. This graph is then processed through a series of tailored
neural network modules, termed the Hybrid Graph Transformer
(HGT) layer, which is responsible for generating node embeddings.
These embeddings are subsequently aggregated to form a graph em-
bedding, encapsulating the information of the SAT instance. The final
step involves employing a multi-layer perceptron (MLP) to produce a
prediction. This prediction determines the applicability of either the
default clause deletion policy or the propagation frequency-guided
policy.

The HGT layer uniquely integrates a message-passing network
with a linear attention mechanism. The message-passing aspect ef-
fectively captures the local connectivity and interactions between
variables and clauses, which is crucial for understanding the struc-
tural information of the CNF formula. GNNs are known for their
proficiency in capturing immediate, local relationships within graph
structures. However, the challenge arises in representing potential
dependencies between variables, a common occurrence in Boolean
constraint propagation. For instance, assigning a truth value to one
variable in a clause can significantly impact the truth values of
variables in remotely connected clauses due to the intricately in-
terconnected nature of the constraints. This complexity is further
heightened with the introduction of learned clauses. While adding
deeper layers can enhance information aggregation, it may lead
to the over-smoothing problem, where node features become in-
creasingly homogenized with those of their neighbors, losing the
distinctiveness of the network.

To address these challenges, our model incorporates a global at-
tention mechanism to account for long-term interactions between
variables, enabling the consideration of relationships between any
two variables, regardless of their distance. This global attention
mechanism adeptly models interactions between distantly located
variables, a task that traditional graph-based models typically strug-
gle with. However, conventional self-attention mechanisms intro-
duce quadratic complexity, which is impractical for graphs derived
from real SAT instances that may contain millions of variables. To
circumvent this, we employ a linear attention scheme, offering lin-
ear complexity relative to the number of nodes. This combination
of a local message-passing network and a global linear attention
mechanism empowers the NeuroSelect model to effectively compre-
hend both local structures (through message passing) and global
variable interactions (via global attention). Furthermore, its reduced
computational complexity allows the model to scale to very large
SAT instances.

4.2 Graph Representations of CNFs
In our work, we adopt an undirected bipartite graph represen-

tation for SAT instances as proposed in NeuroComb [17], which
offers a more compact format compared to the one used in Neu-
roSAT [4]. This representation employs two distinct node types to
signify variables and clauses. Specifically, we denote a SAT instance
by a bipartite graph G = (V,E,W), where V is the set of vertices
divided into two disjoint subsets V1 and V2. Here V1 represents vari-
ables and V2 represents clauses. The edge set E ⊆ V1×V2 comprises
edges that link a vertex in V1 with a vertex in V2. Every edge 𝑒 ∈ E

has a corresponding weight𝑤 (𝑒) in the edge weight setW.
In the graph representation, if a variable 𝑥𝑖 from V1 appears in a

clause 𝑐 𝑗 from V2, the edge weight𝑤 (𝑥𝑖 , 𝑐 𝑗) is assigned a value 1 if
𝑥𝑖 ∈ 𝑐 𝑗 and -1 if ¬𝑥𝑖 ∈ 𝑐 𝑗 . The initial embedding for a node in V1 is
set to 1, and for a node in V2, it is set to 0.

4.3 Hybrid Graph Transformer of NeuroSelect
We combine local message passing and global attention in the

HGT layer to model interactions between variables. The proposed
hybrid graph transformer layer empowers our NeuroSelect model to
comprehend both local structures and global variable interactions.
We also manage computational complexity using a linear attention
scheme, resulting in efficient scalability to large SAT instances.
HGT Layer. Consider the input node features Xℓ (V) of the ℓ-th
HGT layer, represented in R |V |×𝑑 , where 𝑑 denotes the dimension-
ality of these features. Initially, these node features are processed
by a message-passing neural network (MPNN), which encodes the
structural information inherent in the original CNF formula:

(Xℓ+1𝑀 (V1),Xℓ+1𝑀 (V2)) = MPNNℓ
(
Xℓ (V),E,W

)
. (3)

In this context,Xℓ+1
𝑀

(V1) andXℓ+1𝑀
(V2) represent theMPNN’s output

variable and clause features, respectively. Subsequently, a linear
attention (LinearAttn) layer is employed to capture the long-range
relationships among variables:

Xℓ+1 (V1) = LinearAttnℓ
(
Xℓ+1𝑀 (𝑉1)

)
. (4)

The attention mechanism is applied solely to variable nodes for two
reasons. Primarily, the complete embedding of the CNF is derived
from variable node features alone, with clause nodes mainly facili-
tating message passing between variables. Moreover, as the number
of clauses in a CNF typically surpasses that of variables, focusing
attention on variable nodes effectively reduces computational and
memory demands. Finally, the new variable node features, combined
with clause node features derived from the MPNN, constitute the
input for the subsequent HGT layer:

Xℓ+1 (V) = (Xℓ+1 (V1),Xℓ+1𝑀 (V2)). (5)

MPNN. As shown in Equation (1), every message-passing layer
includes two operations: aggregation and update. For a specific layer
ℓ , the aggregation function is implemented by

mℓ𝑢𝑣 =
1

|N(𝑣) |
∑︁

𝑢∈N(𝑣)
𝑤𝑢𝑣 ·MLP(hℓ−1𝑢), (6)

where mℓ𝑢𝑣 is the message ready to pass from 𝑢 to 𝑣 and𝑤𝑢𝑣 is the
weight between nodes 𝑢 and 𝑣 . MLP is a single linear layer. The
update function is realized by

hℓ𝑣 = 𝜎 (MLP(mℓ𝑢𝑣 +MLP(hℓ−1𝑣))), (7)

where 𝜎 is an activate function (e.g. ReLU).
Linear Attention Layer. We incorporate the global interactions
between variables in our model by using an all-pair attention unit,
which calculates the influence between any two variable nodes in
the graph. Assume the input node embedding of the linear attention
layer is denoted by Z ∈ R𝑁×𝑑 . The linear attention function [18] is
defined as

Q = 𝑓𝑄 (Z) , Q̃ =
Q

∥Q∥𝐹
, V = 𝑓𝑉 (Z) ,

K = 𝑓𝐾 (Z) , K̃ =
K

∥K∥𝐹
, D = diag

(
1 + 1

𝑁
Q̃
(
K̃⊤1

))
,

(8)

where 𝑓𝑄 , 𝑓𝐾 , 𝑎𝑛𝑑 𝑓𝑉 are linear feed-forward layers to encode the
query, key, and value matrix. ∥ · ∥𝐹 denotes the Frobenius norm and
1 is an 𝑁 -dimensional all-one column vector. The diag operation
changes the 𝑁 -dimensional column vector into a 𝑁 × 𝑁 diagonal
matrix. Subsequently, we have the output of the global attention
layer in the format of

Z𝑜𝑢𝑡 = LinearAttn (Z) = D−1
[
V + 1

𝑁
Q̃
(
K̃⊤V

)]
. (9)

Complexity Analysis. The computational complexity of an MPNN
layer within an HGT layer is O(|E|), where message passing oc-
curs exclusively between connected nodes by an edge. Here, |E|
represents the total number of edges in the transformed graph. Im-
portantly, as linear attention is constrained to variable nodes, it
necessitates O(|V1 |) operations, where |V1 | denotes the number of
variables in the CNF formula. Consequently, the overall complexity
of the process can be expressed as O(|E| + |V1 |). Due to the inherent
sparsity in the variable-clause connections, the model can scale lin-
early with the CNF’s size, which significantly enhances the efficiency
of both training and inference.

4.4 Mapping Function
Assume the NeuroSelect model comprises 𝐿 HGT layers. In this

model, the graph representation ℎG is derived through a global
mapping function, READOUT(·), which operates on the embeddings
of variable nodes. This process is mathematically given by

hG = READOUT
({
h𝐿𝑣 : 𝑣 ∈ V1

})
. (10)

Afterward, the computed graph representation hG is input into an
MLP. This MLP calculates the probability 𝑦 ∈ {0, 1}, determining
the selection between two clause deletion policies.

For training the model, we employ a binary cross-entropy loss
function. This loss function, essential for optimizing the model’s

Table 1: Statistics of the Training and Test Datasets

Data Type Year # CNFs # Variables # Clauses

Training

2016 74 16,649 86,186
2017 124 12,863 99,896
2018 148 13,407 93,094
2019 131 12,237 68,900
2020 123 16,921 85,808
2021 136 16,219 97,434

Test 2022 144 19,807 104,472

parameters, is defined as follows:

L = −(𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦)), (11)

where 𝑦 represents the ground truth label of the CNF formula.

5 Experimental Results
5.1 Dataset

Table 1 presents the dataset statistics used for training and evalu-
ating our NeuroSelect Model. The training dataset, comprising 736
CNF instances, is sourced from the main track of SAT competitions
held between 2016 and 2021. Due to the typically large scale of CNF
formulas in these competitions, often featuring millions of variables
and clauses, we have applied a filtering criterion: any formula whose
graph conversion exceeds 400,000 nodes is excluded to adhere to
GPU memory limitations. These instances are labeled using two
clause deletion policies: Kissat’s default clause deletion policy and
our proposed propagation frequency-driven approach, and each is
applied to the same SAT instance. Our primary aim is to determine
the clause deletion policy that most effectively reduces runtime.
However, due to the variability of CPU time, we focus on the total
number of propagations required to solve the SAT problem, a more
reliable and deterministic measure. A SAT instance is labeled as
‘1’ if it sees at least a 2% reduction in propagations with the new
deletion policy compared to the default policy in Kissat; otherwise,
it is labeled as ‘0’. The test dataset includes SAT formulas from the
2022 main track of the SAT Competition. Following the same criteria
as the training dataset, we exclude large CNF formulas with graph
conversions exceeding 400,000 nodes.

5.2 Implementation Details
Our NeuroSelect model integrated three message-passing layers

within a single HGT layer and incorporated two such layers. The
model features a hidden dimension set to 32. For training, network
parameter optimization was done using the Adam optimizer, with
a learning rate set to 10−4. We trained the model for 400 epochs
with a batch size of 1. The version of Kissat is 3.1.0 in our evaluation.
The model inference is done on the CPU when using NeuroSelect to
guide the clause deletion policy selection.

5.3 Effectiveness of NeuroSelect Model
To evaluate the performance of our NeuroSelect model on classi-

fying CNF formulas, we initially compared it against existing SAT
instance classification networks. The first work is NeuroSAT [4],
which encodes CNF formulas using a literal-clause graph and relies
on multi-layer perceptrons and LSTMs for message passing. Ad-
ditionally, we considered G4SATBench [19], incorporating various
SAT benchmarks and GNNmodels for different prediction tasks. Our
evaluation employed the Graph Isomorphism Network (GIN) [11],

Table 2: Performance of different SAT classification models.

precison recall F1 accuracy
NeuroSAT [4] 47.27% 44.07% 45.61% 56.94%
G4SATBench [19] 43.48% 33.90% 38.10% 54.86%
NeuroSelect w/o attention 56.45% 58.33% 57.38% 63.89%
NeuroSelect 66.00% 55.00% 60.50% 69.44%

0 1,000 2,000 3,000 4,000 5,0000

1,000

2,000

3,000

4,000

5,000

Kissat runtime (s)

N
eu
ro
Se
le
ct
-K
iss

at
ru
nt
im

e
(s)

(a)

0 0.5 1 1.5 2 2.5
Model inference time (s)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
Solver runtime improvement (s)

(b)

Figure 7: Performance of NeuroSelect-Kissat. (a) Comparisons
with Kissat on SAT competition 2022 instances; (b) NeuroS-
elect model inference time and runtime improvement over
Kissat.

Table 3: Runtime statistics of Kissat and NeuroSelect-Kissat
on SAT competition 2022 instances.

solved median (s) average (s)
Kissat [16] 274 307.02 713.28

NeuroSelect-Kissat 274 271.34 671.73

utilizing a variable-clause graph representation for CNF formulas.
As G4SATBench already includes an implementation of NeuroSAT,
we use this existing implementation in our assessment. As detailed
in Table 2, our NeuroSelect model demonstrates a considerable per-
formance advantage over both NeuroSAT and G4SATBench.

To further validate the efficacy of the attention block in NeuroS-
elect, we conducted a comparative analysis of the model with and
without this feature. The findings reveal that including the atten-
tion block leads to more than 5% improvement in accuracy. This
enhancement is attributed to the model’s improved global view of
the CNF formula, highlighting the importance of the global attention
mechanism in our architecture.

5.4 Effectiveness of Adaptive Policy Selection
To verify the effectiveness of NeuroSelect in enhancing solver

performance, we integrated it into Kissat [16], creating NeuroSelect-
Kissat. The inference of the NeuroSelect model was made sequen-
tially, while the SAT solving was tested in parallel on 20 processes,
each aiming to solve a SAT instance within a 5,000-second timeout.
From the 400 instances in themain track of the 2022 SAT competition,
NeuroSelect guided the clause deletion policy for 144 instances with
graph conversions below 400,000 nodes. The remaining instances
used the default policy. NeuroSelect-Kissat’s runtime includes both
model inference and SAT-solving durations. Figure 7(a) illustrates
the comparative runtimes of NeuroSelect-Kissat and Kissat across
the 400 SAT competition instances. Instances positioned below the
diagonal line indicate a reduced runtime with NeuroSelect-Kissat.

Although there are instances above the diagonal caused by wrong re-
ductions of NeuroSelect, they are fewer and relatively closer to the di-
agonal line. More detailed statistics regarding Kissat andNeuroSelect-
Kissat performance are listed in Table 3. Both NeuroSelect-Kissat
and Kissat solved 274 instances within the time limit. However,
NeuroSelet-Kissat has a shorter median runtime, leading to a 5.8%
improvement. This suggests that NeuroSelect-Kissat successfully
profits from the benefits of both clause deletion policies.

Additionally, Figure 7(b) presents box and whisker plots illustrat-
ing NeuroSelect’s inference times and the runtime enhancements
achieved over Kissat. Once trained, NeuroSelect requires only a sin-
gle call to determine the optimal clause deletion policy, which can
be executed on a CPU. Inference times vary between 0.01 and 2.22
seconds, while runtime improvements reach up to 4425 seconds.
This demonstrates that NeuroSelect significantly enhances Kissat’s
performance with a negligible inference cost.

6 Conclusion
This work advances SAT solving by introducing a new clause

deletion criterion and a learning-aided clause selection algorithm.We
also present a tailored network with a linear transformer to classify
large SAT instances, outperforming previous GNN approaches. Our
techniques yield more than 5% reduction in runtime compared to
Kissat on the SAT Competition 2022 benchmark.

References
[1] S. COOK, “The complexity of theorem proving procedure,” in Proc. STOC, 1971.
[2] P. Vaezipoor, G. Lederman, Y. Wu, R. Grosse, and F. Bacchus, “Learning clause

deletion heuristics with reinforcement learning,” in AITP, 2020.
[3] B. Bünz and M. Lamm, “Graph neural networks and boolean satisfiability,” arXiv

preprint arXiv:1702.03592, 2017.
[4] D. Selsam, M. Lamm, B. Benedikt, P. Liang, L. de Moura, D. L. Dill et al., “Learning

a SAT solver from single-bit supervision,” in Proc. ICLR, 2018.
[5] D. Selsam and N. Bjørner, “Guiding high-performance SAT solvers with unsat-core

predictions,” in Proc. SAT, 2019.
[6] V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro, “Can Q-learning with graph

networks learn a generalizable branching heuristic for a sat solver?” Proc. NIPS,
vol. 33, pp. 9608–9621, 2020.

[7] W. Zhang, Z. Sun, Q. Zhu, G. Li, S. Cai, Y. Xiong, and L. Zhang, “Nlocalsat: Boosting
local search with solution prediction,” arXiv preprint arXiv:2001.09398, 2020.

[8] J. M. Han, “Enhancing sat solvers with glue variable predictions,” arXiv preprint
arXiv:2007.02559, 2020.

[9] J. H. Liang, C. Oh, M. Mathew, C. Thomas, C. Li, and V. Ganesh, “Machine learning-
based restart policy for CDCL SAT solvers,” in Proc. SAT, 2018.

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks (TNN), vol. 20, no. 1,
pp. 61–80, 2008.

[11] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural net-
works?” in Proc. ICLR, 2018.

[12] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks to graphs,”
arXiv preprint arXiv:2012.09699, 2020.

[13] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou, “Rethinking
graph transformers with spectral attention,” Proc. NIPS, vol. 34, pp. 21 618–21 629,
2021.

[14] F. Shi, C. Lee, M. K. Bashar, N. Shukla, S.-C. Zhu, and V. Narayanan, “Transformer-
based machine learning for fast sat solvers and logic synthesis,” arXiv preprint
arXiv:2107.07116, 2021.

[15] Z. Shi, M. Li, Y. Liu, S. Khan, J. Huang, H. Zhen, M. Yuan, and Q. Xu, “Satformer:
Transformer-based UNSAT core learning,” in Proc. ICCAD, 2023.

[16] A. Biere andM. Fleury, “Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022,” in SAT Competition, 2022.

[17] W. Wang, Y. Hu, M. Tiwari, S. Khurshid, K. McMillan, and R. Miikkulainen, “Neu-
rocomb: Improving SAT solving with graph neural networks,” arXiv preprint
arXiv:2110.14053, 2021.

[18] Q. Wu, W. Zhao, C. Yang, H. Zhang, F. Nie, H. Jiang, Y. Bian, and J. Yan, “Sgformer:
Simplifying and empowering transformers for large-graph representations,” in
Proc. NIPS, 2023.

[19] Z. Li, J. Guo, and X. Si, “G4SATBench: Benchmarking and advancing sat solving
with graph neural networks,” arXiv preprint arXiv:2309.16941, 2023.

