

SHAPING THE NEXT GENERATION OF ELECTRONICS

រេរូរ

R

<u>ಹಿ</u>

JUNE 23-27, 2024

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

Æ

Efficient Bilevel Source Mask Optimization

â

Guojin Chen¹, Hongquan He², Peng Xu¹, Hao Geng², Bei Yu¹

¹Chinese University of Hong Kong ²ShanghaiTech University

The source mask optimization flow.

(a) The forward lithography and SMO process.

Forward imaging equation.

The scalar imaging equation under partially coherent illumination

$$I(x_1, y_1) = \iiint \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} J_C(x_0 - x'_0, y_0 - y'_0) M(x_0, y_0) M^*(x'_0, y'_0)$$

$$H(x_1 - x_0, y_1 - y_0) H^*(x_1 - x'_0, y_1 - y'_0) dx_0 dy_0 dx'_0 dy'_0,$$
(1)

Just for simplification:

$$I \leftarrow \iiint \int J \cdot M \cdot M^* \cdot H \cdot H^*$$
(2)

Abbe-based SMO: source and mask parameters: θ_I and θ_M .

Abbe equation parameters

	Activation	Initialization
Mask M	$\boldsymbol{M} = \sigma(\alpha_m \cdot \boldsymbol{\theta}_M)$	$\theta_M(x,y) = m_0$, if $M_0(x,y) = 1$; else $-m_0$.
Source J	$\boldsymbol{J} = \sigma(\alpha_j \cdot \boldsymbol{\theta}_J)$	$\theta_J(f,g) = j_0$, if $J_0(f,g) = 1$; else $-j_0$.

Table: The activation and initialization for Abbe-imaging.

For projection lens:

$$H(f,g) = \begin{cases} 1, & \text{if } \sqrt{f^2 + g^2} \le \frac{NA}{\lambda}, \\ 0, & \text{otherwise}, \end{cases}$$
(3)

For resist modeling:

$$\mathbf{Z} = \sigma(\beta \cdot (\mathbf{I} - I_{tr})), \tag{4}$$

5/25

Abbe-based SMO: loss function

L2 loss:

$$\mathcal{L}_2 = \|\boldsymbol{Z} - \boldsymbol{Z}_t\|^2.$$
(5)

PVB loss:

$$\mathcal{L}_{pvb} = \|\mathbf{Z}_{\max} - \mathbf{Z}_t\|^2 + \|\mathbf{Z}_{\min} - \mathbf{Z}_t\|^2.$$
(6)

SMO loss:

$$\mathcal{L}_{smo} = \mathcal{L}_{so} = \mathcal{L}_{mo} = \gamma \mathcal{L}_2 + \eta \mathcal{L}_{pvb},\tag{7}$$

The SMO problem is thus defined as:

$$(\hat{\boldsymbol{\theta}}_{J}, \hat{\boldsymbol{\theta}}_{M}) = \operatorname*{argmin}_{(\boldsymbol{\theta}_{J}, \boldsymbol{\theta}_{M})} \mathcal{L}_{smo}(\boldsymbol{\theta}_{J}, \boldsymbol{\theta}_{M}),$$
(8)

6 / 25

Previous alternating minimization-based SMO

Algorithm Alternating Minimization-based SMO (AM-SMO)

1: for
$$k = 1, 2, 3, ...;$$
 do
2: while not converged do
3: $\lfloor (\theta_J)_k \leftarrow \operatorname{argmin}_{\theta_J} \mathcal{L}_{so} (\theta_J, (\theta_M)_{k-1});$
4: while not converged do
5: $\lfloor (\theta_M)_k \leftarrow \operatorname{argmin}_{\theta_M} \mathcal{L}_{mo} ((\theta_J)_k, \theta_M);$
return $(\theta_J)_k, (\theta_M)_k.$

 $\triangleright Alternating SO & MO.$ $\triangleright SO iterations.$ $\triangleright \theta_{M} is fixed.$ $\triangleright MO iterations.$ $\triangleright \theta_{J} is fixed.$

Drawbacks of traditional AM-SMO

However, AM-SMO has several notable drawbacks:

- **1** Local-minima: AM-SMO tends to converge to local minima due to its narrow focus on localized aspects of SO or MO, ignoring the global structure of the problem.
- **2** Slow-convergence: The convergence is often slow because the source and mask are highly interdependent. Adjusting $(\theta_M)_k$ as per line 5 makes $(\theta_J)_k$ suboptimal, requiring numerous iterations for stabilization.
- **3** Lack of global perspective: The absence of global gradient guidance complicates establishing effective early stopping criteria, often resulting in either prolonged optimization or suboptimal convergence.

Bilevel Optimization: Nested Scheme

- Leader takes a decision *x*
- The follower uses the leader's decision to take the best decision based on *f*(*x*, ·)
- The leader evaluates both *x*, *y* to evaluate *F*(*x*, *y*).

Reformulate into bilevel format.

$$(\hat{\theta}_{J}, \hat{\theta}_{M}) = \underset{(\theta_{J}, \theta_{M})}{\operatorname{argmin}} \mathcal{L}_{smo}(\theta_{J}, \theta_{M}), \quad (9)$$

$$\downarrow \quad (10)$$

$$\min_{\theta_{M}} \mathcal{L}_{mo}(\theta_{J}^{*}(\theta_{M}), \theta_{M}), \quad \triangleright Upper-Level: M$$

$$\operatorname{s.t.} \theta_{J}^{*}(\theta_{M}) = \operatorname{argmin}_{\theta_{J}} \mathcal{L}_{so}(\theta_{J}, \theta_{M}). \quad \triangleright Lower-Level: S$$

$$(11)$$

Solve the bilevel SMO : Hypergradient

$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} + \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \frac{\partial \boldsymbol{\theta}_{J}^{*}(\boldsymbol{\theta}_{M})}{\partial \boldsymbol{\theta}_{M}}.$$
 (12)

Direct gradient is easy to calculate: $\frac{\partial \mathcal{L}mo}{\partial \theta_M}$ and $\frac{\partial \mathcal{L}mo}{\partial \theta_I}$.

Challenges

- **1** Precise approximation of the SO optimal solution $\theta_I^*(\theta_M)$.
- **2** Differentiating the best-response Jacobian: $\frac{\partial \theta_I^+(\theta_M)}{\partial \theta_M}$.

Three solutions to solve the bilevel SMO.

- BiSMO-FD: bilevel SMO with finite difference.
- BiSMO-NMN: bilevel SMO with Neumann series.
- BiSMO-CG: bilevel SMO with conjugate gradient.

BiSMO-FD: finite difference

To solve:

$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} + \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \frac{\partial \boldsymbol{\theta}_{J}^{*}(\boldsymbol{\theta}_{M})}{\partial \boldsymbol{\theta}_{M}}.$$
(13)

BiSMO-FD

1 Approximate $\theta_J^*(\theta_M) = \theta_J - \xi \nabla_{\theta_J} \mathcal{L}_{so}$, (single step approximation)

2 obtaining
$$\frac{\partial \theta_I^*(\theta_M)}{\partial \theta_M} = -\xi \frac{\partial^2 \mathcal{L}_{so}}{\partial \theta_M \partial \theta_I}$$

8 Hypergradient calculation:

$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo}^{\text{FD}} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \xi \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}, \qquad (14)$$

IFT and BiSMO-NMN, BiSMO-CG

Implicit Function Theorem:

Consider $\theta_I^*(\theta_M)$, with first-order optimally condition $\frac{\partial \mathcal{L}_{so}(\theta_I^*, \theta_M)}{\partial \theta_I} = 0$,

$$\frac{\partial}{\partial \boldsymbol{\theta}_{M}} \left[\frac{\partial \mathcal{L}_{so}(\boldsymbol{\theta}_{J}^{*}(\boldsymbol{\theta}_{M}), \boldsymbol{\theta}_{M})}{\partial \boldsymbol{\theta}_{J}} \right] = 0, \Rightarrow \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}} + \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \frac{\partial (\boldsymbol{\theta}_{J}^{*}(\boldsymbol{\theta}_{M}))}{\partial \boldsymbol{\theta}_{M}} = 0,$$

$$\Rightarrow \text{ best-response Jacobian: } \frac{\partial (\boldsymbol{\theta}_{J}^{*}(\boldsymbol{\theta}_{M}))}{\partial \boldsymbol{\theta}_{M}} = -\left[\frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \right]^{-1} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}.$$
(15)

With Equation (12), we have hypergradient formulated by:

$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \left[\frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \right]^{-1} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}.$$
 (16)

Challenges for IFT

$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \left[\frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \right]^{-1} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}.$$

Challenges for IFT

• The inverse Hessian $\left[\frac{\partial^2 \mathcal{L}_{so}}{\partial \theta_i \partial \theta_j}\right]^{-1}$ in Equation (16) is hard to calculate.

Naive solution for ILT : BiSMO-FD

• In Equation (14), BiSMO-FD employs finite difference to naively approximate the inverse $\left[\frac{\partial^2 \mathcal{L}_{so}}{\partial \theta_j \partial \theta_j}\right]^{-1} = \xi \mathcal{I}$, where \mathcal{I} denotes the identity matrix.

$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo}^{\text{FD}} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \xi \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}, \tag{18}$$

(17)

Better approx. of the inverse: BiSMO-NMN and BiSMO-CG

Do we have better approximation of the inverse?

More precise approximation of the inverse, IFT-based

- BiSMO-NMN: Neumann series
- BiSMO-CG: conjugate gradient

to reformulate the hypergradient.

Neumann series for inverse Hessian approximation

Lemma 2

Neumann series: With a matrix *A* that $\|\mathcal{I} - A\| < 1$, we have:

$$A^{-1} = \sum_{k=0}^{\infty} (\mathcal{I} - A)^k.$$
 (19)

Then we can approximate the inverse $\left[\frac{\partial^2 \mathcal{L}_{so}}{\partial \theta_I \partial \theta_I}\right]^{-1}$ and define the hypergradient as:

$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \sum_{k=0}^{\infty} \left[\mathcal{I} - \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \right]^{k} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}.$$
 (20)

Conjugate gradient: another way to approximate the inverse

- Specifically, $\frac{\partial \mathcal{L}_{mo}}{\partial \theta_l} \left[\frac{\partial^2 \mathcal{L}_{so}}{\partial \theta_l \partial \theta_j} \right]^{-1}$ can be computed as the solution to the linear system $\left[\frac{\partial^2 \mathcal{L}_{so}}{\partial \theta_l \partial \theta_j} \right] \boldsymbol{w} = \frac{\partial \mathcal{L}_{mo}}{\partial \theta_l}.$
- The vector *w* can be obtained by solving the optimization problem:

$$\min_{\boldsymbol{w}} \boldsymbol{w}^{\top} \left[\frac{\partial^2 \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_J \partial \boldsymbol{\theta}_J} \right] \boldsymbol{w} - \boldsymbol{w}^{\top} \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_J}.$$
 (21)

• The conjugate gradient (CG) algorithm is well-suited for this task.

The hypergradient in Equation (16) for BiSMO-CG is then computed as:

$$\nabla_{\boldsymbol{\theta}_{M}} \tilde{\mathcal{L}}_{mo}^{\text{CG}} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \left[\operatorname{argmin}_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \boldsymbol{w} - \boldsymbol{w}^{\top} \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \right) \right] \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}.$$
 (22)

BiSMO overall flow

Hypergradient:
$$\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} + \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \frac{\partial \boldsymbol{\theta}_{J}^{*}(\boldsymbol{\theta}_{M})}{\partial \boldsymbol{\theta}_{M}}.$$
 (23)
* Finite Difference: $\nabla_{\boldsymbol{\theta}_{M}} \mathcal{L}_{mo}^{\text{FD}} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \xi \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}},$
§IFT - Neumann Series: $\nabla_{\boldsymbol{\theta}_{M}} \tilde{\mathcal{L}}_{mo}^{\text{NMN}} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \sum_{k=0}^{K} \left[\boldsymbol{\mathcal{I}} - \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \right]^{k} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}.$
§IFT - Conjugate Gradient: $\nabla_{\boldsymbol{\theta}_{M}} \tilde{\mathcal{L}}_{mo}^{\text{CG}} = \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{M}} - \left[\operatorname*{argmin}_{\boldsymbol{w}} \left(\boldsymbol{w}^{\mathsf{T}} \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{J} \partial \boldsymbol{\theta}_{J}} \boldsymbol{w} - \boldsymbol{w}^{\mathsf{T}} \frac{\partial \mathcal{L}_{mo}}{\partial \boldsymbol{\theta}_{J}} \right) \right] \frac{\partial^{2} \mathcal{L}_{so}}{\partial \boldsymbol{\theta}_{M} \partial \boldsymbol{\theta}_{J}}.$

BiSMO overall flow

(b)Our BiSMO flow.

BiSMO vs. AM-SMO

Comparison of traditional AM-SMO and BiSMO.

Results visualization

Figure 3: Loss comparison between different MO methods (dashed lines) and SMO methods (solid lines).

Comparison with SOTA

Table 3: Result comparison with SOTA.

	МО					AM-SMO				BiSMO (Ours)						
Bench	NILT [7]		DAC23-MILT [10]		Abbe-MO(Ours)		Abbe-Hopkins* [13]		Abbe-Abbe [12]		BiSMO-FD		BiSMO-CG		BiSMO-NMN	
	L2	PVB	L2	PVB	L2	PVB	L2	PVB	L2	PVB	L2	PVB	L2	PVB	L2	PVB
ICCAD13	37515	50964	28362	40044	20419	29697	27299	37278	17539	23944	13828	17872	13603	16274	13059	15839
ICCAD-L	71570	108162	53143	87010	44478	66092	48879	77062	40455	58560	29779	42643	29762	40543	28946	38706
ISPD19	97891	119732	85234	105592	61374	93132	79634	97073	55588	84402	39959	64211	39488	61190	38737	59832
Average	68992	92953	55580	77549	42090	62974	51937	70471	37861	55635	27855	41576	27618	39336	26914	38126
Ratio	2.56	2.44	2.07	2.03	1.56	1.65	1.93	1.85	1.41	1.46	1.03	1.09	1.03	1.03	1.00	1.00

Abbe-Hopkins* [13]: AM-SMO employs Abbe model for SO and Hopkins model for MO. L2 and PVB unit: *nm*².

Samples

Result samples from ICCAD13 and ISPD19 datasets.

JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

R

સિંગ

Thanks!

