

Fracturing-aware Curvilinear ILT via Circular E-beam Mask Writer

â

A

Xinyun Zhang, Su Zheng, Guojin Chen, Binwu Zhu, Hong Xu, Bei Yu

Department of Computer Science & Engineering The Chinese University of Hong Kong

Outline

1 Introduction

- **2** CircleRule
- 3 CircleOpt

Introduction

The promise of ILT

Conventional ILT

- ILT tends to generate curvilinear masks.
- Curvilinear masks achieve the best process window¹.

¹Linyong Pang (2021). "Inverse lithography technology: 30 years from concept to practical, full-chip reality". In: *Journal of Micro/Nanopatterning, Materials, and Metrology*.

Roadblock to broad application of ILT

- Traditional variable-shaped beam (VSB) mask writers use rectlinear shapes to create mask shapes.
- The rectlinear fracturing requires many VSB shots.

A potential solution: Circular E-beam Mask Writers²

- Circular e-beam mask writers write main features as circles.
- It can significantly reduce the shot count.
- It is mask rule checking-friendly.

²Aki Fujimura et al. (2010). "Best depth of focus on 22-nm logic wafers with less shot count". In: *Photomask and Next-Generation Lithography Mask Technology XVII*.

6 / 25

Circular fracturing-aware OPC (CFAOPC)

Problem Definition

- Input: A target layout
- Output: A mask fractured by circles.
- Aim: Achieve the best mask performance while maintaining the minimal shot count (# of circles).

Key Differences:

- Consider OPC and fracturing in a unified perspective.
- The fracturing shapes are circles instead of rectangles.

• Rule-based method (CircleRule):

• Optimization-based method (CircleOpt):

CircleRule

Rule-based Method: CircleRule

Overview:

- Sample shot (circle) centers in each feature
- Assign a radius to each shot

CircleRule: Circle Center Sampling

- Construct a skeleton graph
- Perform depth-first search (DFS), and sample points at a fixed sample rate.

Construction of the skeleton graph.

CircleRule: Radius selection

- Given a circle C((x, y), r), the cover rate can be defined as $\frac{|C((x, y), r) \cap S|}{|C((x, y), r)|}$.
- Increase the radius until the cover rate reaches a threshold.

Illustration of the radius selection

CircleOpt

Optimization-based method: CircleOpt

Overall flow of CircleOpt

- Two-stage optimization: Pixel-level initialization + Circle-level finetuning
- For circle-level optimization, we encode the circular constraints into ILT.

CircleOpt: Pixel-level Initialization

- The simplest pixel-level ILT³.
- To generate masks with SRAFs, we use the shifted binary function⁴.

The shifted binary function.

⁴Shuyuan Sun et al. (2023). "Efficient ILT via Multi-level Lithography Simulation". In: DAC.

³Jhih-Rong Gao et al. (2014). "MOSAIC: Mask Optimizing Solution With Process Window Aware Inverse Correction". In: *DAC*.

CircleOpt: Sparse Circular Reparameterization

- Similar to CircleRule, we fracture the initialized mask M into a set of sparse circular representations $\{(x_1, y_1, r_1, q_1), \dots, (x_n, y_n, r_n, q_n)\}$.
- Our target becomes optimizing these **4n** variables for best mask performance and shot count.

CircleOpt: Differentiable circle-to-pixel transformation

- The coordinate *x*, *y* and the radius *r* must be integers in a dense mask.
- Use straight-through estimator (STE) to quantize *x*, *y* and *r* as

$$x'_i = \operatorname{STE}(x_i), y'_i = \operatorname{STE}(y_i), r'_i = \operatorname{STE}(r_i).$$
(1)

Visualization of the straight-through estimator. (a) STE forward; (b) STE backward.

CircleOpt: Differentiable circle-to-pixel transformation

• We define the window function as

$$f_{x'_i,y'_i,r'_i}(x,y) = \frac{1}{1 + e^{-\alpha(-\sqrt{(x-x'_i)^2 + (y-y'_i)^2} + r'_i)}},$$
(2)

g(x) = x(1-x), and $h_{x'_i,y'_i,r'_i}(x,y) = (g \circ f_{x'_i,y'_i,r'_i})(x,y)$.

• Then, the dense mask can be obtained by

$$\bar{\boldsymbol{M}}(x,y) = \max_{i \in \{1,\cdots,n\}} \{ q_i f_{x'_i, y'_i, r'_i}(x,y) \}.$$
(3)

(a) Visualization of the circular window function $f_{0,0,6}(x, y)$; (b) Visualization of $h_{0,0,6}(x, y)$

CircleOpt: Differentiable circle-to-pixel transformation

• The gradient *w.r.t* the coordinate, the radius, and the activation can be represented as:

$$\frac{\partial \bar{M}(x,y)}{\partial x_{i}} = \begin{cases} 0, \text{ if } i \neq \operatorname*{argmax}_{i \in \{1, \cdots, n\}} \{q_{i}f_{x'_{i}}, y'_{i}, r'_{i}}(x, y)\} \\ \frac{\alpha q_{i}h_{x'_{i}}, y'_{i}, r'_{i}}(x, y)(x - x_{i}) \mathbb{1}_{[0,W]}(x_{i})}{\sqrt{(x - x'_{i})^{2} + (y - y'_{i})^{2}}}, \text{ o/w} \end{cases}$$
(4)

$$\frac{\partial \bar{M}(x,y)}{\partial r_{i}} = \begin{cases} 0, \text{ if } i \neq \operatorname*{argmax}_{i \in \{1, \cdots, n\}} \{q_{i}f_{x'_{i}}, y'_{i}, r'_{i}(x, y)\} \\ \alpha q_{i}h_{x'_{i}}, y'_{i}, r'_{i}(x, y) \mathbb{1}_{[R_{min}, R_{max}]}(r_{i}), \text{ o/w} \end{cases}$$

$$\frac{\partial \bar{M}(x,y)}{\partial q_{i}} = \begin{cases} 0, \text{ if } i \neq \operatorname*{argmax}_{i \in \{1, \cdots, n\}} \{q_{i}f_{x'_{i}}, y'_{i}, r'_{i}(x, y)\} \\ f_{x'_{i}}, y'_{i}, r'_{i}(x, y), \text{ o/w} \end{cases}$$
(5)

CircleOpt: Pixel-to-circle Optimization

• The loss function can be defined as:

$$L = L_{l2} + L_{pvb} + \gamma L_s, \tag{7}$$

where L_s is the sparsity regularize that can be formulated as:

$$L_{s} = \sum_{i=1}^{n} |q_{i}|.$$
 (8)

Experiments

Comparison between CircleRule and SOTA pixel-level methods

Model	L2	PVB	EPE	#Shots
Develset ⁵	39992.9	46251.7	8.2	699.8
CircleRule+Develset	49231.1	43407.1	14.4	123.8
NeuralILT ⁶	37878.9	51092.9	8.1	332.1
CircleRule+NeuralILT	41720.6	50420.7	11.9	149.9
MultiILT ⁷	27171.0	39854.0	2.9	271.5
CircleRule+MultiILT	35790.0	40725.0	8.3	260.0

Table: Comparison between CircleRule and SOTA pixel-based OPC methods. We show the averaged results for each metric on ICCAD 2013 benchmark.

⁵Guojin Chen et al. (2021). "DevelSet: Deep neural level set for instant mask optimization". In: *ICCAD*.

⁶Bentian Jiang et al. (2021). "Neural-ILT 2.0: Migrating ILT to Domain-Specific and Multitask-Enabled Neural Network". In: *TCAD*.

⁷Shuyuan Sun et al. (2023). "Efficient ILT via Multi-level Lithography Simulation". In: DAC.

Comparison between CircleRule and CircleOpt

Table: Mask Printability, Complexity Comparison for CircleRule and CircleOpt.

Bench Area(nm	$\Lambda roa(nm^2)$	CircleRule+Develset				CircleRule+NeuralILT			CircleRule+MultiILT			CircleOpt					
	Alea(nm)	L_2	PVB	EPE	#shots	L_2	PVB	EPE	#shots	L_2	PVB	EPE	#shots	L_2	PVB	EPE	#shots
case1	215344	59632	51087	23	102	53005	57775	13	170	49293	46945	8	253	43358	46905	3	214
case2	169280	53240	42993	19	80	45662	53770	13	128	39583	38565	2	236	35496	37920	1	215
case3	213504	107342	70906	69	205	93116	92536	61	213	105217	64381	69	242	75206	66241	32	194
case4	82560	21512	25623	7	44	18912	28873	6	73	14209	23649	2	164	13205	23234	1	104
case5	281958	53242	52706	4	140	52714	53575	8	192	32398	51711	0	317	34938	53110	1	172
case6	286234	52837	48595	5	203	48805	52200	7	190	38767	48290	1	313	36797	44629	0	252
case7	229149	36973	43124	0	146	24560	47353	0	146	17391	38744	0	335	21036	41118	0	175
case8	128544	18209	22917	1	65	16730	27114	2	89	12516	19968	0	181	13906	19859	0	169
case9	317581	62119	59295	8	214	53743	70986	9	221	40871	58311	1	407	47844	54625	1	251
case10	102400	27205	16825	8	39	9959	20025	0	77	9034	16694	0	152	9107	16969	0	83
Av	erage	49231.1	43407.1	14.4	123.8	41720.6	50420.7	11.9	149.9	35790.0	40725.0	8.3	260	33089.3	40451.5	3.9	183

 $^{\dagger}L_2$ and PVB unit: nm^2 .

Ablation study: Sparsity Regularizer

Method	L2	PVB	EPE	#Shots
CircleOpt w/o Sparsity	32595	40193	4.1	208
CircleOpt	33089	40451	3.9	183

Table: Ablation study on the sparsity regularizer.

JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

સિંગ

Q & A

Ð