

SHAPING THE NEXT GENERATION OF ELECTRONICS

រេរូរ

R

<u>ન</u>્દુર્ગ

#### JUNE 23-27, 2024

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA





Æ

#### JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

## ChatPattern: Layout Pattern Customization via Natural Language

â

**Zixiao Wang**<sup>1</sup>, Yunheng Shen<sup>2</sup>, Xufeng Yao<sup>1</sup>, Wenqian Zhao<sup>1</sup>, Yang Bai<sup>1</sup>, Farzan Farnia<sup>1</sup>, Bei Yu<sup>1</sup>

<sup>1</sup>Chinese University of Hong Kong <sup>2</sup>Tsinghua University

# Background



#### Layout Pattern Generation



**Existing Patterns** 

**Generated Patterns** 

VLSI layout patterns provide critical resources in various designs for manufacturability research. Pattern Generation task aims to mimic the distribution of existing patterns.



#### From Generation to Customization





**Existing Patterns** 

**Customized Patterns** 

The requirements on layout pattern distributions can vary in real cases. Pattern Customization task aims to generate patterns to meet specialized requirements.



#### Let's Employ a LLM

- Training a LLM from scratch? **NO**, Too expensive.
- Utilizing Pre-trained LLM? Yes, but, how can LLM get access to the Layout Patterns?
  - Encoding a pattern as a sequence of direction and distance?
  - Embedding a pattern as a pattern token?
  - Manipulating pattern-generation tools?





## **ChatPattern**



#### ChatPattern



An illustration of ChatPattern

ChatPattern seamlessly integrates a front-end powered by a Large Language Model with a back-end that employs a conditional discrete diffusion model for layout pattern generation.





#### ChatPattern



#### An illustration of ChatPattern

ChatPattern seamlessly integrates a front-end powered by a Large Language Model with a back-end that employs a conditional discrete diffusion model for layout pattern generation.





The LLM agent is designed to communicate with users via natural language, and is able to:

9 / 22

- Auto-Format Requirement
- Plan and Execute Task
- Learn and Apply Tool Functions
- Learn from Documents and Experience



#### Flexible Layout Pattern Generative Model

To construct a pattern library, certain fundamental tools or APIs are indispensable:

- Random Topology Generation
- Topology Legalization<sup>1</sup>

<sup>1</sup>Zixiao Wang et al. (2023). "Diffpattern: Layout pattern generation via discrete diffusion". In: 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 1–6.





#### Flexible Layout Pattern Generative Model

To construct a pattern library, certain fundamental tools or APIs are indispensable:

- Conditional Topology Generation
- Topology Legalization<sup>1</sup>
- Topology Modification
- Topology Extension

<sup>1</sup>Zixiao Wang et al. (2023). "Diffpattern: Layout pattern generation via discrete diffusion". In: 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 1–6.





#### Property-Conditional Topology Generation





#### Property-Conditional Topology Generation





#### Pattern Modification





#### Pattern Modification





#### Pattern Modification





#### Pattern Extension







### Example-Pipeline







### Example-Pipeline







### Example-Pipeline







# **Experiments**





• Pattern Diversity. Shannon entropy of the pattern complexity.

$$H = -\sum_{i} \sum_{j} P(c_{xi}, c_{yj}) \log P(c_{xi}, c_{yj}),$$
(4)

• Pattern Legality.

$$L = \frac{\# \text{ Legal Patterns}}{\# \text{ All Patterns}}.$$
(5)





#### Free-size Pattern Generation

| Task       | Set/Method                  | Training Set*     | Size             | Layer-10001    |               | Layer-10003    |               | Total <sup>†</sup> |               |
|------------|-----------------------------|-------------------|------------------|----------------|---------------|----------------|---------------|--------------------|---------------|
|            |                             |                   |                  | Legality (†)   | Diversity (↑) | Legality (†)   | Diversity (↑) | Legality (↑)       | Diversity (↑) |
| Fixed-size | Real Patterns               | /                 | 128 <sup>2</sup> | /              | 10.731        | /              | 8.769         | /                  | 10.625        |
|            | CAE+LegalGAN [ICCAD'20]     | Layer-10001       |                  | 3.74%          | 5.814         | /              | /             | /                  | /             |
|            | VCAE+LegalGAN [ICCAD'20]    | Layer-10001       |                  | 84.51%         | 9.867         | /              | /             | /                  | /             |
|            | LayouTransformer [ICCAD'22] | Layer-10001       |                  | 89.73%         | 10.527        | /              | /             | /                  | /             |
|            | DiffPattern [DAC'23]        | Layer-10001/10003 |                  | 99.97%         | 10.711        | 99.98%         | 8.578         | 99.98%             | 10.633        |
|            | ChatPattern                 | Layer-10001/10003 |                  | <b>99.97</b> % | 10.796        | <b>99.99</b> % | 8.625         | 99.98%             | 10.650        |
| Free-size  | Real Patterns               | /                 | 256 <sup>2</sup> | /              | 12.702        | /              | 10.696        | /                  | 12.695        |
|            | [DAC'23] w/ Concatenation   | Layer-10001/10003 |                  | 57.78%         | 10.719        | 93.69%         | 10.511        | 75.74%             | 11.706        |
|            | ChatPattern                 | Layer-10001/10003 |                  | 87.36%         | 11.154        | 99.78%         | 10.556        | 93.57%             | 11.830        |
|            | Real Patterns               | /                 | 512 <sup>2</sup> | /              | 13.435        | /              | 12.139        | /                  | 13.787        |
|            | [DAC'23] w/ Concatenation   | Layer-10001/10003 |                  | 0.29%          | 5.714         | 40.83%         | 11.555        | 20.56%             | 11.359        |
|            | ChatPattern                 | Layer-10001/10003 |                  | 36.42%         | 10.401        | 98.86%         | 11.620        | 67.64%             | 12.133        |
|            | Real Patterns               | /                 |                  | /              | 13.573        | /              | 12.644        | /                  | 14.109        |
|            | [DAC'23] w/ Concatenation   | Layer-10001/10003 | $1024^{2}$       | 0.00%          | 0.000         | 0.64%          | 6.926         | 0.32%              | 6.926         |
|            | ChatPattern                 | Layer-10001/10003 |                  | 1.19%          | 6.438         | 94.96%         | 11.981        | 47.80%             | 11.992        |

#### Insights

When pattern size is larger than  $256^2$ , the legality of ChatPattern sometimes can reach more than  $100 \times$  higher than DiffPattern[DAC'23].



### **In-Painting**







(b) Layer-10003 style

Example of  $256 \times 256$  topology matrix generated by In-Painting.





#### **Out-Painting**







### Requirement Auto-formatting

#### User Input

Generate a layout pattern library, there are 100k layout patterns in total. The physical size fixed as 1.5um \* 1.5um. The topology size should be chosen from 200\*200 and 500\*500. They should be in style of 'Layer-10001'.

# Requirement - subtask 1
## Basic Part: Topology Size: [200, 200], Physical Size: [1500, 1500] nm, Style: Layer-10001, Count: 50000,
## Advanced Part: Extension Method: Out (Default: Out), Drop Allowed: True (Default: True), Time Limitation: None (Default: None).





#### Unseen Mistake-processing

We present a case where the LLM agent adeptly navigates unanticipated mistakes during legalization. It is noteworthy that such error-handling expertise is not pre-coded within the standard operational procedures or the experiential documentation.

% In previous attempts, one pattern can't pass the legalization. **Thought**: Since legalization has failed twice in the same region, I will try to in-paint that specific area with the same style and then attempt legalization again. **Action**: Topology\_Modification **Action Input**: "topology\_path":\${path}, "upper": 12, "left": 56, "bottom": 33, "right": 73, "style": "Layer-10001", "seed": 42 % Continue Processing





JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA



R

સિંગ

# **Thanks!**

