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Abstract
Analog routing is crucial for performance optimization in ana-

log circuit design, but conventionally takes significant development
time and requires design expertise. Recent research has attempted to
use machine learning (ML) to generate guidance to preserve circuit
performance after analog routing. These methods face challenges
such as expensive data acquisition and biased guidance. This paper
presents AnalogFold, a new paradigm of analog routing that lever-
ages ML to provide performance-oriented routing guidance. Our
approach learns performance-driven routing guidance and uses it to
help automatic routers for performance-driven routing optimization.
We propose to use a 3DGNN that incorporates cost-aware distance
to make accurate predictions on post-layout performance. A pool-
assisted potential relaxation process derives the effective routing
guidance. The experimental results on multiple benchmarks under
the TSMC 40nm technology node demonstrate the superiority of the
proposed framework compared to the cutting-edge works.

1 Introduction
Preserving good performance in analog circuit design requires

effective analog routing [1]. However, achieving a satisfactory circuit
routing solution is a time-consuming and expertise-intensive task.
Unlike digital circuits, analog circuits are extremely vulnerable to
layout parasitics and coupling, making traditional analog routing
heavily reliant on the experience of seasoned experts. Despite on-
going endeavors to automate analog circuit routing, its practical
implementation in design flows has been limited. This limitation can
be attributed to the challenges associated with capturing designers’
expertise and accommodating the diverse array of layout-dependent
effects [2].

Early analog routing methods employing expert-designed expe-
rience can be classified into three primary categories: template-
based [3, 4], simulation-based [5, 6], and heuristic constraint-based
approaches [7–10]. Template-based methods and simulation-based
methods often struggle to handle complex designs due to their lack
of flexibility and time-consuming nature. Heuristic constraint-based
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methods employ carefully designed heuristic principles to guide the
routing decision process. The routing decisions are made based on
these heuristics to achieve a satisfactory solution. The symmetric
net pair constraint is the most commonly used heuristic in routing.
Ou et al. expanded upon this constraint by introducing different
levels of geometric matching constraints [7]. Other approaches in-
clude prohibiting routing over the active regions of transistors [8],
optimizing power routing [9] and reducing wire load [10]. However,
when dealing with complex analog designs, these simple heuristics
often fall short in addressing the diverse range of layout-dependent
effects or incorporating the expertise of design professionals.

Machine learning methods summarize the experience from exist-
ing routing solutions, but suffering from scarcity of manual data [11]
and lack of explicit performance consideration [12]. GeniusRoute [11]
is a novel analog routing paradigm that has used generative neu-
ral networks to provide routing guidance. By employing automatic
routing guidance, it mimics manual routing patterns and hence in-
corporates design experience into an automated engine, resulting
in enhanced routing performance. However, the human imitation
methodology has several issues. The training process relies on man-
ual labeling data and limits the model’s capability. Moreover, the
existing methods do not explicitly consider performance optimiza-
tion and lead to biased routing guidance. This hurts the generality
of the routing guidance and creates a gap between the guidance and
analog circuit performance.

To address these challenges, we introduce a performance-driven
analog routing method that learns routing guidance from an auto-
mated routing engine. One of the most challenging aspects lies in the
performance modeling of routing guidance. In comparison to place-
ment benefits from existing performance models [13], analog routing
guidance generation faces challenges related to discreteness, sparsity,
and relatively low resolution in 3D space. Considering the influence
of parasitic parameters, even minor distorted predictions in guid-
ance can result in substantial performance discrepancies. Inspired by
recent advancements in protein structure prediction [14, 15], we pro-
pose theAnalogFold framework, which utilizes a potential function
to predict routing guidance for individual nets instead of generating
a complete routing guidance map.

The main contributions of this paper are listed as follows:

• We introduce a performance-driven analog routing approach,
which learns from the automatically generated routing patterns
using their performance metrics.
• A non-uniform routing guidance is proposed to effectively ad-
dress sparsity issues by assigning routing guidance to different
nets.
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Figure 1: (a) Two examples of non-uniform routing guidance; (b) The 3D visualization of the non-uniform routing guidance,
with each point as a pin access; (c) The overall flow of our performance-driven analog routing method.

• We proposed a customized AnalogFold framework to enable
accurate modeling of the performance potential of routing guid-
ance. AnalogFold contains a heterogeneous routing graph, a
protein-inspired 3DGNN network, and a pool-aided potential
relaxation process.
• The experimental results under the TSMC 40nm technology node
demonstrate a significant improvement of the proposed frame-
work compared to the cutting-edge works, with up to 3671.00𝜇𝑉 ,
30.33dB, 169.2MHz, 38.141dB and 2028𝜇𝑉𝑟𝑚𝑠 improvement in
Offset Voltage, CMRR, BandWidth, DC Gain, Noise metrics.

2 Problem Formulation
Analog routing mainly involves placed devices, self-symmetry

nets, symmetry net pairs, and design rules. The objective is to route
all the nets and optimize post-layout performance. The problem can
be formulated as follows:

Problem 1 (Analog Detailed Routing). Given a collection of placed
devices 𝑀 = {𝑚𝑖 |1 ≤ 𝑖 ≤ |𝑀 |}, a set of self-symmetry nets 𝑁𝑆𝑆 ={
𝑛𝑆𝑆
𝑖
| 1 ≤ 𝑖 ≤

��𝑁𝑆𝑆
��}, a set of nets 𝑁 = {𝑛𝑖 |1 ≤ 𝑖 ≤ |𝑁 |}, a set of

special nets with specific types {𝑁𝑇
𝑖
|1 ≤ 𝑖 ≤ |𝑁𝑇

𝑖
|}, a group of

symmetry net pairs 𝑁𝑆𝑃 =
{
𝑛𝑆𝑃
𝑖
| 1 ≤ 𝑖 ≤

��𝑁𝑆𝑃
��}, and the design

rules, the task is to route all the nets and optimize the post-layout
performance.

3 Performance-Driven Analog Route
The existing analog routing algorithms only consider summariz-

ing human experience and fail to guarantee performance improve-
ment. To tackle the performance-driven analog routing problem,
AnalogFold divides it into two sub-problems: non-uniform routing
guidance generation and guided analog detailed routing.

3.1 Non-uniform Routing Guidance Generation
GeniusRoute uses a uniform 2D routing guidance map, which

has significant challenges. The model’s performance may be largely
compromised when handling designs of varying sizes or aspect
ratios. More importantly, uniform 2D guidance fails to handle the
sparsity issue of analog layout that might assign two closed pins
to the same pixel, hindering the modeling of resource competition
among different pins.

To address these issues, we propose a non-uniform adaptive cost
guidance that assigns each pin a different cost guidance, as shown in
Figure 1(a). Essentially, the routing guidance is a cost guidance field
that indicates the priority of a given net being routed. In this case,
the routing guidance for 𝑝𝑘 in the x direction is smaller than that for
𝑝 𝑗 . Therefore, it encourages 𝑝𝑘 to route the wires horizontally. The
resulting priority regions predicted by the performance model are
shown in Figure 1(b). This approach effectively addresses sparsity

issues in the route layout by cost guidance to different nets and
inherently supports a 3D cost map.

The problem of generating non-uniform routing guidance can be
defined as follows:

Problem 2 (Non-Uniform Routing Guidance Generation.). Given
the placement of components in the circuit (𝑀), a set of nets (𝑁 ∗)
belonging to the set of nets (𝑁 ) with specific types (𝑁𝑇 ), the objective
is to predict a cost guidance set C, where each cost guidance C𝑖 is of
size 1 × 3. Each element C𝑖 [𝑑], 𝑑 ∈ {0, 1, 2} represents the inferred
cost guidance of the net 𝑁𝑖 is likely the corresponding directions 𝑑 .

3.2 Guided Analog Routing
Given the circuit netlist, design rules, and performance-driven

routing guidance, the guided analog detailed routing problem is
defined as:

Problem 3 (Guided Analog Detailed Routing.). Guided analog de-
tailed routing takes placement𝑀 , nets 𝑁 , design rules, and a set of
generated non-uniform routing guidance C = {C𝑖 |1 ≤ 𝑖 ≤ |𝑁 |} as
input, and routes all the nets while honoring symmetric constraints
and routing guidance with optimal post-layout performance.

Definition 1 (Pin Access Point). In this paper, pin access points
refer to the intersections between pin geometry and routing grids.
Each pin has at least one access point.

As shown in Figure 1(c), AnalogFold leverages the routing guid-
ance C generated by machine learning models to make routing deci-
sions. Our analog routing flow mainly consists of two steps:
(1) Detailed routing routes all nets via constraint-aware iterative

routing as in [16], honoring design rules, symmetric constraints,
and input non-uniform routing guidance. During each iteration,
routing guidance C are honored via penalties in the cost function
along different directions for different pin access points.

(2) In post-processing, the routing solution will be refined for the
remaining design rule violations [11].

To achieve optimal routing solutions, the key issue is to generate
efficient routing guidance generation. We propose AnalogFold for
effective 3D routing guidance generation in Section 4.

4 AnalogFold: Analog Performance Modeling
and Routing Guidance Prediction

In this section, we present the proposed AnalogFold method flow
and detail the algorithms. Figure 2(a) and Figure 2(b) show the overall
flow of our routing guidance generation algorithms. Our Analog
framework differs from traditional analog methods that rely on
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Figure 2: (a) The overview of our AnalogFold, which trains a 3DGNN to model the potential function of routing guidance and
uses relaxation to derive the optimized routing guidance; (b) Optimize routing guidance via potential relaxation.

summarizing and learning from human analog routing solutions.
Instead, we explicitly construct a performance potential model and
use gradient descent to optimize a series of routing guidance for
the target design. However, there are several major algorithmic
challenges in enabling this methodology:

• Heterogeneous Information Fusion: The analog routing map
contains both logical and physical connection information. To
effectively fuse these two different types of information, we
introduce our heterogeneous graph construction for analog rout-
ing.
• Effective Representation Learning in 3D Space: To tackle the
challenge of representing analog routing guidance information
in 3D space, we propose the 3DGNN model. It addresses the
limitations of directly incorporating coordinate information into
features by considering cost-related distances.
• Potential Relaxation with Pool Assistance: Gradient descent
on non-linear functions suffers from getting trapped in local
optima. To optimize a set of solutions through noisy restart,
we introduce the potential function modeling and pool-assisted
relaxation for routing guidance.

4.1 Heterogeneous Graph for Analog Routing
Routing cost maps for global routing can be formulated into

graphs naturally since they are formed by connections of pin access
points and modules. To model routing cost maps for analog global
routing problems, we propose a heterogeneous graph representation
for improved accuracy, efficiency, and complexity. We design a het-
erogeneous graph G𝐻 =< V𝐴𝑃 ,V𝑀 ,E𝑃𝑃 ,E𝑀𝑃 ,E𝑀𝑀 > to represent
the interactions between pin access points and modules, as shown
in Figure 3.

The vertex sets V𝐴𝑃 and V𝑀 correspond to the pin access points
and modules, respectively. E𝑃𝑃 is designed to reflect the interplay
between different pin access points. E𝑀𝑀 contains the edges that
connect the modules according to the netlist. The edges E𝑃𝑀 to
model the relationship between the modules and the pin access
points.

Point-to-Point connections. If two pin access points 𝑣𝐴𝑃𝑖 , 𝑣𝐴𝑃 𝑗
∈

V𝐴𝑃 are connected by a segment or wire, we add an edge (𝑣𝐴𝑃𝑖 , 𝑣𝐴𝑃 𝑗
)

to E𝑃𝑃 . As shown in Figure 3, these edges indicate the physical
connection relationships between pin access points.

Module-to-module connections. Each vertex in V𝑀 represents
a module on the analog layout. For vertices 𝑣𝑀𝑖

, 𝑣𝑀𝑗
∈ V𝑀 , if a

module 𝑀𝑖 and a module 𝑀𝑗 are connected by a net, we add an

Graph construction

ℰMPℰMP: module-module edges
ℰPPℰPP: pin-pin edges
ℰMPℰMP: module-pin edges

!AP!AP : pin access nodes
!M!M  : module nodes

Figure 3: The construction of heterogeneous graph for model-
ing analog routing.

edge (𝑣𝑀𝑖
, 𝑣𝑀𝑗
) to E𝑀𝑀 . As a result, E𝑀𝑀 can reflect the logical

connections between modules.

Point-to-module connections. If a module 𝑣𝑀𝑘
∈ V𝑀 connects

pin access points 𝑣𝐴𝑃1 , 𝑣𝐴𝑃2 , . . . 𝑣𝐴𝑃𝑙 ∈ V𝐴𝑃 , we add the edges (𝑣𝐴𝑃1 ,
𝑣𝑀𝑘
), (𝑣𝐴𝑃2 , 𝑣𝑀𝑘

), . . . , (𝑣𝐴𝑃𝑙 , 𝑣𝑀𝑘
) to E𝑃𝑀 . More importantly, E𝑃𝑀

bridges the gap between point-to-point and module-to-module mes-
sage passing, fusing physical and logical information.

4.2 Protein-inspired 3DGNN for Analog Routing
Analog routingmodeling encounters challenges with discreteness,

sparsity, and low resolution compared to placement. The 2D-based
routing guidance map in GeniusRoute falls short of offering effective
solutions. By leveraging insights from protein structure prediction,
we seek to employ advanced techniques [17] in generating analog
routing guidance.

To tackle those challenges above, we present a novel and protein-
inspired 3DGNN framework that effectively incorporates the dis-
tance relationships between various pin access points, including
their connectivity to modules. A key factor that requires particu-
lar attention is the routing resource competition among pin access
points from different nets. In the expert’s routing design experience,
the distance between the pin access points and the modules will
also be considered [8]. Thus, we use the distance-augmented module
to augment edges from pin access points to modules, and from pin
access points to pin access points.

Distance Augmented Module. In 3DGNN, the most important
component is the Distance Augment module, where we embed the
cost-aware distances between different nodes into the messages
between the existing nodes.

The embedding of the pin access point/module 𝑣𝐴𝑃𝑘 /𝑣𝑀𝑘
is ob-

tained by aggregating each incoming message 𝑒𝑘 . The message 𝑒𝑘
is updated based on E𝑠𝑘 , the set of incoming messages pointing
to the pin access point/module 𝑣𝐴𝑃𝑘 /𝑣𝑀𝑘

. The distance between 𝑣𝑘
and 𝑣𝑠 can be naturally decomposed into the horizontal distance ℎ,
the vertical distance 𝑤 , and the distance in the Z-axis direction 𝑧.
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Figure 4: The important components of our proposed 3DGNN model: (a) Routing cost distance; (b) Distance augmented module;
(c) Cost-aware message passing procedure on the heterogeneous graph.

Furthermore, we can naturally incorporate the routing cost in each
direction into the calculation of the distance formula, thereby ob-
taining a cost-related distance function to measure the routing cost
distance between different pin access points as shown in Figure 4(a).
Specifically, we can define the distance honoring routing cost as
follows:

𝑑𝑐𝑜𝑠𝑡 (𝑣𝑘 , 𝑣𝑠 ) =
√︃
(C𝑘 [0] · ℎ𝑘𝑠 )2 + (C𝑘 [1] ·𝑤𝑘𝑠 )2 + (C𝑘 [2] · 𝑧𝑘𝑠 )2,

(1)
where C𝑘 is the routing guidance assigned for pin access point 𝑣𝑘 ,
ℎ𝑘𝑠 /𝑤𝑘𝑠 /𝑧𝑘𝑠 is the distance between 𝑣𝑘 and 𝑣𝑠 along horizontal/vertical/Z-
axis direction.

Without further processing, directly embedding the distances
onto the original messages may lead to a plateau at the beginning of
training as the initial network tends to behave linearly. We avoid this
by expanding the distance with radial basis functions as in [17]. With
the definition of cost-aware distance, we can define the aggregation
function used to encode 3D position information as:

𝜌𝑝→𝑒
(
{rℎ}ℎ=𝑣𝑘∪𝑣𝑘

)
= Ψ (𝑑𝑐𝑜𝑠𝑡 (𝑣𝑘 , 𝑣𝑠 )) (2)

= 𝑒𝑥𝑝 (−𝛾 | |𝑑𝑐𝑜𝑠𝑡 (𝑣𝑘 , 𝑣𝑠 ) − 𝜇𝑘 | |2), (3)

which converts the position information rℎ to an embedding of
distance with radial basis functions. Due to this additional non-
linearity, the initial messages are less correlated leading to a faster
training procedure.

Cost-aware Message Passing. In 3DGNN, the proposed cost-aware
message passing is shown in Figure 4(c), which can be defined as:

e𝑙
𝑘
= 𝜙𝑒

(
e𝑘 , 𝑣𝑟𝑘 , 𝑣𝑠𝑘 ,E𝑠𝑘 , 𝜌

𝑝→𝑒
(
{rℎ}ℎ=𝑟𝑘∪𝑠𝑘

))
,

𝑣𝑙𝑖 = 𝜙𝑣
(
𝑣𝑖 , 𝜌

𝑒→𝑣
(
E𝑙𝑖

))
, u𝑙 = 𝜙𝑢

(
u, 𝜌𝑣→𝑢

(
V𝑙

))
,

(4)

where 𝜙𝑒 , 𝜙𝑣 and 𝜙𝑢 are three information update functions on
edges, pin access points/modules, and the whole graph, respectively.
𝜌𝑝→𝑒 and 𝜌𝑣→𝑢 aggregate information between different types of
geometries. Especially, the 3D information in rℎ is converted and
incorporated to update each cost-aware message 𝑒𝑘 .

In addition to the distance augmented module 𝜌𝑝→𝑒 , the message
transformation function 𝜙𝑒 used is:

MLP
(
MLP

(
𝑣𝑟𝑘

)
⊙ MLP (Ψ (𝑑𝑐𝑜𝑠𝑡 (𝑣𝑘 , 𝑣𝑠 )))

)
, (5)

where MLP denotes a Multi-layer Perception layer with weights and
bias and ⊙ denotes the element-wise multiplication.

The aggregation function 𝜌𝑒→𝑣 is defined as the sumation of
received message 𝜌𝑒→𝑣 (E𝑙

𝑖
) = ∑(

e𝑙
𝑘
,𝑟𝑘 ,𝑠𝑘

)
∈E𝑙

𝑖

e𝑙
𝑘
. The combination

function 𝜙𝑣 is defined using the sum as 𝑣𝑖 +
∑(

e𝑙
𝑘
,𝑟𝑘 ,𝑠𝑘

)
∈E𝑙

𝑖

e𝑙
𝑘
. The

global feature u is updated based on the final node features 𝑉𝑇 and
the function is 𝜙𝑢 =

∑𝑛
𝑖=1MLP

(
𝑣𝑇
𝑖

)
.

Algorithm 1 Cost-aware Message Passing for 3DGNN

1: procedure CAMP
2: e𝑙

𝑘
← 𝜙𝑒

(
e𝑘 , 𝑣𝑟𝑘 , 𝑣𝑠𝑘 ,E𝑠𝑘 , 𝜌

𝑝→𝑒
(
{rℎ}ℎ=𝑟𝑘∪𝑠𝑘

))
. ⊲ Update

3: 𝑣𝑙
𝑖
← 𝜙𝑣

(
𝑣𝑖 , 𝜌

𝑒→𝑣
(
E𝑙
𝑖

))
. ⊲ Aggregate

4: u𝑙 ← 𝜙𝑢
(
u, 𝜌𝑣→𝑢

(
V𝑙

))
. ⊲ Combine

5: end procedure

Training Objectives. After 𝐿 layers of cost-aware message passing,
we add a fully connected layer FC to enable the network to predict
the performance metrics corresponding to different routing guidance
and placements. The overall prediction objective can be defined as
follows:

ŷOV, ŷCMRR, ŷUGB, ŷGain, ŷNoise = 𝑓𝜃 (G𝐻 ,C), (6)

where ŷOV, ŷCMRR, ŷUGB, ŷGain, and ŷNoise represent the predicted
metrics of offset voltage, common-mode rejection ratio, unity-gain
bandwidth, gain, and noise respectively. We utilize the 𝐿2 Loss as
the loss function for the model.

4.3 Routing Performance Potential Modeling
and Relaxation

Potential Modeling. To realize routing guidance that minimizes the
constructed potential, we created a differentiable model to predict the
post-layout performance of the routing guidance in the target design.
The complete potential to be minimized is the sum of the Figure
of Merit (FoM) results of the predicted performance and constraint
penalty.

Formally, the potential function associated with the post-layout
performance related to routing guidance can be defined as follows:

𝑉 (C) = w𝐹𝑜𝑀 · 𝑓𝜃 (G𝑣𝑎𝑙𝐻 ,C) + 𝑔(C), (7)

where w𝐹𝑜𝑀 represents the weight preferences for different metrics
corresponding to a given FoM, and 𝑔(C) describes the constraint
function related to the routing guidance. In practice, equal weighting
for all terms in FoM led to the best results.



Table 1: Benchmark circuits information.

Benchmark #PMOS #NMOS #Cap #Res #Total
OTA1 6 8 2 0 25
OTA2 6 8 2 0 25
OTA3 16 10 6 4 36
OTA4 16 10 6 4 36

For the constraint function 𝑔(C𝑖 ), we have employed an interior
point penalty function approach, which can be defined as follows:

𝑔(C𝑖 ) = −𝑟
3∑︁
𝑗=1
(logC𝑖 [ 𝑗] + log(𝑐𝑚𝑎𝑥 − C𝑖 [ 𝑗])) , (8)

where 𝑟 is a small positive value that ensures when 𝑥 approaches
the boundary of the feasible region 𝐷 , 𝑔(C𝑖 ) → +∞, and when 𝑥 is
within 𝐷 , 𝑔(C𝑖 ) ≈ 0. The feasible region 𝐷 of Equation (8) implies
that the elements in the routing guidance must be greater than or
equal to 0 and less than or equal to 𝑐max.

Potential Relaxation. As every term in 𝑉 (·) is differentiable con-
cerning the routing guidance, given an initial set of routing guidance
Cinit sampled from a given distribution, we can minimize𝑉 (C) using
a gradient descent algorithm, such as L-BFGS. We repeat the opti-
mization multiple times with different initializations. A pool of the
𝑁𝑝𝑜𝑜𝑙 lowest-potential structures is maintained and once full, we
initialize 𝑝𝑟𝑒𝑙𝑎𝑥 · 𝑁𝑝𝑜𝑜𝑙 of routing guidance from those with noise
added to the routing guidance. Finally, we will derive the top-𝑁𝑑𝑒𝑟𝑖𝑣𝑒

routing guidance results with optimal potential values.

5 Experiments
5.1 Experimental Setting

We implement the proposed performance-driven analog place-
ment framework with Python 3.7.5 and C++. The main part of the
analog placement and routing algorithms are implemented in C++
based on the MAGICAL framework [18]. The 3dgnn training and
cost guide relaxation are implemented with torch-2.0.0 [19]. All de-
signs are in TSMC 40nm technology, extracted for parasitics with
Calibre PEX, and simulated with Cadence Spectre.

Benchmarks. Due to significant differences in performance met-
rics and layout design space of different analog functional building
modules, we restrict our research scope to the design of operational
transconductance amplifiers (OTAs) as in [11]. OTAs are a clas-
sic circuit design in analog and have a wide range of applications.
The statistics of our benchmarks are shown in Table 1. We conduct
the experiments on two 2-stage miller-compensated operational
transconductance amplifiers (OTA1 and OTA2) and two telescopic
operational transconductance amplifiers (OTA3 and OTA4). OTA1
and OTA2 have the same circuit topology but different sizing, and
the same goes for OTA3 and OTA4. All generated layouts are LVS
clean. A/B/C/D represents placements of different net weights.

ComparedMethods: In our experiments, we compare our Analog-
Fold frameworkwith the following strong baselines: 1) MagicalRoute:
a default router of the MAGICAL [18] framework proposed in [16].
and 2) GeniusRoute: [11]. MagicalRoute [16] incorporates industrial
design rules and analog-specific geometric and electrical constraints
to enhance the overall circuit performance. GeniusRoute [11] is the
recent work on using machine learning models to guide the analog
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Inference: Guided Detailed Routing13.51%
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3.71%
Inference: Routing Guide Generation

80.22%

Model Training

0.33%

Construct Database

Figure 5: Runtime breakdown for OTA1.
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Figure 6: GeniusRoute and AnalogFold routing solutions.
routing process with generation model VAE, which is the closest
one to our work.

Evaluation Metrics. The proposed approaches aim to boost the
ability to obtain analog circuit layouts with optimal performance.
The well-known post-layout metrics (Offset Voltage, CMRR, DC
Gain, Bandwidth, and Noise) and the runtime (i.e., wall-clock time)
are used to measure performance and efficiency, respectively. We
use 5 hosts to collect data at the same time. We use 2000 samples
on target design with different placements and routing solutions to
train AnalogFold.

5.2 Experimental Results
We use the default analog placer in the MAGICAL framework [18]

to generate different placement results for each design. Then, we
compare the performance of routing solutions generated by our
proposed method with other baseline methods. To verify the results
on circuit performance, we conduct post-layout simulations. Calibre
PEX is used to extract the parasitic resistance, parasitic capacitor, and
coupling capacitance (R+C+CC). Then the performance is evaluated
with Cadence Spectre.

Results in Table 2 demonstrate that our proposed AnalogFold
method obtains routing solutions that are superior to baseline meth-
ods in terms of post-layout performance. As shown in Table 2,
AnalogFold achieves up to 3671.00𝜇𝑉 , 30.33dB, 169.2MHz, 38.141dB
and 2028𝜇𝑉𝑟𝑚𝑠 improvement compared to the GeniusRoute [11]
concerning Offset Voltage, CMRR, BandWidth, DC Gain, and Noise.
On average, the CMRR, Bandwidth, and DC Gain can obtain 16.3%,
11.3%, and 136.8% improvement over the MagicalRoute [16] respec-
tively, while the Offset Voltage and Noise can achieve 45.4% and
21.3% reduction.

Our model exhibits enhanced stability by considering the poten-
tial post-layout performance. This is especially evident in the corner
case scenario of OTA4-A, where both the optimization-based Magi-
calRoute [16] and the experience-based GeniusRoute [11] failed to
improve the overall post-layout performance. In contrast, our pro-
posed method has successfully identified the possibility of further
improvements, achieving an enhanced bandwidth of 169.2MHz and
a gain of 38.14dB.



Table 2: The comparisons between baseline methods and the
proposed method.

Circuits Schematic [16] [11] Ours

OTA1-A

Offset Voltage(𝜇𝑉 ) ↓ - 1466 1464 1319
CMRR(dB) ↑ 155.30 89.23 89.01 112.9

BandWidth(MHz) ↑ 108.10 50.97 50.97 51.02
DC Gain(dB) ↑ 37.19 36.79 36.79 36.83
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 213.40 2254 2254 226
Runtime(s) ↓ - 2.49 18.24 5.89

OTA1-B

Offset Voltage(𝜇𝑉 ) ↓ - 1148 1121 1031
CMRR(dB) ↑ 155.30 85.0 85.97 116.3

BandWidth(MHz) ↑ 108.10 48.65 48.64 48.65
DC Gain(dB) ↑ 37.19 36.58 36.59 36.62
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 213.40 2279 2279 228
Runtime(s) ↓ - 2.40 18.30 5.91

OTA1-C

Offset Voltage(𝜇𝑉 ) ↓ - 405 70.61 47.47
CMRR(dB) ↑ 155.30 94.51 93.56 101.9

BandWidth(MHz) ↑ 108.10 49.87 49.87 49.86
DC Gain(dB) ↑ 37.19 36.89 36.91 36.92
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 213.40 2256 2253 2254
Runtime(s) ↓ - 17.65 23.16 6.92

OTA2-A

Offset Voltage(𝜇𝑉 ) ↓ - 6756 7032 3361
CMRR(dB) ↑ 37.72 14.46 13.94 22.06

BandWidth(MHz) ↑ 87.54 34.61 34.36 35.68
DC Gain(dB) ↑ 34.26 15.04 14.6 21.71
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 213.60 426.8 439.6 303.3
Runtime(s) ↓ - 3.51 18.98 8.64

OTA2-B

Offset Voltage(𝜇𝑉 ) ↓ - 3718 3562 3135
CMRR(dB) ↑ 37.72 20.48 20.97 22.5

BandWidth(MHz) ↑ 87.54 35.31 35.40 35.58
DC Gain(dB) ↑ 34.26 20.45 20.87 22.15
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 213.60 319.6 313.8 299.4
Runtime(s) - 8.34 18.98 7.82

OTA2-C

Offset Voltage(𝜇𝑉 ) ↓ - 7691 7590 7558
CMRR(dB) ↑ 37.72 39.94 39.79 40.1

BandWidth(MHz) ↑ 87.54 37.81 37.80 38.03
DC Gain(dB) ↑ 34.26 33.51 33.53 33.63
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 213.60 264.4 264.7 265.4
Runtime(s) ↓ - 3.29 24.60 16.08

OTA3-A

Offset Voltage(𝜇𝑉 ) ↓ - 29.68 29.83 0.249
CMRR(dB) ↑ 126.60 93.14 93.35 110.7

BandWidth(MHz) ↑ 590.00 269.00 267.6 396.90
DC Gain(dB) ↑ 47.50 6.066 6.066 47.66
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 3061.0 0 2313 2295 2278
Runtime(s) ↓ - 0.47 17.10 7.73

OTA3-B

Offset Voltage(𝜇𝑉 ) ↓ - 204.4 230.8 210.6
CMRR(dB) ↑ 126.60 46.96 46.94 46.97

BandWidth(MHz) ↑ 590.00 49.72 51.42 51.75
DC Gain(dB) ↑ 47.50 6.863 6.860 6.949
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 3061.0 1570 1685 1693
Runtime(s) ↓ - 0.44 15.81 7.48

OTA4-A

Offset Voltage(𝜇𝑉 ) ↓ - 0.2532 24.14 0.003
CMRR(dB) ↑ 110.50 125.4 139.1 116.3

BandWidth(MHz) ↑ 802.10 295.0 294.8 464.0
DC Gain(dB) ↑ 44.20 6.079 6.079 44.22
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 3430.00 2441 2448 2343
Runtime(s) ↓ - 0.66 18.10 7.59

OTA4-B

Offset Voltage(𝜇𝑉 ) ↓ - 6.783 11.17 1.137
CMRR(dB) ↑ 110.50 105.3 93.34 123.5

BandWidth(MHz) ↑ 802.10 304.4 303.5 304.0
DC Gain(dB) ↑ 44.20 6.078 6.078 6.078
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ 3430.00 2574 2551 2557
Runtime(s) ↓ - 0.46 18.54 7.52

Average

Offset Voltage(𝜇𝑉 ) ↓ - 1.000 10.426 0.546
CMRR(dB) ↑ - 1.000 0.998 1.163

BandWidth(MHz) ↑ - 1.000 1.002 1.113
DC Gain(dB) ↑ - 1.000 0.999 2.368
Noise(𝜇𝑉𝑟𝑚𝑠 ) ↓ - 1.000 1.007 0.787
Runtime(s) ↓ - 1.000 17.147 7.480

Figure 5 plots the runtime breakdown of our proposed method on
OTA1 designs. The most consuming part is the model training part,
which takes 80.22% of the total runtime. Furthermore, it takes 3.71%
of the total time for the routing cost generation, which includes
feature extraction, inference, and potential relaxation. Even though
the average runtime of our proposed approach is 7.48× slower than
MagicalRoute [16], it is nearly 2.29× faster than GeniusRoute [20]
due to the simplified 3D graph structure.

6 Conclusion
In this paper, we present a new paradigm in analog IC routing

which learns routing guidance from solutions by an automatic rout-
ing engine. Our approach, AnalogFold, combines non-uniform rout-
ing guidance generation and guided analog detailed routing. To
address the key issue of generating effective guidance, we propose
to model the performance potential and derive optimized routing
guides. Experimental results show that our framework significantly
improved multiple post-layout simulation metrics.
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