
PDRC: Package Design Rule Checking via GPU-Accelerated Geometric
Intersection Algorithms for Non-Manhattan Geometry∗

Jiaxi Jiang
Chinese University of Hong Kong

Lancheng Zou
Chinese University of Hong Kong

Wenqian Zhao
Chinese University of Hong Kong

Zhuolun He
Chinese University of Hong Kong

Tinghuan Chen
CUHK-Shenzhen

Bei Yu
Chinese University of Hong Kong

Abstract
With the emergence of chiplet technology, the scale of IC packag-

ing design has been steadily increasing, making the utilization of tra-
ditional design rule checking (DRC) methods more time-consuming.
In this paper, we propose PDRC, a package-level design rule checker
for non-manhattan geometry with GPU acceleration. PDRC employs
hierarchical interval lists within an iterative parallel sweepline frame-
work to implement the geometric intersection algorithm, thereby fin-
ishing design rule checking tasks. Experimental results have demon-
strated 30 - 50 times speedup achieved by PDRC compared with two
CPU-based checkers.

1 Introduction
Advanced packaging technologies are emerging as a promising

solution to address the challenges in the post-Moore’s Law era. The
explosive growth of advanced packages has led to I/O counts on
ASICs, FPGAs, and SoC devices potentially exceeding 10,000 pins,
significantly impacting the performance, capacity, and throughput
of design tools [1]. One of the key challenges in packaging design
tools lies in creating a precise and efficient design rule checking
(DRC) workflow [2].

Design rule checking verifies a design’s physical layout against
the specified geometric rules, which is crucial for acceptable yield.
Ensuring DRC compliance is vital for design approval, yet challenges
arise in package layouts with frequently used non-Manhattan geome-
tries. Typically, X-architecture (wire segments restricted to vertical,
horizontal, and 45/135-degree diagonal directions) is employed for
package/PCB routing [3, 4]. Recent advancements incorporate the
any-angle routing paradigm, further reducing total wirelength and
enhancing routability [5]. Nonetheless, prior design rule checking
studies have not addressed these non-Manhattan design geome-
tries [6–12].

Design rule checking is typically addressed using tools from
planar computational geometry, which boasts numerous achieve-
ments [13–20]. Influenced by these successes, methodologically, re-
searches in DRC generally fall into three categories: (1) Implementing
variations of the sweepline algorithms; (2) Utilizing diverse spatial

∗This work is partially supported by The Research Grants Council of Hong Kong SAR
(No. CUHK14208021).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3657367

Violation Report
Sweeplines

…
…

Parallel

GPU

Intersection

Package Layout
(Non-Manhattan)

Figure 1: Illustration of PDRC: Package design rule checking.

data structures; (3) Exploit various parallelism. The Sweepline al-
gorithm, essential in computational geometry, includes the Bentley-
Ottmann variant for geometric intersections [14] plays an indis-
pensable role in DRC research. The Bentley-Ottmann algorithm, as
slightly modified by [6, 8], improves the efficiency of design rule
checking. Its axis-parallel version is employed by X-Check [11] as
a sequential foundation for parallel algorithm development. Open-
DRC [12] implements similar concepts to rectangle intersection
report [16] for checking. Spatial data structures provide essen-
tial support for design rule checking via region query and neigh-
bor search operations. Hinted quad tree [10] speeds up neighbor
searching in quad-tree [13], thereby boosting design rule checking.
TritonRoute-WXL [21] utilizes R-tree [17] for efficient multiple iter-
ations of checking during the routing phase. Various parallelism
strategies have been exploited to fully utilize the features of different
modern hardware platforms. Edge-based parallelism [11], is achieved
by using parallel prefix sum paradigm [20], making it well-suited for
many-core GPUs. Region-based parallelism [9] is attained by parti-
tioning the circuit into subregions for multi-core/machine devices.
Other approaches, such as hierarchy-based parallelism [7] and task
parallelism [8], can also accelerate performance on multi-core CPUs.

From a computational geometry perspective, the tools researched
and used by DRC fall into two principal categories: 1) tools based on
partitioning the input space and data, and 2) tools utilizing spatial
order defined on line segments. The first category includes quad-
tree, R-tree and grid-like partition. Spatial data locality is attained
by partitioning either the input space, as demonstrated by [9, 10],
or the input data itself, as in [21]. Different sweepline variants gen-
erally fall into the second category. The spatial order between line
segments can be determined by the coordinates of their intersection
points with the sweepline [6, 8]. The efficiency of the sweepline
algorithm is attained by limiting the search space to immediate
neighbors. In cases where only Manhattan geometry is applied, a
notable exception combines both methods: X-Check [11] using
the Y-coordinates of horizontal segments to define the order, akin
to partitioning the layout along the Y-axis. A similar approach is
employed in OpenDRC’s adaptive layout partition [12]. However,
these exceptions are not feasible in non-Manhattan geometries due

https://doi.org/10.1145/3649329.3657367

Bounding Box

N

S

Sweepline

S

NNN

Figure 2: Examples for two geometry intersection methods.

to the failure to establish an order for unconstrained line segments.
In non-Manhattan geometries, the methods in [11, 12] degrade to
the first type of partitioning method, resulting in significant perfor-
mance degradation. As depicted in Figure 2, with the partition-based
method, three checks are needed, as the bounding box of the source
segment cannot prune any other neighbor segments. In contrast, the
sweepline method for detecting intersections for the source segment
requires checking only with one immediate neighbor. The rationale
behind this is that using bounding boxes to represent diagonal lines
inevitably introduces “dead space” (empty area), thereby reducing
pruning efficiency.

The sweepline algorithm can effectively solve non-Manhattan
geometries, but its parallel implementation is extremely challeng-
ing [22]. A key issue is the inability to utilize all event points for
the parallel prefix sum paradigm [20] (since intersection points be-
come known only at runtime). Furthermore, the Bentley-Ottmann
variant’s reliance on binary trees and priority queues suggests an
intrinsically sequential nature. Recently, [19] presents a new idea to
remove the dependency among successive events in the sweepline
algorithm with a necessary overhead required. Our PDRC develops
on this concept, achieving improved work and depth by utilizing
a more effective interval data structure for the GPU and extending
the parallel framework. Figure 1 demonstrates the core concepts of
PDRC. Our contributions are as follows:
• To the best of our knowledge, we develop the first GPU-accelerated
package design rule checking engine for non-manhattan geome-
try;

• We present an iterative parallel sweepline paradigm for geomet-
ric intersection, enabling GPU-friendly fine-grained parallelism;

• We propose a novel data structure for intervals, named hierar-
chical interval lists, tailored for GPU architecture and effectively
addressing stabbing queries;

• We achieve a significant speedup of design rule checking com-
pared with several state-of-the-art design rule checkers.

2 Preliminaries
Design Rules. In this paper, to ease our algorithm design while
ensuring enhanced manufacturability introduced by design rules,
we propose two design rules that necessitate additional verification
tools for layout validation based on previous literature [3, 4, 23].
(1) Non-crossing and spacing rule: Net crossings must be avoided
within the same layer. Additionally, routed nets must adhere to des-
ignated spacing requirements relative to other nets, vias, and pads.
Figure 3 depicts two unique types of spacing for non-Manhattan
geometry: curve spacing and non-Manhattan spacing. (2) Rout-
ing-angle and pad-entry rule: Routing angles should be limited to
either 90 degrees or 135 degrees. When routed nets enter a pad, they
must avoid creating acute angles with each other. Figure 3 illustrates
the routing angle rule.

Curve-to-line
Spacing

Non-acute
Angle

Non-Manhattan
Spacing

Figure 3: Non-Manhattan geometry and design rules.

Non-Manhattan Geometry. In contrast to the Manhattan geome-
try commonly used in Very Large-Scale Integration (VLSI) design,
utilizing X interconnect architecture is favoured in packaging-level
design as it reduces wirelength and vias, ultimately improving perfor-
mance. The X interconnect architecture leads to the use of diagonal
routing segments, and packages may also include circular vias or
pads. Figure 3 illustrates the non-Manhattan geometry used in pack-
age layout.

SIMT, GPU and CUDA. SIMT (Single Instruction, Multiple Thread)
is a parallel computing paradigm where each thread can operate
independently with its own register state and processing elements,
yet follows the same instruction stream. This approach differs from
SIMD (Single Instruction, Multiple Data) by autonomously handling
execution and branching for each thread, rather than manually con-
trolling vector width. Unlike SPMD (Single Program, Multiple Data),
SIMT achieves a degree of synchronized execution across threads.
GPUs utilize the SIMT model for parallel computing to enhance per-
formance. To maximize GPU performance, it’s crucial to maintain
similar execution paths across threads, thereby minimizing their
divergence. Effective SIMT programming enables GPUs, with their
thousands of cores, to outperform CPUs in terms of performance and
throughput in highly parallel applications. Compute Unified Device
Architecture (CUDA), developed by NVIDIA, is a groundbreaking
parallel computing platform that simplifies GPU programming. It
allows developers to leverage NVIDIA GPUs for a range of tasks, pro-
viding a thread hierarchy to organize parallel threads and facilitate
cooperation and parallelism across various hierarchies.

3 Overview
Figure 4 provides an overview of PDRC procedures. It starts with

preprocessing a non-Manhattan package layout, followed by layout
expansion for spacing requirements (as explained in Section 4.1) and
decomposition for algorithm needs (outlined in Section 4.2). The core
of the algorithm involves establishing hierarchical interval lists for
GPU (detailed in Section 4.3), crucial for addressing stabbing queries.
This facilitates the parallel construction of sweepline statuses in
the iterative geometric intersection sweepline framework (described
in Section 4.4), where parallel intersection checks are iteratively
conducted until no new intersection is detected.

4 Algorithms
4.1 Problem Formulation

We offer a brief overview of how the design rule checking tasks
are translated into geometric intersection problems.

Problem 1 (Spacing check). To meet specific spacing requirements,
shapes are expanded so that the cumulative expansion distance be-
tween them meets or exceeds the original spacing requirement. This

Original
Layout

PreProcess
(decompose and expand)

Report

Parallel Build Statuses
(query hierarchical interval lists)

Parallel Check
(intersection test)

Intersection?
Yes

No

Figure 4: Overview of our algorithm procedures.

transformation makes the original task into a geometric intersection
problem. For the expanded shapes’ edges E2, we need to identify two
edges 𝑒1, 𝑒2 with a distance 𝑑𝑖𝑠 () less than or equal to zero. Formally,
this can be written as:

{(𝑒1, 𝑒2) ∈ E2}
s.t. 𝑑𝑖𝑠 (𝑒1, 𝑒2) ≤ 0.

(1)

Problem 2 (Angle check). By identifying intersection points be-
tween edges, we can calculate the angles formed at these intersec-
tions. This approach allows us to identify and examine all routing
angles. For the original shape edges E2, we aim to determine all
intersection points of edge pairs (𝑒1, 𝑒2) and calculate the angles
∠(𝑒1, 𝑒2) at these intersection points to examine if they meet the
requirements A. This can be formally expressed as:

{(𝑒1, 𝑒2) ∈ E2}
s.t. 𝑑𝑖𝑠 (𝑒1, 𝑒2) ≤ 0, ∠(𝑒1, 𝑒2) ∉ A.

(2)

4.2 Geometric Intersection with Sweepline
We introduce the foundational Bentley-Ottmann algorithm for

solving the general geometric intersection problem. This algorithm
efficiently addresses the problem in𝑂 ((𝑛+𝑘) log𝑛) time complexity,
where 𝑛 represents the number of geometric objects and 𝑘 denotes
the number of intersections [14]. Its core principle involves sweep-
ing a line across the plane and maintaining the order of objects
intersected by this sweepline. Crucially, intersections between two
objects occur only when they are adjacent on the sweepline.

The Bentley-Ottmann algorithm requires geometric objects to
have three properties: 1), Any vertical (horizontal) line through the
objects intersects the object exactly once. 2), For objects intersecting
the line, they can have a total order. 3), Given two objects, it is
possible to compute the intersection point.

All convex polygons exhibit property 1, which ensures that any
intersecting line with the object forms a line segment rather than a
collection of discrete shapes, as depicted in the left half of Figure 5.
Property 2 enables us to swiftly locate the neighbors of an object by
maintaining an orderly sequence for the objects. This facilitates effi-
cient intersection testing. Property 3 is the cornerstone of algorithms,

Decompose

Convex Concave

X

Segment Point

Figure 5: Bentley-Ottmann properties.

X

L3

X L1

L2

Naive Interval List Hierarchical Interval Lists

left pruned
interval

right pruned
interval

pruned
region

3 pruned 7 pruned

Figure 6: Comparison of stabbing query for projected seg-
ments: Without vs. with hierarchical interval lists.

providing the fundamental assurance to compute the intersection of
two objects.

The three properties mentioned above essentially prefer each ob-
ject’s intersection with the sweepline to be a point rather than a line
segment, as line segments may fail to establish a total order between
them. In practical applications, objects often require modifications to
adhere to the properties mentioned previously. For instance, when
dealing with circles, they need to be divided into two arcs at the
points where the slope is infinity. As depicted in the right half of Fig-
ure 5, a circle is divided into an upper and a lower arc, transforming
the line segment intersection with the sweepline into two separate
points. However, this kind of decomposition alters the original geo-
metric intersection problem to some degree. It involves dividing
the original shapes into multiple parts, consequently obscuring the
inherent relational information between these shapes. A clearer un-
derstanding is that this decomposition prevents the detection of
special intersection cases, namely inclusion.

To address this issue, we need to reassemble the decomposed
shapes by connecting the points resulting from the division. Specifi-
cally, we reconnect the relative upper and lower intersection points
to reconstruct original line segments that intersect with the sweepline.
Then, we can evaluate if any overlap exists between line segments
on the same sweepline to perform an inclusion check. By sorting
and scanning the endpoints of the line segments, we can efficiently
detect overlapping segments with a single scan in 𝑂 (𝑛 log𝑛) time
complexity, where 𝑛 represents the number of segments in one spe-
cific sweepline status.

4.3 Hierarchical Interval Lists for GPU
To efficiently establish sets of segments intersected by the sweepline

at each position, which aids in parallel construction of sweepline
statuses and enables parallel event processing, stab queries for line
segments projected along the 𝑥-axis are essential. The Build process,
comprising two substages Label and Merge as described in lines
4-9 of Algorithm 1, utilizes a novel interval data structure called
hierarchical interval lists to facilitate efficiency.

The challenge with intervals, distinguished by their two end-
points, is their lack of a total order, making stabbing queries via
binary search more complex. Sorting line segments by left endpoints
allows pruning only when the left endpoint exceeds the query point.
Additionally, consolidation of all line segments into a single data
structure impedes GPU parallelization. Therefore, we assign differ-
ent hierarchical labels to the line segments according to their lengths,
enabling us to store segments of each hierarchy in separate arrays.
Even though a total order within a single array is uncertain, the
restriction on line segment lengths within the same array facilitates
the use of binary search for querying, significantly limiting the re-
turn of redundant elements. Figure 6 illustrates the query results,
comparing scenarios without and with hierarchical interval lists.
The symbol 𝑋 marks the stabbing query’s location, with shaded
areas and crosses showing intervals pruned via binary search. 𝐿1, 𝐿2,
and 𝐿3 represent the maximum lengths of the respective lists. Fur-
thermore, by using multiple arrays of line segments that represent
different hierarchies, it’s possible to allocate these arrays to separate
GPU threads, enabling parallel processing across hierarchies.

Compared to conventional tree-like data structures for intervals,
like interval tree [15] and segment tree [16], our proposed hierarchi-
cal interval lists are better suited for GPU parallelization, enabling
the acceleration of a single query through multiple threads. The dis-
tinct distribution of our stabbing queries, which is slightly different
from traditional tree structure expectations, allows for advanced
knowledge of query positions, thereby enhancing efficiency. Contin-
uous ordered queries can leverage the results obtained from previous
and neighbour queries (for cache reasons), thereby accelerating the
querying process. Our data structure can significantly benefit from
this distribution. On the other hand, accessing a tree-like structure
on a GPU is less efficient for memory coalescing reasons. Contrasting
with the methods used by [20] for segment queries, our algorithm
simplifies the construction process, eliminating the need for complex
set operations during construction. This results in a simultaneous re-
duction in both algorithmic and code complexity. Additionally, [20]
relies on balanced trees for set union and difference, which are
challenging to implement and inefficient due to irregular tree node
random accesses.

4.4 Iterative Parallel Sweepline Algorithm
The sweepline-based geometric intersection algorithm does not

offer a straightforward perspective to achieve parallelization. Due to
the sequential nature of the Bentley-Ottmann algorithm, it processes
all events in order, maintaining the order of intersecting objects with
the sweepline using a binary tree, and utilizing a priority queue to
maintain the order of all events. Furthermore, it is not possible to
know all event positions in advance, as the algorithm generates inter-
section events during runtime. To achieve fine-grained parallelism
which is suitable for GPU, we inevitably need to introduce additional
work or memory in order to reduce the depth of the algorithm.

Building on the innovative event-parallel concept from [19], we
have further developed their approach to attain position-level par-
allelism, specifically tailored to common data distributions in PCB
and Package domains. We adopt a horizontal version of the Bentley-
Ottmann algorithm for description. Rather than processing event
points in ascending 𝑥-order during a left-right horizontal sweep, we
initially sort and remove duplicates from all pre-known event points

Iterative SweeplinesInitial Sweeplines

SL1 SL2 SL3 SL4 SL5 SL6 SL1 SL2 SL3 SL4 SL5 SL6SI1

Figure 7: Iterative parallel sweepline algorithm.

(derived from segment endpoints) according to their 𝑥 coordinates.
This process creates initial sweeplines, illustrated as vertical blue
lines in the left half of Figure 7. We then address events at each
position, taking into consideration that each position may contain
multiple events. The rationale behind this is related to the highly
organized ball grid array and bump pad commonly used in PCB
and IC packaging designs [3, 4, 23]. In the processing of each posi-
tion, multiple new intersection events may emerge. The final phase
of processing intersection events is iterative, new sweeplines can
be derived from intersection points, as illustrated in the right half
of Figure 7.
Algorithm 1 Iterative Parallel Sweepline Algorithm
Input: A set O of geometry objects satisfy Bentley-Ottmann three

properties
Output: Geometry objects pairs which have intersections
1: Sort objects endpoints sequence P by ascending 𝑥-coordinates;
2: Remove duplicated 𝑥-coordinate occurrences in P;
3: Initialize Hierarchical Interval Lists L;
4: For each position in P do in parallel ⊲ Build
5: Identify the left and right boundaries in L; ⊲ Label
6: Merge the segment sequence as S from L; ⊲ Merge
7: Endfor
8: For each segment sequence in S do in parallel ⊲ Sort
9: Sort segments based on the 𝑦-coordinates of the intersec-

tions;
10: Endfor
11: For each position in P do in parallel ⊲ Check
12: Scan segments and update intersection events I;
13: Endfor
14: while I have new elements do ⊲ Iterative Check
15: For each new element in I do in parallel
16: choose merged segments and resort them;
17: Handle intersection events and update I;
18: Endfor
19: end while

Algorithm 1 describes the details of our position-level parallelism.
After acquiring the unique 𝑥 coordinates of events, we utilize hi-
erarchical interval lists to accelerate stabbing queries for intervals.
During the query process, each thread uses binary search to deter-
mine the left and right boundaries within its allocated array. Follow-
ing this, threads merge elements found between these boundaries
within their respective arrays. Next, we sort the query results along
the y-axis, enabling rapid identification of intervals adjacent to the
event interval and facilitating inclusion checks. We briefly describe
how to scan segments for inclusion and intersection checks. For
the inclusion check, it suffices to ensure that reconnected segments

on the same sweepline do not intersect. While scanning, a set of
active segments is maintained. When new segments are scanned,
they might overlap with those already in the set, causing overlaps
in the initial geometry. Intersection checks require handling start,
end, and intersection events. In a start event, determine whether the
newly added object intersects with its immediate upper and lower
neighbors. For an end event, verify if the objects neighboring the
ending segment intersect. At an intersection event, assess if there
are intersections between the newly neighboring objects adjacent to
the intersecting segments.

4.5 Summary and Discussions
To analyze the time complexity of our algorithm, we’ll use the

work-depth paradigm [24]. Our core algorithm consists of five stages
in total: (1) Label. In conducting binary searches across 𝑘 interval
lists containing 𝑛 intervals in total, and assuming the longest list
has a length of 𝑛

𝜔𝑘
, the depth is O(log 𝑛

𝜔𝑘
). The total work involved

is at most O(𝑘 log 𝑛
𝑘
). (2) Merge. When merging 𝑝 positions, with

each position expected to contain 𝑂 (
√
𝑛) intervals (the same esti-

mation as in [6]), the depth is 𝑂 (
√
𝑛) in the worst-case scenario

(where all intervals originate from the same list). Consequently, the
overall work required is 𝑂 (𝑝

√
𝑛). (3) Sort. Parallel radix sorting can

be applied to each list, resulting in a depth of 𝑂 (𝑑 log𝑛), where 𝑑
represents the number of digits. The total work involved is thus
𝑂 (𝑑𝑝

√
𝑛). (4) Check. For each position, scanning each interval list

once is necessary for inclusion and intersection checks. This results
in a depth of 𝑂 (

√
𝑛), with the total work amounting to 𝑂 (𝑝

√
𝑛).

(5) Iterative Check. In the case where there are few intersections,
the “Iterative Check” stage involves 𝑂 (1) iterations. Each iteration
repeats the process of stage Sort and Check.

Consequently, if we disregard the constant 𝑑 , the total work in-
volved is 𝑂 (𝑝

√
𝑛), and the depth remains at 𝑂 (

√
𝑛). The space com-

plexity is 𝑂 (𝑝
√
𝑛) since it’s necessary to store lists for 𝑝 positions.

5 Implementation Details
A heterogeneous CPU-GPU computing platform requires delib-

erate coordination, incorporating techniques such as parallel GPU
and CPU processing, concurrent GPU computation across streams,
and overlapping data transfer with computation.

When multiple threads are writing to the results in parallel, we
use a lock-free approach(atomic operations), thus avoiding the in-
efficiencies that come with using lock structures. The technique
of utilizing overlap data transfer and computation is employed to
construct hierarchical interval lists. First, the CPU is used to build
collections for each hierarchy. Then, various geometries are trans-
ferred asynchronously to the GPU and sorted. At the same time, the
interval lists of the previous hierarchy are also sorted during the
data transfer. While the GPU sorts and constructs the hierarchical
interval lists, the CPU obtains all endpoints simultaneously. This
allows for concurrent computation between the CPU and GPU. We
store all of the sweeplines’ 𝑋 coordinates in an array while simulta-
neously building the hierarchical interval lists during initialization.
This enables computation on the GPU using different streams in the
algorithm.

We utilize the thread hierarchy concept in CUDA, namely blocks
and threads. For every unique position, we allocate a block where

Table 1: The statistics of our benchmarks.

Benchmark #C #P #N
xc7z020_t 443 1737 428
xc7z020_b 572 1390 383
xc7z030_t 447 1936 442
xc7z030_b 653 1539 416
hs3690_t 910 3529 998
hs3690_b 656 1878 496

threads within it simultaneously conduct binary searches through hi-
erarchical interval lists. To speed up the construction of the sweepline
statuses, we use the block-wide sorting capabilities of CUB [25].
Then, threads in the same block can execute a parallel neighbor check
on the sweepline. Distinct blocks operate independently, checking
different positions. This stratified parallelism significantly increases
the algorithm’s concurrency and optimizes its effectiveness.

6 Experiments
Our algorithms are developed in C++ and CUDA, and tested on a

Linux machine with an Intel Xeon Silver 4210R CPU (2.40GHz) and
an NVIDIA GeForce RTX 3090 GPU. Programs are compiled using
NVCC 11.6 and GNU GCC 9.4. For baseline comparisons, we use
three modes in KLayout [26] and implement an R-tree based checker
with Boost [27], similar to KiCad [28], since KiCad does not support
design rule checking as a standalone tool. This R-tree based checker
implementation also provides a reliable ground truth to verify the
correctness of our algorithm.

Our benchmarks consist of several industrial PCB designs, since
there are few open package design benchmarks for research. Initially
designed in Allegro brd format, these designs are then exported
as dxf and dsn (for routing) formats compatible with KLayout and
PDRC. We developed a dsn parser to facilitate the use of dsn format.
To ease implementation, we simplified the shapes in PCB layouts,
such as employing segments to approximate curves, akin to the
approaches used in KLayout.

The statistics of our benchmarks are listed on Table 1, where #C,
#P, #N denote the numbers of components, pads and nets respec-
tively. The suffix “_t” in the table denotes top layer, while the suffix
“_b” represents bottom layer. Although PCB design and package
design share some similarities, such as X-architecture, package de-
sign typically involves a much larger scale compared to PCB design.
Therefore, we replicate our largest benchmark, increasing its size
by factors of 4, 8, and 16, respectively. As we are simply creating
duplicated layouts, we have not included the replicated benchmark
in Table 1. At Table 2, in “Benchmark” column, the prefixes “4”, “8”,
and “16” indicate their increased sizes. “#Segments” column denotes
the number of segments in the relevant design.

Since spacing check and angle check are quite similar. Angle check
merely needs one more check for angles at each intersection, which
takes little time. Only Spacing check runtime comparisons are listed
in Table 2 (in milliseconds). “flat”, “deep” and “tile” columns denote
to the three different modes in KLayout. Flat mode denotes the naive
sequential version. In the deep mode, the operations will be exe-
cuted in a hierarchical manner; in the tile mode, said operations are
evaluated within tiles, whereby multi-core acceleration is supported.
“R-tree” column is our own implementation, similar to the design
rule checker in KiCad. Each column consists of two subcolumns: “RT”

Table 2: Runtime (ms) comparisons of design rule checking.

Benchmark #Segments Klayout [26] flat Klayout [26] deep Klayout [26] tile R-tree [27] PDRCRT Ratio RT Ratio RT Ratio RT Ratio
xc7z020_t 39368 301 43.0× 272 38.9× 146 20.9× 82 11.7× 7
xc7z020_b 18014 232 77.3× 173 57.7× 65 21.7× 31 10.3× 3
xc7z030_t 45972 273 91.0× 275 91.7× 108 36.0× 90 30.0× 3
xc7z030_b 19500 235 78.3× 189 63.0× 69 23.0× 217 72.3× 3
hs3690_t 68604 825 165.0× 705 141.0× 331 66.2× 129 25.8× 5
hs3690_b 35082 452 150.7× 571 190.3× 192 64.0× 64 21.3× 3
4hs3690_t 274416 3334 222.3× 2772 184.8× 569 37.9× 1113 74.2× 15
4hs3690_b 140328 1849 205.4× 2240 248.9× 358 39.8× 532 59.1× 9
8hs3690_t 548832 6721 268.8× 5636 225.4× 1064 42.6× 3693 147.7× 25
8hs3690_b 280656 3731 186.6× 4445 222.3× 612 30.6× 1715 85.8× 20
16hs3690_t 1097664 13470 244.9× 11274 205.0× 1996 36.3× 12821 233.1× 55
16hs3690_b 561312 7505 220.7× 8929 262.6× 1136 33.4× 5944 174.8× 34
Average 143.0× 136.8× 35.3× 51.2×

Preprocess(8.2%)
HIL Setup(33.5%)
Build(16.2%)
Sort(30.7%)
Check(4.8%)
Iterative Check(5.3%)
Others(1.3%)

Figure 8: Average run-
time breakdown.

Violation

Violations Violations Violations

Figure 9: Illustration of real violation reports in Allegro gui.
A red bow symbolizes a violation.

and “Ratio”, representing runtime and ratio of runtime compared to
PDRC’s runtime, respectively. The final column displays the runtime
of our PDRC. The “average” row is normalized against our PDRC
checker, where the ratio is the geometric mean of the column, as
we value all checks equally regardless of their sizes. PDRC achieves
51.2× on average speedup compared with R-tree, and 20.9 × −66.2×
speedup compared with KLayout (tile mode with 8 threads).

Our algorithm demonstrates consistently enhanced acceleration
in large-scale cases, due to the fine-grained parallelism of the iter-
ative parallel sweepline algorithm. This approach results in more
efficient work,𝑂 (𝑝

√
𝑛), and a shallower depth,𝑂 (

√
𝑛), in contrast to

brute-force parallelism, which requires𝑂 (𝑛2) work and has an𝑂 (𝑛)
depth. Figure 8 displays the runtime breakdown of CUDA kernels,
highlighting that constructing hierarchical interval lists (labeled
as “HIL”) and sweepline statuses account for the majority of the
time (since these operations involve significant amounts of mem-
ory transfer in GPU). Owing to the limited number of intersection
checks needed by sweepline algorithms, Check’s share of the total
runtime is relatively small. Since intersections are infrequent in our
benchmark, the time proportion for Iterative Check is also small.
Figure 9 depicts real violation reports in Allegro.

7 Conclusion and Roadmap

Design rule checking is a fundamental stage at the end of physical
design flow. The growing complexity of package design underscores
the need for fine-grained, ultra-fast parallel algorithms for design
rule checking. We’ve implemented an iterative parallel sweepline
algorithm optimized for GPUs using position-level parallelism, and
efficiently done interval stabbing queries with hierarchical interval
lists. In the future, we plan to collaborate with industry partners to
develop more work-depth-efficient algorithms and GPU-based data
structures. This will help us adapt to the demands of larger design.

References
[1] “Solving the Design and Verification Challenges of High Density Advanced Pack-

aging,” https://resources.sw.siemens.com/.
[2] C.-Y. Huang, L. Cao, K.-T. Chang, and C.-C. Wang, “High density package design

platform and assembly design kit,” in Proc. MICRO, vol. 2021, no. 1, 2021.
[3] H.-T. Wen, Y.-J. Cai, Y. Hsu, and Y.-W. Chang, “Via-based redistribution layer

routing for info packages with irregular pad structures,” IEEE TCAD, vol. 41, no. 12,
pp. 5554–5567, 2022.

[4] T. Chen, S. Xiong, H. He, and B. Yu, “TRouter: Thermal-driven PCB Routing via
Non-Local Crisscross Attention Networks,” IEEE TCAD, 2023.

[5] M.-H. Chung, J.-W. Chuang, and Y.-W. Chang, “Any-Angle Routing for Redistribu-
tion Layers in 2.5D IC Packages,” in Proc. DAC, 2023.

[6] U. Lauther, “An o (n log n) algorithm for boolean mask operations,” in Proc. DAC,
1981.

[7] N. Hedenstierna and K. Jeppson, “A parallel hierarchical design rule checker,” in
Proc. DATE, 1992.

[8] K. MacPherson and P. Banerjee, “Parallel algorithms for vlsi layout verification,”
Journal of Parallel and Distributed Computing, vol. 36, no. 2, pp. 156–172, 1996.

[9] K.-T. Hsu, S. Sinha, Y.-C. Pi, C. Chiang, and T.-Y. Ho, “A distributed algorithm for
layout geometry operations,” in Proc. DAC, 2011.

[10] G. G. Lai, D. S. Fussell, and D. Wong, “Hinted quad trees for VLSI geometry DRC
based on efficient searching for neighbors,” IEEE TCAD, vol. 15, no. 3, pp. 317–324,
1996.

[11] Z. He, Y. Ma, and B. Yu, “X-Check: GPU-Accelerated Design Rule Checking via
Parallel Sweepline Algorithms,” in Proc. ICCAD, 2022.

[12] Z. He, Y. Zuo, J. Jiang, H. Zheng, Y. Ma, and B. Yu, “OpenDRC: An Efficient Open-
Source Design Rule Checking Engine with Hierarchical GPU Acceleration,” in
Proc. DAC, 2023.

[13] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on composite
keys,” Acta informatica, vol. 4, pp. 1–9, 1974.

[14] Bentley and Ottmann, “Algorithms for reporting and counting geometric intersec-
tions,” IEEE TC, vol. 100, no. 9, pp. 643–647, 1979.

[15] E. M. McCreight, “Efficient algorithms for enumerating intersecting intervals and
rectangles,” Tech. Rep., 1980.

[16] Bentley and Wood, “An optimal worst case algorithm for reporting intersections
of rectangles,” IEEE TC, vol. 100, no. 7, pp. 571–577, 1980.

[17] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proc. SIG-
MOD, 1984.

[18] B. Chazelle and H. Edelsbrunner, “An optimal algorithm for intersecting line
segments in the plane,” Journal of the ACM, vol. 39, no. 1, pp. 1–54, 1992.

[19] A. Paudel and S. Puri, “Openacc based gpu parallelization of plane sweep algorithm
for geometric intersection,” in Proc. WACCPS, 2019.

[20] Y. Sun and G. E. Blelloch, “Parallel range, segment and rectangle queries with
augmented maps,” in Proc. ALENEX, 2019.

[21] A. B. Kahng, L. Wang, and B. Xu, “TritonRoute-WXL: The open-source router with
integrated DRC engine,” IEEE TCAD, vol. 41, no. 4, pp. 1076–1089, 2021.

[22] M. T. Goodrich, “Intersecting line segments in parallel with an output-sensitive
number of processors,” in Proc. SPAA, 1989.

[23] T.-C. Lin, D. Merrill, Y.-Y. Wu, C. Holtz, and C.-K. Cheng, “A unified printed circuit
board routing algorithm with complicated constraints and differential pairs,” in
Proc. ASPDAC, 2021.

[24] J. JéJé, “An introduction to parallel algorithms,” Reading, MA: Addison-Wesley,
vol. 10, p. 133889, 1992.

[25] “CUB CUDA Libraries,” https://nvlabs.github.io/cub/.
[26] “KLayout,” https://klayout.de/.
[27] “Boost C++ Libraries,” https://www.boost.org/.
[28] “KiCad,” https://www.kicad.org/.

https://resources.sw.siemens.com/
https://nvlabs.github.io/cub/
https://klayout.de/
https://www.boost.org/
https://www.kicad.org/

